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INTRODUCTION
GPR Applications

Ground Penetrating Radar Applications:

Ice-sheet thickness measurements, bedrock mapping (Global 
Warming problem)
Target detection (Landmines)
Non-destructive testing of engineering structures
Sub-surface Characterization (Earth, Martian Surface)

Courtesy: JPL, NASA
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INTRODUCTION
Concepts

Characterization : Determining the permittivity profile of a multi-layered media

Permittivity (Dielectric Constant) : A quantity that describes the ability of a material 
to store electric charge.

Multi-layered structure Permittivity Profile

Radar System
Z1 Z2 Z3 Z4

1ε

2ε
3ε

4ε



5

THESIS OBJECTIVES

Thesis Objectives 

Develop a signal processing algorithm to 

1. Enhance features of radar data (reflectivity profiles with improved resolution)

2. Estimate the permittivity profile from recorded GPR data 

Electro-Magnetic (EM) Inversion

Principle
Permittivity contrast in layered media causes reflection of incident EM Wave

Challenges
Radar return is corrupted by noise & clutter
Unwanted effects due to radar system (Eg: non-linearities)
Needs good understanding of EM propagation phenomenon
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THE GENERAL INVERSE PROBLEM

Inverse Problem: Estimation of unknown parameters given an observation

Steps for the study of an inverse problem
System Parameterization: 

Identify set of model parameters (m) which characterize the phenomenon (observation)

Observation – Radar return

Model parameters – Permittivity values

Forward Modeling:

Deduce a mathematical relationship F(m) between model parameters (m) and actual 
observations (Y)

Inverse Modeling:

Use forward model and observed data to infer actual values of model parameters

Y = F(m) + Noise + System effects + Clutter

Estimate m given Y
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FORWARD MODELING

Mathematical relationship between permittivities & observed radar return signal
Wave propagation Phenomena (1-D Plane wave approximation)

Reflection – Reflection Coefficient
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Z1 – Surface height
2-way time delay experienced by signal reflected from 
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Estimate       using (1) and (2) recursively ε
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FORWARD MODELING 
Illustration - FMCW Radar

Multi-layered 
target

FMCW - Frequency Modulated Continuous Wave Radar

Transmits a frequency sweep – Chirp signal

Reflected signal is mixed with a copy of the transmitted  
signal to generate Beat Signal (IF Signal). 

Beat signal is a function of time delay               (beat frequency)

( ) ( )2
t t 0 0V t A Cos 2 f t t= π +α +θ⎡ ⎤⎣ ⎦

b

2RBf
Tc

=

( ) ( ){ }
k 1L 1

beat k k j 0 k k k
k 0 j 1

V A T cos(2 f 2t n
−−

= =

τ = Γ π τ +ατ − τ +∑ ∏

(

For multiple targets,
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FORWARD MODELING 
FMCW Radar

Fast Fourier Transform (FFT) of               gives frequency response of the target 

Plot of signal spectrum Vs distance – Range Profile
( )beatV τ
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INVERSION
LAYER STRIPPING APPROACH

An elementary approach to inversion
Plot signal spectrum (Range Profile) using Fast Fourier Transform (FFT)
Set threshold on amplitudes
Locate Amplitudes  (Ak’s)  and Time delays (        )  from range profilek 'sτ

rεPermittivity vector [1 3  5 2 6 ]

Depth-vector(m) Z [0.5   0.3 0.4    0.4] 

Threshold

A1

A2

A3
A4

1τ 2τ 3τ 4τ

Recursively use  (1) and (2) from the 
forward model to estimate the 
permittivity of every layer 
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LAYER STRIPPING APPROACH
Limitations

Missed Peaks

False Alarms

The side-lobe masking problem
- Weaker returns masked by side-lobes of stronger returns

- Windowing functions attenuate the lower frequencies   
that contain most of the information about the deeper  
structure

Layer Stripping is not very reliable to detect subtle  
variations in permittivity

Inappropriate thresholds

distort reconstructed profile

Missed Peak False Alarm

Distance(m)

R
ef

le
ct
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n 

A
m

pl
itu

de

Solution:

Incorporate the underlying phenomenon into the inversion process

The Model Based Approach 
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THE MODEL BASED ESTIMATION

Model Based Estimator 
An estimator which incorporates the mathematical model 
F(m) to estimate unknown parameters (m). 

[ ] [ ] [ ]{ }1Ny....,,1y,0yY −=Given an observed data set

Regression Estimators  (Data fitting or Curve fitting)

Model Based
Estimator

Fit parameters to the observation (data) - based on some criterion

, forward model F(m)

Fit m to Y

F(m) is non-linear , hence Non-linear Regression
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Least Squares Estimation   

Estimate parameters based on the approach of minimizing the Mean Squared Error 
(MSE) between the observed data (Y) and the forward model F(m)

No assumptions are made about the data unlike other regression based estimators

For non-linear model, use Non-Linear Least Squares

THE MODEL BASED APPROACH
Non-Linear Regression
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NON-LINEAR LEAST SQUARES ESTIMATION

Based on MMSE (Minimum Mean Squared Error)

( ) ( )( )∑
−

=
−=

1N

0n

2n,mFnYQ

Relationship between signal model F(m) and m

is non-linear

F(m) has to be linearized

How ?    

The Least Squared Error Criterion is 

The Gauss Newton Iterative Minimization Algorithm
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GAUSS – NEWTON METHOD

( ) ( ) ( )[ ]( )ccmc mmmFmFmF −∇+≅

2. Linearization

- matrix of partial derivatives of F(m) w.r.t  m

cm

1. Initialization
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( )cm mF∇
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GAUSS – NEWTON METHOD
Performance

Algorithm may yield :
Global minimum convergence
Local minimum convergence
No convergence

No Convergence

A good starting guess yields a good estimate (A,B)

To improve convergence - Run the algorithm with multiple starting guess values
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GAUSS – NEWTON METHOD
Performance - Convergence Issues

- Global minimum was reached 2/10 times

- The rest were local, non-convergence cases

- For 10 dB SNR, Global minimum was reached 1/50 times 

- Convergence is dependent on SNR

- Iterative search method (Computationally inefficient)

- Convergence is not guaranteed (in spite of several starting  
guesses)

- Large of model parameters ( >15 ) poor convergence

Limitations

Depth(m)

Pe
rm

itt
iv

ity
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GAUSS – NEWTON METHOD

Cannot be used to invert actual radar data 

Other regression based techniques are also iterative search methods and cannot  
guarantee global minimum convergence

Need for a more reliable estimator

Model Based Spectral Estimation 
Techniques
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SPECTRAL ESTIMATION BASED 
INVERSION

Inversion:

Estimate Frequencies Estimate Amplitudes Permittivity profile

Parametric Spectral Estimation : Using a model to estimate frequency 
components in a signal 

Suitable for applications in which signals can be represented by complex   
exponential models

Radar signals consist of sinusoids embedded in noise

MUSIC Algorithm



22

MUSIC

MUSIC : MUltiple SIgnal Classification 

High resolution frequency estimation technique 

Exploits Orthogonality of signal and Noise

Enhances valid returns and suppresses noise peaks
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MUSIC
Frequency Estimation
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Form the (M x M) autocorrelation matrix ( Rx ) of  x(n)

Decompose Rx into Eigen values            and Eigen vectors 

Assuming x(n) consists of P complex 
exponentials in white noise w(n)Signal model can be written as:
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Will yield sharp peaks at the 
frequencies of complex exponentialsThe frequency estimation function 
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MUSIC
Amplitude Estimation
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MUSIC
Resolution Capability

(cm)
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Range Profiles using FFT and MUSIC
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MUSIC
Inversion – Simulation Results

Reconstructed profile matches well with 
true profile

Not constrained by layer depths

Impact of SNR

Good reconstruction results up to 5 dB SNR

Does not work well below 5 dB

Actual Profile Vs
Reconstructed Profile using MUSIC
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MUSIC
Performance 

Good simulation results

Can be applied on actual data (if SNR is good enough) 

Computational cost (Eigen decomposition)

Good forward model is required

Gaussian Noise statistics for amplitude estimation
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INVERSION ON ACTUAL DATA

1. Field experiments in Antarctica using FMCW Radar

2. Sandbox tests

3. Plane Wave test in Greenland  
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FMCW RADAR TEST - ANTARCTICA

Ultra Wideband FMCW Radar – Used to measure snow thickness in Antarctica

Use MUSIC to estimate the permittivity profile from measured radar data

Parameters of FMCW radar
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FMCW RADAR TEST – ANTARCTICA
Core Data modeling

Snow pit data
(Pit 1)

Modeling the true permittivity profile

Mixture of dry snow, water & brine

Consider brine as an inclusion within a wet snow  
mixture

Wet snow permittivity model : Debye-like model

Brine permittivity model : Stogryn’s model

Use a mixing model for effective permittivity

Pe
rm

itt
iv

ity

Dielectric structure of 
the test site

Depth (meters)
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FMCW RADAR TEST – ANTARCTICA
Measured Data

FFT Range Profile(Pit 1)

• Remove antenna feed-through

• Remove system effects using 
calibration data

• Enhance profile using MUSIC

• Estimate unknown frequencies 
& amplitudes
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FMCW RADAR TEST – ANTARCTICA
Inversion

Range Profiles obtained using FFT and MUSIC
Comparison of estimated beat frequencies of 

core with those of FFT and MUSIC
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FMCW RADAR TEST – ANTARCTICA
Reconstructed Profile

Depth (meters)

Pe
rm

itt
iv

ity

Good match up until 2.15 m depth

Deviations may be due to:

(1) A discrepancy in the model representing the 
radar return

(2) Subtle changes in permittivity that MUSIC is 
not able to distinguish

(3) Error in calibration data 

(4) Measurement errors
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FMCW RADAR TEST – ANTARCTICA
Inversion on other data sets
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SANDBOX TESTS
Experiment Set-up

Wood

Styrofoam

Sand

Air

~ 30 cm

~ 3.6 cm

~ 8 cm

Dielectric stack to test inversionNetwork Analyzer Parameters
RSL Sandbox facility
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SANDBOX TESTS
Measurements

Calibrate at antenna terminals

Measure S11 with Aluminum plate as target 

Measure S11 with multi-layered stack  
arrangement

Mismatch between antenna and the cable   
connecting the Network Analyzer is removed  
by taking Sky- shot measurements

Subtract Sky shot from S11of target, plate

Use plate impulse response to remove system  
effect

Apply MUSIC to enhance and invert

Antenna-cable mismatch

Antenna-cable mismatch
(Return from stack is 
buried under this signal)
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SANDBOX TESTS
Measurements

FFT Range Profile

Signal after removing 
sky shot, system effects

This signal can now be fed into  
the inversion algorithm
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SANDBOX TESTS
Results

Range Profiles using MUSIC 

Deviation is because of an average 
value of Permittivity was chosen for 
velocity correction- when identifying 
the reflecting boundaries

Pe
rm

itt
iv

ity

Distance (meters)

Reference permittivity values
Air : 1

Wood: 2 – 6 (a value of 3 was chosen for modeling)

Styrofoam : 1.03

Sand : 2.5 – 3.5 (a value of 3 was chosen for modeling)

Problem with reconstruction of Permittivity profile

Properties of noise could not be confirmed

Layer Stripping approach was followed
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PLANE WAVE DATA INVERSION
Setup - Greenland

Surface 
return Internal layers

Measured data

Depth in snow (meters)
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PLANE WAVE DATA INVERSION
Analysis

Simulated range profile of  Pit using ADS

Actual radar return

Inconsistencies in measured data

Internal reflections have higher  
amplitudes than surface reflection

Inversion yielded very high  
permittivity estimates

Depth in snow (meters)

Depth in snow (meters)
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PLANE WAVE DATA INVERSION
Inversion test on ADS simulated data

Range Profile using FFT on ADS data

Range Profile using MUSIC

10 dB SNR 

MUSIC works well in the case of multiple reflections
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G.U.I  FOR  DATA INVERSION
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SUMMARY

Studied, simulated and analyzed inversion schemes

Layer Stripping

Gauss Newton 

MUSIC yields acceptable results in simulation

Implemented the MUSIC algorithm to enhance and invert GPR data

Tested on actual radar data 

Successful in Snow radar data inversion

Partly successful in Sandbox test (Enhanced Profile)

Developed a GUI for the algorithm
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FUTURE WORK

Incorporate effects of scattering due to rough surface and losses due 
to attenuation into the forward model

Pre-whitening filter may be used to obtain Gaussian Noise statistics
(or look at techniques for amplitude estimation in colored noise)

3 - Dimensional FDTD, MOM can be used to represent forward 
model for better inversion results
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THANK YOU!

QUESTIONS/COMMENTS?


