

Master's Thesis Defense

Model Based Signal Processing for GPR Data Inversion

Visweswaran Srinivasamurthy 13th April 2005

Committee

Dr. Sivaprasad Gogineni (Chair) Dr. Muhammad Dawood (Co-chair) Dr. Pannirselvam Kanagaratnam

OUTLINE

Introduction

- GPR Applications
- Thesis Objectives

The Inverse Problem

- Forward Modeling FMCW Radar
- Layer Stripping Approach
- The Model Based Approach

Model Based Parameter Estimation

- MMSE based (Gauss-Newton)
- Spectral Estimation based (MUSIC)

Inversion on actual radar data

- Tests on Antarctic snow radar data
- Tests at the Sandbox lab
- Tests on Greenland Plane wave data
- GUI for data inversion algorithm
- Conclusions & Future Work

INTRODUCTION GPR Applications

Ground Penetrating Radar Applications:

- Ice-sheet thickness measurements, bedrock mapping (Global Warming problem)
- Target detection (Landmines)
- Non-destructive testing of engineering structures
- Sub-surface Characterization (Earth, Martian Surface)

Information and Telecommunication

Technology Center

INTRODUCTION Concents

Concepts

Characterization : Determining the permittivity profile of a multi-layered media

Permittivity (Dielectric Constant) : A quantity that describes the ability of a material to store electric charge.

Material	Relative Permittivity
Air	1
Water	80
Ice	3.14
Dry Snow	1.5-3
Wet Snow	Depends on moisture,
	particle size
Dry Soil	2 - 4
Dry Sand	3-5

Information and

Telecommunication

Technology Center

Multi-layered structure

Permittivity Profile

THESIS OBJECTIVES

Thesis Objectives

Develop a signal processing algorithm to

- 1. Enhance features of radar data (reflectivity profiles with improved resolution)
- 2. Estimate the permittivity profile from recorded GPR data

 \rightarrow Electro-Magnetic (EM) Inversion

Principle

Permittivity contrast in layered media causes reflection of incident EM Wave

Challenges

- Radar return is corrupted by noise & clutter
- Unwanted effects due to radar system (Eg: non-linearities)
- Needs good understanding of EM propagation phenomenon

OUTLINE

Introduction

- GPR Applications
- Thesis Objectives

The Inverse Problem

- Forward Modeling FMCW Radar
- Layer Stripping Approach
- The Model Based Approach

Model Based Parameter Estimation

- MMSE based (Gauss-Newton)
- Spectral Estimation based (MUSIC)

Inversion on actual radar data

- Tests on Antarctic snow radar data
- Tests at the Sandbox lab
- Tests on Greenland Plane wave data
- GUI for data inversion algorithm
- Conclusions & Future Work

THE GENERAL INVERSE PROBLEM

Inverse Problem: Estimation of unknown parameters given an observation

Steps for the study of an inverse problem

• System Parameterization:

Identify set of model parameters (m) which characterize the phenomenon (observation)

Observation – Radar return

Model parameters - Permittivity values

• Forward Modeling:

Deduce a mathematical relationship F(m) between model parameters (m) and actual observations (Y)

Inverse Modeling:

Use forward model and observed data to infer actual values of model parameters

Y = F(m) + Noise + System effects + Clutter

Estimate **m** given **Y**

FORWARD MODELING

Illustration - FMCW Radar

- FMCW Frequency Modulated Continuous Wave Radar
- Transmits a frequency sweep Chirp signal

$$\mathbf{V}_{t}(t) = \mathbf{A}_{t} \cos\left(2\pi \left[f_{0}t + \alpha t^{2}\right] + \theta_{0}\right)$$

- Reflected signal is mixed with a copy of the transmitted signal to generate *Beat Signal (IF Signal)*.
- $\hfill \begin{subarray}{c} \hfill \begin{subar$

For multiple targets,

$$V_{\text{beat}}(\tau) = \sum_{k=0}^{L-1} A_{k} \Gamma_{k} \prod_{j=1}^{k-1} T_{j} \cos(2\pi \{f_{0}\tau_{k} + \alpha\tau_{k}(2t - \tau_{k})\} + n$$

 $V_{_{\text{beat}}}\left(\tau\right)$ is the forward model F(m)

Information and

Telecommunication

Technology Center

FORWARD MODELING

FMCW Radar

- Fast Fourier Transform (FFT) of $V_{\text{beat}}(\tau)$ gives frequency response of the target
- Plot of signal spectrum Vs distance Range Profile

Bandwidth	6 GHz
Start Frequency	2 GHz
Sweep time	10 ms
Chirp rate	300 GHz/s
Permittivity vector $\boldsymbol{\epsilon}_r$	[1 3 6]
Depth vector Z (cm)	[5 10]
Beat frequency vector $\mathbf{f}_{v} = \frac{2 R B}{T c}$ (Hz)	[400 1785.6]

Information and Telecommunication Technology Center

INVERSION LAYER STRIPPING APPROACH

- An elementary approach to inversion
- Plot signal spectrum (Range Profile) using Fast Fourier Transform (FFT)
- Set threshold on amplitudes
- Locate Amplitudes $(A_k's)$ and Time delays $(\tau_k's)$ from range profile

Recursively use (1) and (2) from the forward model to estimate the permittivity of every layer

LAYER STRIPPING APPROACH Limitations

Missed Peaks

False Alarms

- Inappropriate thresholds
- J distort reconstructed profile
- The side-lobe masking problem
- Weaker returns masked by side-lobes of stronger returns
- Windowing functions attenuate the lower frequencies that contain most of the information about the deeper structure
- Layer Stripping is not very reliable to detect subtle variations in permittivity

Solution:

Incorporate the underlying phenomenon into the inversion process

→ The Model Based Approach

OUTLINE

Introduction

- GPR Applications
- Thesis Objectives

The Inverse Problem

- Forward Modeling FMCW Radar
- Layer Stripping Approach
- The Model Based Approach

Model Based Parameter Estimation

- MMSE based (Gauss-Newton)
- Spectral Estimation based (MUSIC)

Inversion on actual radar data

- Tests on Antarctic snow radar data
- Tests at the Sandbox lab
- Tests on Greenland Plane wave data
- GUI for data inversion algorithm
- Conclusions & Future Work

THE MODEL BASED ESTIMATION

Model Based Estimator

An estimator which incorporates the mathematical model F(m) to estimate unknown parameters (m).

Regression Estimators (Data fitting or Curve fitting)

- Fit parameters to the observation (data) based on some criterion
- Given an observed data set $Y = \{ y[0], y[1], ..., y[N-1] \}$, forward model F(m)
- Fit **m** to **Y**
- F(m) is non-linear , hence Non-linear Regression

THE MODEL BASED APPROACH

Non-Linear Regression

Least Squares Estimation

- Estimate parameters based on the approach of minimizing the Mean Squared Error (MSE) between the observed data (Y) and the forward model F(m)
- No assumptions are made about the data unlike other regression based estimators
- For non-linear model, use Non-Linear Least Squares

NON-LINEAR LEAST SQUARES ESTIMATION

Based on MMSE (Minimum Mean Squared Error)

(b) Least Squared error

Information and

Telecommunication

Technology Center

The Least Squared Error Criterion is

$$Q = \sum_{n=0}^{N-1} (Y(n) - F(m, n))^{2}$$

- Relationship between signal model F(m) and m is non-linear
- **F**(**m**) has to be linearized
- How ?

The Gauss Newton Iterative Minimization Algorithm

GAUSS – NEWTON METHOD

17

1. Initialization $m = m_{o}$ (Starting guess) 2. Linearization $F(m) \cong F(m_{c}) + [\nabla_{m}F(m_{c})](m - m_{c})$ m_c - set of current model parameters $\nabla_{\mathbf{m}} F(\mathbf{m}_{c})$ - matrix of partial derivatives of $F(\mathbf{m})$ w.r.t **m** 3. Updation $m_{k+1} = m_k + \left[H^T(m_k) H(m_k) \right]^{-1} H^T(m_k) \left[Y - F(m_k) \right]$ $[\mathbf{H} = \nabla_{\mathbf{m}} F(\mathbf{m}_{c})]$

• A good starting guess yields a good estimate (A,B)

• To improve convergence - Run the algorithm with multiple starting guess values

GAUSS – NEWTON METHOD

Performance - Convergence Issues

Telecommunication

Technology Center

- Global minimum was reached 2/10 times
- The rest were local, non-convergence cases
- For 10 dB SNR, Global minimum was reached 1/50 times

Limitations

- Convergence is dependent on SNR
- Iterative search method (Computationally inefficient)
- Convergence is not guaranteed (in spite of several starting guesses)
- Large of model parameters (>15) \rightarrow poor convergence

GAUSS – NEWTON METHOD

- Cannot be used to invert actual radar data
- Other regression based techniques are also iterative search methods and cannot guarantee global minimum convergence
- ➢ Need for a more reliable estimator

SPECTRAL ESTIMATION BASED INVERSION

Inversion:

Information and

Telecommunication

Technology Center

Estimate Frequencies \rightarrow Estimate Amplitudes \rightarrow Permittivity profile

Parametric Spectral Estimation : Using a model to estimate frequency components in a signal

 Suitable for applications in which signals can be represented by complex exponential models

Radar signals consist of sinusoids embedded in noise

MUSIC Amplitude Estimation

$$x(n) = \sum_{k=1}^{P} A_k e^{jn\omega_k} + w(n)$$

Information and Telecommunication Technology Center

Aim is to estimate A_k 's ; ω_k 's are known from the peaks of the frequency estimation function of MUSIC

$$\begin{bmatrix} x(0) \\ x(1) \\ \vdots \\ \vdots \\ x(N-1]) \end{bmatrix} = \begin{bmatrix} 1 & \cdots & 1 \\ e^{j\omega_{1}} & \cdots & e^{j\omega_{k}} \\ \vdots & \vdots \\ e^{j(N-1)\omega_{1}} & \cdots & e^{j(N-1)\omega_{k}} \end{bmatrix} \begin{bmatrix} A_{1} \\ A_{2} \\ \vdots \\ A_{k} \end{bmatrix} + \begin{bmatrix} w(0) \\ w(1) \\ \vdots \\ w(N-1) \end{bmatrix}$$

$$X = S \cdot A + W$$

$$\bigwedge \hat{A} = (\hat{S}^{H}\hat{S})^{-1}\hat{S}^{H} \cdot X$$
 is the Maximum Likelihood

(only if W is White Gaussian)

Estimator of *A*

MUSIC Resolution Capability

Information and

Telecommunication

Technology Center

Range Profiles using FFT and MUSIC

MUSIC

Inversion – Simulation Results

Actual Profile Vs Reconstructed Profile using MUSIC

Information and

Telecommunication

Technology Center

- Reconstructed profile matches well with true profile
- Not constrained by layer depths

Impact of SNR

- Good reconstruction results up to 5 dB SNR
- Does not work well below 5 dB

MUSIC Performance

- Good simulation results
- Can be applied on actual data (if SNR is good enough)
- Computational cost (Eigen decomposition)
- Good forward model is required
- Gaussian Noise statistics for amplitude estimation

OUTLINE

Introduction

- GPR Applications
- Thesis Objectives

The Inverse Problem

- Forward Modeling FMCW Radar
- Layer Stripping Approach
- The Model Based Approach

Model Based Parameter Estimation

- MMSE based (Gauss-Newton)
- Spectral Estimation based (MUSIC)

Inversion on actual radar data

- Tests on Antarctic snow radar data
- Tests at the Sandbox lab
- Tests on Greenland Plane wave data
- GUI for data inversion algorithm
- Conclusions & Future Work

INVERSION ON ACTUAL DATA

- 1. Field experiments in Antarctica using FMCW Radar
- 2. Sandbox tests
- 3. Plane Wave test in Greenland

Ultra Wideband FMCW Radar - Used to measure snow thickness in Antarctica

Use MUSIC to estimate the permittivity profile from measured radar data

Characteristic	Value	Unit
Radar Type	FM-CW	
Sweep Frequency	2-8	GHz
Range Resolution	≅4	Cm
Sweep Time	10	msec
Transmit Power	13	dBm
PRF	25	Hz
Sampling Rate	5	MHz
Antenna	TEM Horn Antenna	

Parameters of FMCW radar

FMCW RADAR TEST – ANTARCTICA

Core Data modeling

Dielectric structure of the test site

Multiple Snow layers (Permittivity is modeled using snow mixing models)

Ice $\epsilon_r \approx 3.14$

Information and

Telecommunication

Technology Center

Layer Fhickness (m)	Density (g/cm ³)	Salinity [º/@]	Wetness [Vol %]
1.83	1.40	0	0
0.03	0.191	0.145	-0.46
0.03	0.254	-	0.73
0.03	0.328	0.07	0.09
0.03	0.364	0.31	0.00
0.03	0.355	0.11	0.00
0.03	0.334	0.21	0.00
0.03	0.285	0.20	0.39
0.03	0.293	0.12	0.49
0.03	0.244	0.31	1.41
0.03	0.254	0.34	1.67
0.03	0.245	0.30	1.76
0.03	0.226	0.27	1.96
0.03	0.309	0.05	0.31
0.03	-	2.17	3.00
0.015	-	29.4	3.28

Snow pit data

(Pit 1)

Modeling the true permittivity profile

- Mixture of dry snow, water & brine
- Consider brine as an inclusion within a wet snow mixture
- Wet snow permittivity model : *Debye-like model*
- Brine permittivity model : Stogryn's model
- Use a mixing model for effective permittivity

Information and

Telecommunication

Technology Center

FMCW RADAR TEST – ANTARCTICA Measured Data

- Remove antenna feed-through
- Remove system effects using calibration data
- Enhance profile using MUSIC
- Estimate unknown frequencies & amplitudes

FMCW RADAR TEST – ANTARCTICA

Inversion

Range Profiles obtained using FFT and MUSIC

Information and Telecommunication

Technology Center

Comparison of estimated beat frequencies of core with those of FFT and MUSIC

Beat Freq (F_B)	Beat Freq (F_B)	Beat Freq (F_B)
Core	MUSIC	IFFT
(Hz)	(Hz)	(Hz)
7320	7317.0	7290
7474	7622.0	7875
7630	7885.0	8275
7781	8290.0	9120
7936	8445.0	
8088	8748.5	
8243	9150.0	
8399	9240.0	
8559	9770.0	
8721		
8884		
9047		
9203		
9390		

FMCW RADAR TEST – ANTARCTICA Reconstructed Profile

Information and

Telecommunication

Technology Center

- Good match up until 2.15 m depth
- Deviations may be due to:
- (1) A discrepancy in the model representing the radar return
- (2) Subtle changes in permittivity that MUSIC is not able to distinguish
- (3) Error in calibration data
- (4) Measurement errors

SANDBOX TESTS

Experiment Set-up

Start Frequency 2 GHz Bandwidth 7 GHz Number of frequency 1601 samples 800 ms Sweep time Transmit Power 0 dBm Calibration type 1 port IF Bandwidth 3000 Hz TEM Horn Antenna type Antenna Gain 10 dB

Network Analyzer Parameters Dielectric stack to test inversion

RSL Sandbox facility

SANDBOX TESTS

- Calibrate at antenna terminals
- Measure S₁₁ with Aluminum plate as target
- Measure S₁₁ with multi-layered stack arrangement
- Mismatch between antenna and the cable connecting the Network Analyzer is removed by taking Sky- shot measurements
- Subtract Sky shot from S₁₁of target, plate
- Use plate impulse response to remove system effect
- Apply MUSIC to enhance and invert

- Properties of noise could not be confirmed
- Layer Stripping approach was followed

Sand : 2.5 – 3.5 (a value of 3 was chosen for modeling)

Styrofoam: 1.03

PLANE WAVE DATA INVERSION Setup - Greenland

Information and Telecommunication Technology Center

Type of radar	Step Frequency
Start Frequency	12 GHz
Bandwidth	6 GHz
Sweep Time	4.72 sec
No. of frequency points	801

PLANE WAVE DATA INVERSION Analysis

Information and Telecommunication

Technology Center

- Inconsistencies in measured data
- Internal reflections have higher amplitudes than surface reflection
- Inversion yielded very high permittivity estimates

PLANE WAVE DATA INVERSION

Inversion test on ADS simulated data

OUTLINE

Introduction

- GPR Applications
- Thesis Objectives

The Inverse Problem

- Forward Modeling FMCW Radar
- Layer Stripping Approach
- The Model Based Approach

Model Based Parameter Estimation

- MMSE based (Gauss-Newton)
- Spectral Estimation based (MUSIC)

Inversion on actual radar data

- Tests on Antarctic snow radar data
- Tests at the Sandbox lab
- Tests on Greenland Plane wave data
- GUI for data inversion algorithm
- Conclusions and Future Work

Developed a GUI for the algorithm

FUTURE WORK

- Incorporate effects of scattering due to rough surface and losses due to attenuation into the forward model
- Pre-whitening filter may be used to obtain Gaussian Noise statistics (or look at techniques for amplitude estimation in colored noise)
- 3 Dimensional FDTD, MOM can be used to represent forward model for better inversion results

THANK YOU!

QUESTIONS/COMMENTS?

