
Content-Based Searching with Relevance Ranking for
Learning Objects

By

Vikram Chellappa

Bachelor of Engineering (Electronics and Communication Engineering),

University Of Madras, Madras, India, 2001

Submitted to the Department of Electrical Engineering and Computer Science and the

Faculty of Graduate School of the University of Kansas in impartial fulfillment of the

requirements for the degree of Master of Science.

Dr. Susan Gauch, Chair

Dr. Jerry James, Committee Member

Dr. Perry Alexander, Committee Member

 Date Project Accepted

Copyright © 2004 by Vikram Chellappa.

All rights reserved.

 2

Acknowledgments

It is a pleasure to acknowledge my people for their precious support, which has

made this project possible.

I am deeply indebted to Dr. Susan Gauch, my graduate advisor and committee

chair, for giving me this opportunity and guiding me through this research project. She

has been instrumental in enabling me to conceive, design and execute every step involved

in the making of this project. Every single time, she has overwhelmed me with technical

inputs and ideas and has stood for me at all times. She has made this project a reality. I

thank God for bringing me in association with a hard working person such as her. I shall

cherish this association all through my life.

I would also like to thank Dr. Jerry James and Dr. Perry Alexander for serving as

members on my committee. Special thanks to Dr. Jerry James for his constant support,

help and encouragement during the spring 2003 semester. I am also thankful to Abishek,

and Dinesh for their help and inputs at essential times.

I thank my parents, my brother, all my family members and friends for their care,

affection, support and patience. I thank God for showering his blessings on all my good

people and me.

 3

Abstract

There is always a need for more efficient and accurate content-based searches.

Numerous methods have been designed to develop these search engines. Another

important requirement is to produce an ordering in the returned result set that matches the

users needs. This is also being worked on and multiple algorithms have been formulated

to achieve this. The common of all these methods is the vector-space model. The

similarity between the document and the query is calculated using the cosine similarity

formula where terms are weighted as the product of the Term Frequency and the Inverse

Document Frequency.

The document list is sorted based on similarity values and the most important

document is displayed first and the least important document is displayed last. Our

project is designed to incorporate a vector space ranking algorithm for the content fields

of XML documents.

 4

Table of Contents

1. Introduction………………………………………………………………....6

2. IKME ………………………………………………………………………8

2.1 Learning Objects…………………………………………………..9

2.2 Lesson Objects……………………………………………………11

2.3 Manuals…………………………………………………………...11

2.4 eXist Database…………………………………………………….11

2.5 XPath……………………………………………………………...12

2.6 XUpdate…………………………………………………………..13

2.7 XML:DB API……………………………………………………..13

3. Goals……………………………………………………………………….15

4. Implementation…………………………………………………………….16

 4.1 Design Considerations……………………………………………16

4.2 Block Diagram……………………………………………………17

4.3 Query Processing………………………………………………….18

 4.4 Querying the database…………………………………………….19

 4.5 Using the XML:Twig Parser……………………………………...20

 4.6 Formula…………………………………………………………....22

5. Features and Improvements………………………………………………...26

6. Future Work…………………………………………………………………31

7. Conclusion…………………………………………………………………..31

8. Bibliography…………………………………………………………………32

 5

1. Introduction

 Search engines are often the first method used by any user to locate a page. The

requirements that a search engine should satisfy are that the search engine must be easy

to use, help the user to find useful information, display results in a meaningful way,

should have descent response time and help authors to improve the site. There are other

numerous requirements to be taken into account but most of those considerations are

based on other considerations like the scale of the project, the audience etc. In order to be

a widely used search engine, it should satisfy all the above requirements without fail.

 Most search engines work with HTML documents in which the tags can be

largely ignored. XML documents have semantically meaningful tags. Lumping all the

values in all the fields together for search purposes is a simple way to index them. So

they are searchable by textual search engines.

 In contrast, XML documents can be stored in relational Database management

systems and searchable via SQL. These however have only rudimentary capabilities for

searching for words within a textual field.

 A final option is to store the XML documents in a native XML database. This

approach is slower at search time, but it is more flexible than a Relational Database

Management system since not all XML documents must confirm to the same schema.

This latter approach is the one that is adopted by Intelligent Knowledge Management

Environment (IKME) project at the University of Kansas.

 The IKME project stores XML documents in the eXist Database. eXist provides

search capabilities using XPath queries however, when searching on the content field, the

 6

results come back in an alphabetical order. The goals of this project were to design and

implement an efficient and suitable search feature for the content fields in the XML

documents and generating a rank ordered result set with a fast response time.

 7

2. IKME

 Intelligent Knowledge Management Environment (IKME) is an ongoing project at

the University of Kansas aimed at assisting the Defense Information Technology Testbed

(DITT)/University After Next (UAN) by providing an advanced reach-back capability for

commanders, staff, and other users who have time-critical needs.

 In this project, Extensible Markup Language is used as the medium for

representing data. This allows explicit separation of style and content. The XML schema

is developed by the “Center for Army Lessons Learned”. Knowledge creators use the

environment to create learning objects that are stored as XML documents, and the same

XML document can be represented in various styles and data formats using style sheets.

The learning objects are in turn used to create lesson objects or manuals.

 Reusability, interoperability, and extensibility are the major aspects of content

development techniques. In this context, learning objects is a core concept. Reusable

learning objects represent an alternative approach to content development. Learning

objects are used by educators to break content into bit size chunks. These chunks could

be independently created, maintained, reused, pulled apart and joined together. These

chunks are called the Objects. This is the fundamental idea behind learning objects. The

aim is to reduce the amount of effort and time necessary while incorporating

modifications to the content and these learning objects highly reduce the time involved in

content processing thus enabling the creator to achieve the desired goals at a much faster

rate than other conventional techniques.

 8

 Figure 2.1 IKME main page

2.1 Learning Objects

 Learning objects are the fundamental content objects. They can be used

independently or grouped into larger collections of content in order to be reusable in

multiple contexts for multiple purposes, they must be tagged with metadata. This

metadata is descriptive information that allows them to be easily found in a search.

 A document’s content must be structured and separated from presentation

information. This goal is accomplished by XML. XML uses tags to structure information

and a separate XSL document is used to present information. The most straightforward

 9

method to display information is the conjoining of XML file with related style sheets

defined in XSL.

 Figure2.2 Create Learning Object

 IKME provides users the ability to create, view, modify or search learning objects

by providing information on an online form and saving the learning object. These

learning objects are stored as XML documents in the eXist database. These learning

objects can be reused multiple times in different learning contexts by creating lesson

objects or manuals.

 10

2.2 Lesson Objects

 The learning objects as described earlier can be grouped or aggregated to create

lesson objects. It is the choice of the user to decide which learning objects could be

grouped in order to form a lesson object. Here too, the user has the option to modify

lessons objects.

2.3 Manuals

 Learning objects can also be combined to generate manuals. Manuals are created

for a particular topic and the user can select specific learning objects related to a

particular topic. In this way, the user can create a manual for a particular topic. An

important issue concerning the creation of manuals is the identification of learning

objects that are related to the same topic. As the database grows, it gets harder to identify

related learning objects. So, we need a method to automatically identify similar learning

objects, thereby making it easier to create lesson objects and manuals.

2.4 eXist Database

 eXist is an open source native XML Database which is written in Java and

provides efficient index-based XPath query processing and extensions for keyword

search. IKME uses this eXist database to store all the XML documents.

 Documents are managed in hierarchical collections just as in a file system. The

collections are not restricted to a particular schema and so an unlimited number of

documents of multiple document types could be stored in the same collection.

Conventional XPath processors are mostly based on top-down or bottom-up approach

 11

and even though they are clean approaches they become inefficient for large documents.

This is because, in order to access any element, every single path from the top or the

bottom must be traversed. Approaches differ but they all become inefficient for large

document collections.

 That is why indexed structures are essential in order to efficiently perform queries

on large unconstrained collections. A numbering scheme is used to index in eXist. This

enables faster identification of structural relationships like parent-child, ancestor-

descendent or previous-next siblings between nodes. eXist provides index-based queries

on full text-content of nodes by extending XPath. Additional operators for keyword

search, i.e., wildcards, regular expression matches, and term proximity are the main

extensions.

 eXist comes with XUpdate support. This is a standard proposed by XML:DB

initiative for updates of selected parts of a document. The database is integrated with

Cocoon which is based on XML:DB API. The resources in eXist can be directly

referenced from Cocoons site map with XML:DB pseudo-protocol. The development of

dynamic web pages are achieved with an XML:DB based XSP logic sheet.

2.5 XPath

 XML Path Language is a non-XML language for addressing parts of an XML

document. XPath is syntax to define parts of an XML document. XPath defines standard

library functions and is an integral element of XSLT. XPath allows the user to write

expressions that could refer to any part of a XML document. XPath expression can also

represent numbers, strings or Booleans. The expressions look very similar to expressions

 12

in a computer file system. XPath 2.0 is an expression language that allows the processing

of values conforming to a specific data model. The data model provides a tree

representation of XML documents as well as atomic values such as integers, strings, and

booleans, and sequences that may contain both references to nodes in an XML document

and atomic values. The result of an XPath expression may be a selection of nodes from

the input documents, or an atomic value, or any sequence allowed by the data model.

2.6 XUpdate

XUpdate is a XML Update Language. The main purpose of this language is to

provide open and flexible update facilities in order to modify data in XML documents.

XUpdate uses XPath extensively to choose elements for updating and for conditional

processing. The XUpdate is expressed as a well-formed XML document. This allows the

user to create elements, attributes, text, processing instructions and comments. Other

important functions are append, update, remove and rename.

2.7 XML:DB API

The XML:DB API is designed to enable a common access mechanism to XML

databases. This enables the constructions of applications to store, retrieve, modify and

query data stored in an XML database. Another important goal of this API is to be

modular and define a simple baseline for users to follow. This gives the user the

capability to manage, view and update the content of a native XML database. It allows

the user to insert, update, and delete documents interactively. Lets the user add and delete

collection of documents. The user could import and export documents from/to the file

 13

system. The user can search for data using XPath expressions, with support for

namespaces as well. Modify the content of documents using XUpdate expressions.

Export XPath query results to file. Support for DB username and password.

 14

3. Goals

 IKME offers a search feature that allows users to search for keywords and

displays the documents in which the keyword appears. The main goal of this project is to

provide a complete text search where in the user could search on any keyword and any

number of key words and a rank ordered result set is produced. The next important goal

is to have an extremely good response time. The querying, processing and displaying of

the final result set, that is rank ordered is all done on the fly, i.e., all of these processes are

done after the user enters a query. These processes have to be done with a quick response

time. The other important goal was to be display the most accurate result set. In

summary, shell the complete text search on the XML documents has to be accurate,

adaptable, and extensible while providing quick response time.

 15

4. Implementation

 This project has been programmed in PERL and the implementation is completely

in accordance to the norms set by the existing project. The eXist database as discussed in

chapter 2, is a native XML database that stores all the XML documents. The major parts

of this project are querying the database, manipulating the returned data, processing the

query, matching the query with the content, and displaying the results. The main aim of

the project is to obtain a rank ordered result set for any query or any number of queries

the user enters. Currently, IKME provides a search feature that does not return a rank

ordered result set. Rather, the results returned in response to a query are in alphabetical

order. This project returns a result set ordered by similarity values. This results in a more

accurate result set as will be shown by suitable examples and results.

4.1 Design Considerations

 We had two options in implementing a vector space model for the content field.

 Write a full text search engine code in C++.

We could either

 Develop a post process/wrapper on eXist.

We chose the second option since we have eXist that stores all the documents. eXist also

provides efficient index-based XPath query processing and extensions for keyword

search.

 16

4.2 Block Diagram

 query

Web Interface

Documents
Containing
Query Term

Weight
Calculation

Rank Ordered
Result Set

Text
Extraction

Native XML
Database

USER

Figure 4.1 Block Diagram

• The user initially enters an input query string through a web interface.

• This input query string is processed (down cased, punctuation removal, checked

for double quotes, tokenized).

• An XPath query is formulated. This is used to query the Native XML Database.

The XML documents containing the input query term are obtained.

• The content tags in these documents are searched for. The text from the content

tag from each document is extracted. The text is then tokenized.

 17

• The independent terms in the input query string are compared with the

independent tokens in each of the matching documents and the total number of

matches for each query term is found.

• The similarity between the document and the query is calculated using the cosine

similarity formula where terms are weighted as the product of the Term

Frequency and the Inverse Document Frequency.

• A rank-ordered result set is then generated and displayed to the user through the

web interface.

4.3 Query Processing

 The first step we do is to process the input query string entered by the user. The

input query string is checked for double quotes. If the quotes are seen at the beginning

and the end of the query string the query is accepted as entered by the user, and no

processing is done on them. The query is processed only if the query string is not within

double quotes, indicating that the user does not require exact phrase matching.

If the input query string is not within double quotes, we first eliminate trailing and

leading spaces from the input query string. The query is then scanned for punctuations. If

there are any, then they are all removed. Now, the input query string is plain text. The

query is then down-cased. After this the query is tokenized. The input query string is

tokenized if there is more than one term in the input query string. The query is split into

individual words just as the text from all the XML documents were done. These

individual terms are the ones that are used to compare with the tokenized words from the

text in each document to find matches.

 18

 4.4 Querying the Database

 As we have seen, eXist is the native XML database used to store all the

documents. A database may have unlimited set of documents and collections. There are

two major functions ‘document()’ and ‘collection()’. Wild card characters could also be

used as parameters to the two commands. The ‘document()’ function accepts single

documents path and a list of document paths. The ‘collection()’ function specifies the

collection whose documents are to be included in query evaluation. So, for our

requirement the ‘collection()’ function has been used to specify the collection of

documents and formulate the XPath query.

When the user has entered no query, the XPath query that has to be sent to the

database, should browse the appropriate directory and retrieve all the documents. So the

XPath query is made to search on the title element. This is the XPath query.

 my $xpath_query = "collection('/db/ikme/Demo/')/object[*]//header/title";

 When the user has entered an input query string the database is queried for only

the documents in the collection containing the input query term in the content tag. Here

the XPath query is the following piece of code.

 $test = '"'.$token.'"';

 my $xpath_query = "collection(\'/db/ikme/Demo/\')//content[contains(.,$test)]";

This following statement instantiates the RPC XML client with the address of the

server. $token is the term in the input query string.

 19

 my $nxd_client = RPC::XML::Client->new('http://localhost:8081/');

The response from the database is collected, by sending the query to the native

XML database RPC server. The following piece of code does this for us.

 my $response = $nxd_client->send_request('query',$xpath_query,"ISO-8859-

1",100,1,1);

 After some error checking on the response the XML response got back from the

RPC server is retrieved.

4.5 Using the XML: Twig Parser

 XML:Twig is a PERL module that is a subclass of the XML-Parser to allow easy

processing of XML documents of all sizes. The XML:TWIG parser offers a tree-oriented

interface to a XML document. XML:TWIG is extremely flexible. It allows the user to

dump parts of the tree, set call-backs during processing, on tags and sub-trees or process

only a part of the tree.

 We use the XML:Twig parser to process huge documents. This offers the tree-

based processing model and gives the user the capability to make the decision, of how

much of the tree has to be loaded at once in the memory. XML:TWIG is also completely

PERL based. The other parsers are XML:Parser, XML:SIMPLE or XML:DOM. But in

all these parsers it is either tough to formulate code or it is very complex to handle large

documents or these parsers are not very powerful.

 20

Here a new parser is instantiated to read the output from the RPC server. The

XML:Twig parser is used. The retrieved result is then parsed using the new instantiated

parser.

my $result_id = $response->value;

my $twig_parser = XML::Twig->new();

$twig_parser->parse($result_id);

These three lines of code indicate the retrieval of the response got back from the

server, the instantiation of the new XML Parser, and the retrieved result is parsed using

the XML:Twig parser respectively.

 After the retrieved result has been parsed, the root method offered by

XML:TWIG is used to obtain the root of the twig.

 my $root=$twig_parser->root;

 Now, the attribute values are obtained by the att method. The attributes obtained

are the hit count and the query time.

$number_of_docs = $root->att('hitCount');

$query_time = $root->att('queryTime');

 21

The children method is used to obtain the titles.

my @children = $root->children('title');

Subsequently, the filenames are also identified using this method. Here we obtain

an array of titles and another array that contains the filenames. The two arrays have the

same indexes and the filenames are corresponding to the titles. So, every element in the

array containing titles has a corresponding element in the other array containing

filenames. The text is extracted from the content tags and stored in another array. Thus

we build three parallel arrays, one each for titles, filenames, and contents.

4.6 Formula

 Let us now look at the formulae used. The first parameter calculated is the term

frequency (TF). The term frequency is the measure of how often a term is found in a

particular document.

 TFij = frequency of termi in docj / number of words in docj

 Each term in the input query string, is compared with the tokens of the text in

every document containing the query term, to find the number of matches. We use this

and the number of words in each document, i.e., the document length that we have

calculated earlier to find the relative term frequency.

 The next parameter we calculate is the Inverse Document Frequency (IDF).

 22

IDFi = log ($j/$documents_containing_termi)

 $j = total number of documents in the collection

 $documents_containing_termi= number of documents in which the term occurs

 The number of documents in which the term occurs divides the total number of

documents in the collection. The log of this value gives the Inverse Document Frequency.

 Finally, we calculate the weight of the term in each document. The weight

identifies the importance of the query term in each document. So, the higher the weight

of a term in a document the more important is that document and vice versa.

 Weightij = Term Frequencyij * Inverse Document Frequencyj

 We store the weights in another array, i.e, we store the weights in an accumulator.

If there is just one term in the query string, then the process ends here. We have

calculated the weight of the query term in every document that has this term. So this

weight array is sorted in descending order.

 If there is more than one term in the query string then we have to do one step

more. The whole process of querying the database for matching documents, calculation

the Term Frequency, the Inverse Document Frequency and the weight is done for the

next term in the input query string. This weight is added to the weight of the previous

query term. This step is repeated for each term in the query string until all the terms are

exhausted.

So, now we have to sort the array having the weights, in descending order. This

will be the final order of the documents. The most important document will be displayed

first in the order and the least important document will be displayed last in the order.

 23

Figure 4.2 Search Query

The above figure shows the extended search page. Here, the user can enter an input query

string and obtain the rank ordered result set. The rank-ordered result set is shown in the

next screen shot.

 24

Figure 4.3 Rank Ordered Result Set

Figure 4.3 shows the rank ordered result set for the query string in figure 4.2. These

documents are rank ordered. The first N documents have both ‘urban’ and ‘areas’.

The next M documents have only ‘urban’ occurring X times.

The next K documents have only ‘areas’ occurring Y times.

Where X is greater than Y.

The lowest weighted documents have only a single occurrence of either ‘urban’ or

‘areas’.

 25

5 Features and Improvements

 Let us discuss the features, advantages, and improvements achieved in this project

when compared to the already existing search feature provided by eXist.

• This project offers a complete text based search engine. The content tag of every

XML document in the collection is scanned and the input query string is

compared with the tokens and matches are found.

• This project yields rank ordered result set. The weight of the input query string is

calculated for each document and the weight is directly proportional to the

importance of the document for the input query string.

• The query within quotes is taken as it is and the query string is compared with the

tokenized text in all documents for matches.

• All the punctuations in the input query string are removed. So the result set for a

query string without punctuations and a query string with punctuations will have

the same rank ordered result set.

• When there is more than one term in a query string, the already existing search

finds only those documents in which there are all the terms in the input query

string. This extended search displays documents which contain all the query terms

or any one of the terms or a few of them, since the search is implemented by

calculating the weight and so the user gets the best and the most accurate result

set. This can be seen in the following screen shots.

 26

Figure 5.1 Search page with query

This is the already existing search. The following screen shot shows the result set for

the query ‘urban population’.

 27

Figure 5.2 Result Set

There are 17 returned documents and all of them have both the terms.

 28

Figure 5.3 Extended Search with query

The extended search has also been given the same query as the previous search. Let

us view the rank ordered result set.

 29

Figure 5.4 Rank Ordered Result Set

Here we see that there are 66 documents returned. The 66 documents contain at least

one query term or all of them. They are rank ordered and highly accurate.

• The entire implementation is done on the fly. All the processes undertaken to

achieve the rank ordered result set is done after the user enters a query.

• The response time is very fast (less than one second). The project was tested for

double the number of documents and still the response time was not any different

(little over one second).

• The rank ordered result set obtained is extremely accurate, very robust and

completely reliable.

 30

6. Future Work

• The current project deals with 84 documents in the whole collection. This has also

been tested for the response time with double the number of documents. Since the

entire process is done on the fly, i.e. after the user enters the query, the response

time could be longer when the number of documents becomes really large. This is

an issue that should be taken care of.

• This rank ordered search feature is currently for the content tag alone within the

XML documents. This could be extended for every other tag within the XML

documents.

7. Conclusion

 This project implements a complete content based searching with rank ordered

retrieval in XML documents. The result set is perfectly rank ordered, accurate and

extremely robust. As aimed the response time is extremely low and the entire process has

been done on the fly. The primary goal and all the other related desired goals have been

achieved.

 31

Bibliography

[1] eXist Database Home Page

 http://exist.sourceforge.net/

[2] XML:Twig Home Page

 http://xmltwig.com/xmltwig/

[3] PERL programming language references

 http://www.perl.com/

 http://www.perldoc.com/

[4] XPath references

 http://www.w3schools.com/xpath/default.asp

http://www.w3.org/TR/xpath20/

http://www.oreilly.com/catalog/xmlnut/chapter/ch09.html

[5] Learning Objects

http://www.eduworks.com/LOTT/tutorial/learningobjects.html

http://www.atl.ualberta.ca/downes/naweb/column000523.htm

 32

