Contextual Information Retrieval Using Ontology-Based User Profiles

Vishnu Kanth Reddy Challam
Master’s Thesis Defense
Date: Jan 22nd, 2004.

Committee
Dr. Susan Gauch (Chair)
Dr. David Andrews
Dr. Jerzy W. Grzymala-Busse

University of Kansas
Presentation Outline

- Search Engines Today
- Search Engine Personalization
- Contributions
- Our Approach for Contextual IR
- Experiments and Evaluation
- Conclusions and Future Work
Search Engines Today

- Return results based on simple key-word matches. No regard for conceptual information.

 For E.g. : If the query is “SALSA”

 Is it........
Search Engines Today Contd..

- What is the user looking for?
- No personalization mechanism to understand the information needs of the user.
Search Engine Personalization...How?

- Collect and represent information about the user.
- Use this information to either filter or re-rank the results returned from the initial retrieval process or directly use this information in the search process.
Search Engine Personalization

..Challenges

- How can accurate information about the user’s interests be collected and represented?
- How can we use this information to deliver personalized search results?
Contributions...

- We present a novel-approach to personalizing search engines using ontology-based contextual user profiles.
- Studied the effect of conceptual ranking versus original keyword based ranking.
- Studied the usage of multiple sources of information to build the user’s contextual profile.
Related Work

- Semantic Web
 - Explicitly state meaning of content using Knowledge Representation Languages
 - Domain specific efforts
 - Web is democratic!
Design Criteria

- Monitor and store user information on the client machine or the server.
- Short term vs. Long term
- With server side profiling, privacy is an issue.
- Instantaneous information needs are hard to satisfy.
Contextual Search

- No long term user profiles
- Build contextual profiles that capture the information needs of the user at the time they conduct search...TASK ORIENTED
- Upload the contextual profile to the server.
- Privacy
How to Build Contextual Profiles?

- Monitor the activity of the user on his/her Windows machine. Capture content from Word documents, Web pages, Chat transcripts etc..

- Classify the captured content to build a contextual profile
Monitoring the User Activity

- A Windows application that runs in the background.
- Captured text from open Word, IE, MSN Chat windows.
- Stored the captured content in a special folder on the clients machine. Content is assigned a time-stamp.
Text Classification

- Classifier works in 2 phases: training and classification.

- Training Phase:
 - Classifier is given a series of documents classified manually.
 - Learns about the features (vocabulary) of the various categories into which the text might be classified.
Text Classification Contd…

Classification phase:

Classifier, classifies the input text and assigns it to a particular category based on similarity between the features of input text and those extracted from training data.
Text Classification: Our Approach

- Vector-space model (tf-idf model).
- Training data are the documents manually assigned into categories of the Standard Tree which is our reference ontology.
- Classifier creates a vector of vocabulary terms and weights associated with the category in an inverted file.
Standard Tree
Text Classification: Our Approach Contd..

- During classification phase, vector of input document is created.
- Degree of similarity between training vectors and input document vector calculated using dot product of the vectors.
- Best matches are the concepts into which the input document is assigned.
Building Contextual User Profile

- Content created/viewed within a specific time window is classified.

- The classifier represents the user’s contextual profile for the time window as a weighted ontology.

- Weight of a concept in the ontology represents the amount of information recently viewed/created that was classified into that concept.
Sample Contextual User Profile

- Category-id, Weight
- Category-id used to identify the concept in Standard Tree.
- 26878 is Top/Science/Environment/Water_Resources
Personalizing Search Results Using Contextual User Profiles

- Results are re-ranked using a combination of the original rank and their conceptual rank.
- Similarity of the documents to the contextual profile is used to calculate the conceptual rank.
Conceptual Rank

- Document’s title and summary are classified to create the document profile.
- Document profile is compared to the contextual profile to calculate the conceptual similarity between document and user’s context.

\[
sim (\text{context}_i, \text{doc}_j) = \sum_{k=1}^{N} w_{i_k} * w_{j_k}
\]

where

- \(w_{i_k} \) = Weight of Concept \(k \) in Context \(i \)
- \(w_{j_k} \) = Weight of Concept \(k \) in document \(j \)
Final Rank

Final Rank = $\alpha \times \text{Conceptual Rank} + (1 - \alpha) \times \text{Keyword Rank}$

- α has a value between 0 and 1
- Varying the values of α between 0 and 1 conceptual and keyword ranks can be weighted differently.
Experiments and Evaluation

- Wrapper around Google built using Google API.
- **Google Wrapper** builds a log of:
 1. Queries given by user
 2. Results & ranks returned by Google
 3. Result clicked by the user
 4. Title & Summaries
- Randomizes the results returned by Google before displaying them to the user.
Experiments

- 5 users asked to write essays on topics ranging from car buying, labs at ITTC to jewelry.
- Windows application monitored their activity
- Queries issued to Google Wrapper
- Result clicked by the user was used as a form of **implicit user relevance** for analysis.
Experiments Contd..

- Log of 50 queries.
- 6 had to be filtered out. 44 queries analyzed.
- Evaluate number of concepts for the user’s contextual profile, the document profile and the value of α for blending original and conceptual ranks.
- Analysis based on average rank of the result clicked by the user in our conceptual search engine and baseline system Google.
Evaluation

- Profile built from content of Word documents alone
- 32 queries analyzed
- Varied the number of concepts for the user profile and the document profile.
- Average Google Rank is 4.84
- Best average conceptual rank is 4.68
Evaluation Contd…

- Final Rank calculated using the formula
 \[FR = \alpha \cdot CR + (1-\alpha) \cdot KR \]
- Best final rank of 4.59 when \(\alpha = 0.4 \)
- 5.16 percent improvement over Google’s rank of 4.84
- Contextual information from Word documents can be used to improve web queries.
Evaluation Contd…

- Profile built from content of Web pages alone
- 31 queries analyzed
- Varied the number of concepts for the user profile and the document profile.
- Average Google Rank is 4.58
- Best average conceptual rank is 4.74 (30 concepts for contextual profile and all concepts for document profile)
Evaluation Contd…

- Final Rank calculated using the formula
 \[FR = \alpha \times CR + (1-\alpha) \times KR \]
- Best final rank of 4.22 when \(\alpha = 0.4 \)
- 7.86 percent improvement over Google’s rank of 4.74
- Contextual information from Web Pages can be used to improve web queries.

![Graph showing the relationship between Alpha Values and Average Rank.](Image)
Evaluation Contd…

- Profile built by combining content of Web pages and Word Documents.
- Final Profile = $\beta \times \text{Word Profile} + (1 - \beta) \times \text{Web Profile}$
- β has values between 0 and 1
Effect of α and β

22 queries analyzed

Best Conceptual Rank 4.36 when α is 0.8 and β is 0.1

15% improvement over Google’s rank!
Evaluation Contd…

- Effect of α on final rank
- High value of α indicates that conceptual rank should be given more importance.
- Re-ranking among top 10, all of them match the user’s query equally well.
- Primary distinguishing factor is conceptual similarity to contextual profile.

Effect of β on final rank

β values between 0.1 and 0.5 produce roughly comparable results.

Increased importance of Web content maybe because Word documents were short.

If more content available in Word documents a higher value of β might have been observed.
Conclusions

- Contextual profiles improve Web searches.
- 15% improvement over Google when profile is built by combining content from Word documents and Web pages.
- Within top 10 results of Google, re-ranking should be done giving more weight to conceptual similarity between documents and the contextual profile.
Conclusions Contd..

- All users were expert search engine users. Query length was long.
- Longer queries tend to disambiguate themselves.
- System performs better for shorter queries more common on the Web as a whole
Future Work

- Best time window within which documents captured should be included in the contextual profile.
- Analyze content from other sources like Chat transcripts, Excel spreadsheets, PowerPoint slides etc..
- Combination of user’s current context, long and short term interests.
Questions or Comments

?? or !!
Thank You!

University of Kansas