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INTRODUCTION
GPR Applications

Ground Penetrating Radar Applications:

Ice-sheet thickness measurements, bedrock mapping (Global
Warming problem)

Target detection (Landmines)

Non-destructive testing of engineering structures
Sub-surface Characterization (Earth, Martian Surface)
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INTRODUCTION @

Concepts

Characterization : Determining the permittivity profile of a multi-layered media

Permittivity (Dielectric Constant) : A quantity that describes the ability of a material
to store electric charge.

Multi-layered structure Permittivity Profile

Muterial | Relutive Permitiivity Radar System
A !
Water 80
lee 314
Dry Snow 153
Wet Snow | Depends on motsture,
particle size
Dry Soil 2-4
Dry Sand 3-3
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THESIS OBJECTIVES

Thesis Objectives

Develop a signal processing algorithm to

1. Enhance features of radar data (reflectivity profiles with improved resolution)

2. Estimate the permittivity profile from recorded GPR data

-> Electro-Magnetic (EM) Inversion

Principle
Permittivity contrast in layered media causes reflection of incident EM Wave

Challenges
»+ Radar return is corrupted by noise & clutter

/

% Unwanted effects due to radar system (Eg: non-linearities)
“* Needs good understanding of EM propagation phenomenon
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THE GENERAL INVERSE PROBLEM ﬁ

Inverse Problem: Estimation of unknown parameters given an observation

Steps for the study of an inverse problem
System Parameterization:
Identify set of model parameters (m) which characterize the phenomenon (observation)
Observation — Radar return
Model parameters — Permittivity values
Forward Modeling:

Deduce a mathematical relationship F(m) between model parameters (m) and actual
observations (YY)

Inverse Modeling:

Use forward model and observed data to infer actual values of model parameters

Y = F(m) + Noise + System effects + Clutter

Estimate m given Y
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FORWARD MODELING ﬁ

- Mathematical relationship between permittivities & observed radar return signal

Wave propagation Phenomena (1-D Plane wave approximation)

" Reflection — Reflection Coefficient I', = Attenuation — Attenuation Coefficient B,

L'y =(\/a—\/§)/(\/a+\/5) > Spreading — (4 1R2] factor

'

= Transmission — Transmission Coefficient T, > Absorption — Conductivity, particle

distribution need to be known

2
Tk = \/4\/gkgk+1/[\/gk+1 +\/a] > Scattering — Neglected in our analysis

Effective amplitude of reflected signal at layer K A =BT : T [
(combined effectof I" T, , B, ) =B 11T, L 1]

2-way time delay experienced by signal reflected from
layer K {

C=3x108m/s

L
+Z -7, ,/ :| — [2] Z, — Surface height

k=1

' Esti ing (1 2 ivel
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FORWARD MODELING ﬁ
lllustration - FMCW Radar 4

. A
= FMCW - Frequency Modulated Continuous Wave Radar Tsmited <> Frequency Received

Frequency “ from Target at Range R

= Transmits a frequency sweep — Chirp signal

V, (t)=A, Cos(2n f,t+at’ |+6,)

= Reflected signal is mixed with a copy of the transmitted P
signal to generate Beat Signal (IF Signal).

4
T

= Beat signal is a function of time delay T oC fb (beat frequency)

For multiple targets,

Transmitter

Multi-layered
target

V,.(1)= fAkaﬁTj COS(ZTC{fOTk +art, (2t—1, )} +n
k=0 j=1

V... (t) is the forward model F(m)
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FORWARD MODELING
FMCW Radar

= Fast Fourier Transform (FFT) of V,. (1) gives frequency response of the target

= Plot of signal spectrum Vs distance — Range Profile

Bandwidth 6 GH=

]
=

Start Frequency 2 GHz

Sweep time 10 ms

Chirp rate 300 GHzfs

Mormalised Response (dB)

Permuttivity vector £ [l 3 #]

Depth vector Z {om) 5 10]

400 1785.6
Beat frequency vector fb = ETRB Hz) [ ]

<

il i | I i
400500 1000 1500 1785 2000
Beat Frequency (Hz)
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INVERSION
LAYER STRIPPING APPROACH

An elementary approach to inversion

Plot signal spectrum (Range Profile) using Fast Fourier Transform (FFT)
Set threshold on amplitudes

Locate Amplitudes (A,’s) and Time delays ( T 'S) from range profile

Permittivity vector gr [1 3 5 2 6]

Er-!-

Depth-vector(m) Z [0.5 03 04 04]

EIS

Range Profile
T

i H Reconstructed Vs Actual Permittivity Profile

I
Actual Permittivity profile
Estimated Profile

o
i

Recursively use (1) and (2) from the
forward model to estimate the
permittivity of every layer

=
[

=1
m

Permittivity

e

Reflection amplitude

o
®

Il | “ i
_1.{..;..'.[!»'.‘-.?3.‘.'?"%%. gl Mgl Pyt
1 15 2

Distance (meters)

(=]

T Distance (meter.sj

2 3
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LAYER STRIPPING APPROACH

Limitations

Range Profile
T T

o
)
m

Inappropriate thresholds

o
]
T

= Missed Peaks }

= False Alarms

o

B

o
T

distort reconstructed profile

=
[N
T

» The side-lobe masking problem

- Weaker returns masked by side-lobes of stronger returns : g
Missed: Peak

Reflection Amplitude

- Windowing functions attenuate the lower frequencies

-False Alarm.......

that contain most of the information about the deeper L Wi 1/

[3 .
structure W ;

1 2 1 4
= Layer Stripping is not very reliable to detect subtle Distance(m)

variations in permittivity

Solution:

Incorporate the underlying phenomenon into the inversion process

- The Model Based Approach
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THE MODEL BASED ESTIMATION ﬁ

Modeled radar

Model Based Estimator e

An estimator which incorporates the mathematical model
F(m) to estimate unknown parameters (m). ot o

return

Model Based
Estimator

!
Regression Estimators (Data fitting or Curve fitting) T

profile

Fit parameters to the observation (data) - based on some criterion
Given an observed data set Y = {y[0],y[1],...., y[N =1]} , forward model F(m)
FitmtoY

F(m) is non-linear , hence Non-linear Regression
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THE MODEL BASED APPROACH ﬁ

Non-Linear Regression

Least Squares Estimation

= Estimate parameters based on the approach of minimizing the Mean Squared Error
(MSE) between the observed data (YY) and the forward model F(m)

= No assumptions are made about the data unlike other regression based estimators

= For non-linear model, use Non-Linear Least Squares
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) NON-LINEAR LEAST SQUARES ESTIMATION @

Based on MMSE (Minimum Mean Squared Error)

Noise  odel = The Least Squared Error Criterion is

m Inaccuracies

l L

LR N wwn | Q=Y (Y(n)-F(m,n)y
n=0

Madel

a) Data Model i i i
(a) Data Mode = Relationship between signal model F(m) and m

Is non-linear

Frror= Q = F(m) has to be linearized

= How ?

The Gauss Newton Iterative Minimization Algorithm

{b) Least Squared error
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GAUSS — NEWTON METHOD ﬁ

1. Initialization

1. Assume starting values of .
permittivity: m,[m_ =m,] Mm=Mm 0 (Stal’tlng gUESS)

2. SetMax. Number of Iterations (IV)

. 2. Linearization

Simulate return signal

F(m)= F(m, )+ [V, Fm)J(m - m, )

lLinearize

v m . - set of current model parameters

Calculate Wean square error TTpdate model Get Actual
Calculate m observed radar
- 4

H-1
Q= zu‘ (Y(n)-F(m.n)) return (Y)

evaluated for m=m_

Vm F(mc ) - matrix of partial derivatives of F(m) w.r.t m

3. Updation

Is
— 1=l
m, =m_,

Wb m,,=m, + [H (m)H(m)] H (m)[Y-F(m,)]

[H=V_F(m,)]

criterion  such as
= -6
m_=m_, =107 etc
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GAUSS - NEWTON METHOD

Performance

Algorithm may vyield :

= Global minimum convergence
= Local minimum convergence
= No convergence

Global Minimum Convergence

Error function &

local Minimum Convergence

Global minimum

Vaue of Variable

40

60

a0

i i i i i
& g 10 12 14
Iteration Number

1
10

i i
15 20
Iteration Number

= A good starting guess yields a good estimate (A,B)

1
25

i
a0

No Convergence

gl

or

ot

Iteration Mumber

= To improve convergence - Run the algorithm with multiple starting guess values
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GAUSS - NEWTON METHOD ﬁ

Performance - Convergence Issues

- Global minimum was reached 2/10 times

[T 15 29 15]

Permittivity wvector £

- The rest were local, non-convergence cases

Depth vector Z {cm) g 4 &
- For 10 dB SNR, Global minimum was reached 1/50 times

SR 20 dB

Limitations

- Convergence is dependent on SNR

- Iterative search method (Computationally inefficient)

— — = Actual Profile
Estimated

- Convergence is not guaranteed (in spite of several starting
guesses)

- Large of model parameters ( >15 ) -> poor convergence

ra

Permittivity
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GAUSS - NEWTON METHOD @*

» Cannot be used to invert actual radar data

» Other regression based techniques are also iterative search methods and cannot
guarantee global minimum convergence

» Need for a more reliable estimator

Model Based Spectral Estimation
>
Techniques
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SPECTRAL ESTIMATION BASED ﬁ
INVERSION '

Inversion:
Estimate Frequencies - Estimate Amplitudes—> Permittivity profile

Parametric Spectral Estimation : Using a model to estimate frequency
components in a signal

= Suitable for applications in which signals can be represented by complex
exponential models

= Radar signals consist of sinusoids embedded in noise

iy MUSIC Algorithm
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MUSIC : MUItiple Signal Classification

High resolution frequency estimation technique

Exploits Orthogonality of signal and Noise

Enhances valid returns and suppresses noise peaks
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MUSIC -
Frequency Estimation :

_ _ P o Assuming x(n) consists of P complex
= Signal model can be written as: x(n)=> Ace" +w(n) exponentials in white noise w(n)
k=1

= Form the (M x M) autocorrelation matrix (R, ) of x(n)

= Decompose R, into Eigen values ) 'g and Eigen vectors V's

Eigen values : 7\41 Z ;\42 2 . 2 }\'P 2 }“P+1 2 ..... 7L

Eigenvectors: V2V, >2....2V, 2V, =2...V
AN

M

1

S M

J

' Y
‘P’ signal eigen vectors  “M-P’ noise eigen vectors

M =

1
V, (ej”): Z vi(k)e ® :i=p+1,p+2,...,M == Willyield zero at the frequencies of complex exponentials

i
k=0

. 1 Will yield sharp peaks at the
Prusic (ejw) ~v (aiw) frequencies of complex exponentials
Vi (e")

II~ The frequency estimation function
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MUSIC -
Amplitude Estimation .

x(n) = ZP: A e +w(n)

Aim is to estimate A 's : w,'s are known from the peaks of the frequency
’ estimation function of MUSIC

A | [w(0)
A, w(l)

g (N Do | _.Ak_ _.w(N ~1) |
S
A+ W

is the Maximum Likelihood Estimator of A

(only if W is White Gaussian)
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MUSIC
Resolution Capability

Type of radar FMCW

Range Eesolution 2.5 cm (free space)

Marrnalised Amplitude

BW 6 GHz

: : : .
1000 2000 3000 4000
Beat Frequency (Hz)

SR 10dB : MUSIC METHOD

Marrnalised Amplitude

I i i
1000 2000 3000 4000

Pk 2
X (n): Z FkH TJ .e{ZR(fOTk + 2t0”'-k —OT, )} + W (n) Bieat Fraguency (Hz)
k=1 j=1 Range Profiles using FFT and MUSIC
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MUSIC ﬁ
Inversion — Simulation Results ;

= Reconstructed profile matches well with
true profile

= == Actual Prafile

e = Not constrained by layer depths

Impact of SNR
= Good reconstruction results up to 5 dB SNR

Permittivity

= Does not work well below 5 dB

Actual Profile Vs
Reconstructed Profile using MUSIC
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MUSIC

Performance

= Good simulation results
= Can be applied on actual data (if SNR is good enough)

= Computational cost (Eigen decomposition)

= Good forward model is required

= Gaussian Noise statistics for amplitude estimation
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INVERSION ON ACTUAL DATA ﬁ

Field experiments in Antarctica using FMCW Radar
2. Sandbox tests

3. Plane Wave test in Greenland
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FMCW RADAR TEST - ANTARCTICA ﬁ

Ultra Wideband FMCW Radar — Used to measure snow thickness in Antarctica

Use MUSIC to estimate the permittivity profile from measured radar data

Parameters of FMCW radar

Characteristic Value Tnit

Radar Type IM-CW

sweep Frequency 2-8

Range Resolution =4

sweep Time 10

Transmit Power 13

PRF 25

sanpling Rate 3

Antenna TEM Horn Antenna
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FMCW RADAR TEST - ANTARCTICA

Core Data modeling

Dielectric structure of Snow pit data Modeling the true permittivity profile
the test site (Pit 1)
= Mixture of dry snow, water & brine

Density Salinity i i i i o
(g/em®) /] = Consider brine as an inclusion within a wet snow

mixture

1.40 1]

0151 . = Wet snow permittivity model : Debye-like model

0.254
0.328
0.364
0.355

Multiple Snow layers 0434 = Use a mixing model for effective permittivity

B ) 0.285
{ Permittivity is modeled 503

usmg snow mixing mo dels) 0344
0.234
0.243
0.226
0.309

= Brine permittivity model : Stogryn’s model

@
I

5]

s
T

Ice £ =~ 3.14

w

Permittivity

)

:H

’ i 1 i i 1 i 1 i i 1
1.8 1iBs 18 195 2 208 21 215 22 225 23

Depth (meters)
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FMCW RADAR TEST - ANTARCTICA @

Measured Data

FFT Range Profile(Pit 1)

—— ourface return

Antenna feed through : : :

\ —® Sea-ice return
| § | nowiseaicclnbriace Remove system effects using
- calibration data

Remove antenna feed-through

= = =
o e o
T T

h
T

Enhance profile using MUSIC

&
=
=
£
<
S
L
=
E
5
=

Estimate unknown frequencies
& amplitudes

o o N

Distance (meters)
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FMCW RADAR TEST - ANTARCTICA

Inversion

Comparison of estimated beat frequencies of
core with those of FFT and MUSIC

Beat Freg {Fg) |  Beat Fray (Fy ) | Beat Freq (Fp )
Care MUSIC IFFT
(He) (Hz) (Hz)

G T 700
2" . RN UM 76220 7875
E 11 12 13 14 1 710 78850 8175

Marmalised Amplitude

Beat Freguency {Hz) Tl 82900 9120

MUSIC METHOD 1936 8445.0
8088 B85S

5243 9150.0
5399 9240.0
3559 g7i0.0
8721
Baed
9047
9203
9390

Marmalised Amplitude

08 0% 1 1.1 12
Beat Frequency (Hz)
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FMCW RADAR TEST - ANTARCTICA ﬁ

Reconstructed Profile

Reconstructed Vs modeled Permittivity Profile for Fit 1

Good match up until 2.15 m depth

Modeled Permittivity profile from Measurements D EVI atl O nS m ay be d U e tO

====== Estimated Profile - Actual Radar data

A discrepancy in the model representing the
radar return

Subtle changes in permittivity that MUSIC is
not able to distinguish

>
=
=
)
=
S
f-
[}
(el

Error in calibration data

Measurement errors

L I i
1.8 2 2.05

Depth (meters)
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FMCW RADAR TEST - ANTARCTICA

Inversion on other data sets

Mormalised Amplitude

7000 7SO0 8000 8000 9500 10000
Beat Frequency (Hz) Beat Frequency

MUSIC METHOD MUSIC METHOD

=
=
T

Normalised Amplitude
Mormalised Amplitude

7000 7500 8000 5000 9500 10000
Beat Frequency (Hz) beat Frequency(Hz)

Reconstructed Vs modeled Permittivity Profile for Pit 2 Reconstructed Vs modeled Permittivity Profile for Pit 3
Modeled Permittivity profile from Measurements
Estimated Profile - Actual Radar data

Modeled Permittivity profile from Measurements
== Estimated Profile - Actual Radar data

1.5 2 205 24 215 22
Distance (meters) Distance (meters)
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SANDBOX TESTS

Experiment Set-up

Start Frequency 2 GHz
Bandwidth TGHz
Nutnber of frequency 1601
satnples Styrofoam
Sweep time 800 ms
Transmit Power 0 dBm
Caltbration type 1pott

IF Bandwidth 3000 Hz
Antenna type TEM Horn
Antenna (Gain 10 4B

N Network Analyzer Parameters Dielectric stack to test inversion
RSL Sandbox facility

Information and
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SANDBOX TESTS

Measurements

Reflection from plate
T T T

= Calibrate at antenna terminals YT Antennacabte mismate

= Measure S;; with Aluminum plate as target

= Measure S;; with multi-layered stack
arrangement

= Mismatch between antenna and the cable
connecting the Network Analyzer is removed
by taking Sky- shot measurements

Reflection from stack
T T T

= Subtract Sky shot from S, ,of target, plate e —
. ‘.Tﬁ.i..Anténna—.cable.mismat?ch ..... e ........ -

= Use plate impulse response to remove system - (Return from stack i n
effect gl ------é-------igaur-i-ed;-undegr-this--signaél)- olioucn ........ ....... i

= Apply MUSIC to enhance and invert
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Mormalised S11

SANDBOX TESTS

Measurements

Distance (m)

Signal after removing
sky shot, system effects

-
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Marmalised S11

Reflaction Ampliude

0

-10
oM
-30

-40

BOF

-70
1}

Reflection from plate subtracted from Skyshot return

E\F:'Iale Rélu m

o kL

Distance ()

FFT Range Profile

firfWood! Wood'Shrbfoar '

:\A" /| fSty'nilﬁJam-‘Sand
SIS P |. o B i ,

N BN

1 1 Las
04 05 08 07 oe
Distance (melers)

Marmalised 511

Reflaction from stack subtracted from Skyshot return
T T T T T T

ction fiom dielectric stack :

Distance (m)

This signal can now be fed into
the inversion algorithm




SANDBOX TESTS

Results

Recenstructed Vs moedeled Permittivity Profile for sandbox measurements
T

T T T T T
Modeled Permittivity profile from literature
Estimated Profile - Actual Network Analyser data| |

Range Profiles using MUSIC

MUSIC METHOD

Deviation is because of an average
value of Permittivity was chosen for

velocity correction- when identifying
oo the reflecting boundaries

Permittivity

il
=
Z
=
£
T
sl
L]
2
T
E
o
=

g i i I I i i i I I
L 035 0.4 0.45 0.5 0.55 0.6 0.65 07 0.75 0.8

| |
04 05 06 07 08 0O Distance (meters)
Distance (meters)

Reference permittivity values

= Problem with reconstruction of Permittivity profile Air:1

= Properties of noise could not be confirmed Wood: 2 - 6 (a value of 3 was chosen for modeling)

_— Styrofoam : 1.03
= Layer Stripping approach was followed Y
Sand : 2.5 - 3.5 (a value of 3 was chosen for modeling)
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PLANE WAVE DATA INVERSION

Setup - Greenland

Type of radar =tep Frequency

atart Frequency 12 GH=

Bandwidth & GH=z

mweep Time 472 sec

Mo, of frequency points 8201

Measured data

Network Analyzer
Unit

Surface! :
- Internal layers

return : :
\ : A :

&)

er (relativ

Reflected Pow

Déf)th insnew (méfers)
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PLANE WAVE DATA INVERSION ﬁ
Analysis ;

Simulated range profile of Pit using ADS

=]

[
=]

= |nconsistencies in measured data

o
&

.
=

Reflected Power (relativel

= Internal reflections have higher
amplitudes than surface reflection

i
=

&5
=]

10.32 10.52 1D_.72 10.92 11.12 11.32
Depth in snow (meters)

o
y
%)

= Inversion yielded very high
Aetual radarretarn permittivity estimates

Reflected Powes (relative)
@ b o <y LY
m o m o m o m

=1
=]

i i i i i i
10.32 10.52 10_.?2 10.92 11.12 11.32
Depth in snow (meters)
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PLANE WAVE DATA INVERSION

Inversion test on ADS simulated data

FFT

Range Prbfile using FFT on ADS data
| : ' 10 dB SNR

gt
oo
T

-
-
T

Mormalised Amplitude

1.5
Delay (n=)

FUSIC METHOD

Permittivity
=

i
m

= — = Actual Profile
Estimated Profile

Marmalized Amplitude

i i I
1 1.4 2 :
Delay (ns) Depth (m)

Range Profile using MUSIC

MUSIC works well in the case of multiple reflections
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G.U.l FOR DATA INVERSION

USER INTERFACE FOR THE MODEL BASED SIGNAL PROCESSING ALGORITHM
for Enhancement of Internal Features and Inverse Permitivity Profiling

Step 1: Input basic radar parameters

IFMCII\I' vi

Type of radar

Choosze yvour recorded
data file

Bandwidth of operation
Hz

—

Sweep Time {(sec)

Wiew Echograrm |

—

Enter an A-scope
Mumber

Openmputﬂlel OR

Mumber of Frequency points

Choose from availahle Isep_28 vi

datafiles

Starting Frequency
Hz)

—

Step 3: Enhance features of radar return —
HELP

—

Choose Mumber of frequency
points far spectral analysis

Average Mo, of reflections
expected

“Wiew Enhanced Profile |

——

(for step Freq Radar)

—

Wiew A-scope of data

Step 2 Remove Systemn effects

Cpen calib file |

Choose your recorded
calibration file

Apply Calibration to ravw input data |

Choose fram existing files

ISep-ZB - i

OR

Remove Antenna Feedthrough & Yiew Profile

- Information and
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SUMMARY

= Studied, simulated and analyzed inversion schemes
= Layer Stripping
= Gauss Newton
= MUSIC - yields acceptable results in simulation
= Implemented the MUSIC algorithm to enhance and invert GPR data

= Tested on actual radar data
= Successful in Snow radar data inversion

= Partly successful in Sandbox test (Enhanced Profile)

= Developed a GUI for the algorithm
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FUTURE WORK

= |ncorporate effects of scattering due to rough surface and losses due
to attenuation into the forward model

= Pre-whitening filter may be used to obtain Gaussian Noise statistics
(or look at techniques for amplitude estimation in colored noise)

= 3 - Dimensional FDTD, MOM can be used to represent forward
model for better inversion results
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QUESTIONS/COMMENTS?
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