Survivability Function – A Measure of Disaster-Based Routing Performance

Journal Club Presentation on

July 6th 2007

Abdul Jabbar Mohammad

ResiliNets Research Group
Information and Telecommunication Technology Center
University of Kansas
Outline

• Introduction
• Related Work
• Network Survivability Model
 – Network Model
 – Survivability Function
 – Survivability Attributes
• Survivability Assessment Models
 – Calculation Complexity
 – Finding Survivability Function
 – Heuristic Procedures
 – Demand Matrix
• Backbone Network Example
• Conclusion
Introduction – Internet Traffic

• Explosive growth in traffic carried by telcom networks

• Potential impact of network failure
 – significant traffic carried by a single fiber
 – WDM adds to this capacity (up to Tbits per sec)
 – network survivability is crucial
 – higher impact in terms of traffic loss, scope & users affected

• Network survivability assessment
 – survivability function & survivability attributes
 – measure of disaster-based performance
 – illustrated example on polish backbone network
Introduction – Objectives

- **Disaster type**
 - one or more node and/or arc failures
- **Survivability function**
 - “the probability function of the percentage of total data flow delivered after failure”
- **Survivability attributes**
 - “measures of disaster–based routing performance”
 - p-percentile values, worst case survivability
- **Factors considered**
 - varying traffic environments
 - affect of routing protocols, traffic priorities, network load
Related Work

Related works in network survivability

- **Fiber network survivability (Tsong-Ho Wu)**
 - optical network survivability

- **ANSI T1A1 subcommittee**
 - concept of disaster-based survivability
 - performance following the occurrence of a failure

- **Survivability function (Liew & Lu)**
 - probabilistic measure of network survivability
 - number of users/nodes still connected, fraction of working links

- **Shortcomings**
 - no formal definitions
 - no formal models to express survivability as a whole
Network Survivability Model

- Network model
 - network modeled as a directed graph $\Gamma(N, A)$ where
 N is a set of nodes $|N| = N$;
 A is set of directed arcs $|A| = M$
 - topology described with node-to-node incidence matrix
 $$ a_{ij} = \begin{cases}
 1, & \text{if arc } e_m \equiv (i, j) \in A \\
 0, & \text{otherwise}
 \end{cases} $$
 - each arc has a finite capacity $C_m; m = 1, 2, \ldots, M.$
 - flows between all pair of nodes given by demand matrix R where
 $r_{pq}; p = 1, 2, \ldots, N; q = 1, 2, \ldots, N; p \neq q$ is a commodity
 - failures
 + randomness and statistical independence is assumed
 + network nodes and arcs fail with known distribution
Network Survivability Model

- Survivability function
 - failure scenario (denoted by ζ) is set of component failures
 subset N_D out of N nodes or subset M_D out of M arcs
 - note: different scenarios (ζ) may result in similar surviv. values
 - survivability function:
 "probability function of total data flow delivered after failure"
 \[
 S(x) = \sum_{\zeta: X(\zeta) = x} P(\zeta)
 \]
- $X(\zeta)$: random variable
 percentage of flow delivered after failure ζ
- $P(\zeta)$: probability of scenario ζ characterized by the percentage x of total data flow still delivered
- $S(x)$: always less than 1
Network Survivability Model

- Survivability attributes based on $S(x)$
 - expected percentage of total data flow delivered after a failure

 $$E(x) = \sum_{x} x \cdot S(x)$$

 - p – percentile survivability

 $$P_{px} = P(X = p)$$

 - worst case survivability

 $$x^* = \min_{S(x) > 0} x$$
Survivability Assessment Models

• Complexity of calculations
 – assume arc failures only in the given M arcs
 – number of scenarios to be investigated to calculate $S(x)$ is 2^M
 – intractable even for small networks

• Simplified calculations
 – assume probability distribution of arc failures to be uniform
 – each arc M fails with a probability of M^{-1}
 – Probability $P(\zeta)$ of scenario ζ with M_D failed arcs

\[
P(\zeta) = \prod_{l=1}^{M_D} \frac{1}{M} \prod_{k=1}^{M-M_D} \frac{M-1}{M}
\]

 – $P(\zeta)$ decreases rapidly with increasing M_D
Survivability Assessment Models

- Simplified calculations
 - the number of such scenarios with M_D failed arcs
 \[
 L_{M_D} = \binom{M}{M_D} = \frac{M!}{M_D!(M - M_D)!}
 \]
 - increase in the cumulative probability mass (c.p.m) due to all scenarios with M_D failed arcs
 \[
 \nu_{M_D} = L_{M_D}(\zeta) \times P(\zeta)
 \]
 - actual value of c.p.m achieved due to all scenarios investigated from no arc failures to M_D failed arcs
 \[
 \nu_0 + \nu_1 + \ldots + \nu_{M_D}
 \]
 - calculate $S(x)$ until c.p.m of all examined scenarios reaches a given threshold (e.g. 99%)
Survivability Assessment Models

- Simplified calculations

TABLE I

Rate of Increase of the c.p.m. for a Network

With $M = 500$ Arcs and $0 \leq M_D \leq 8$

<table>
<thead>
<tr>
<th>M_D</th>
<th>$P(\zeta)$</th>
<th>No. of scenar.</th>
<th>No. of steps</th>
<th>Comp. of mass</th>
<th>c.p.m.f.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.367511</td>
<td>1</td>
<td>1</td>
<td>0.367511</td>
<td>0.367511</td>
</tr>
<tr>
<td>1</td>
<td>0.000736</td>
<td>500</td>
<td>501</td>
<td>0.368248</td>
<td>0.735759</td>
</tr>
<tr>
<td>2</td>
<td>1.48×10^{-6}</td>
<td>124 750</td>
<td>125 251</td>
<td>0.184124</td>
<td>0.919883</td>
</tr>
<tr>
<td>3</td>
<td>2.96×10^{-9}</td>
<td>2.07 \times 10^{7}</td>
<td>2.08 \times 10^{7}</td>
<td>0.061252</td>
<td>0.981135</td>
</tr>
<tr>
<td>4</td>
<td>5.93×10^{-12}</td>
<td>2.57 \times 10^{9}</td>
<td>2.59 \times 10^{9}</td>
<td>0.015252</td>
<td>0.996386</td>
</tr>
<tr>
<td>5</td>
<td>1.19×10^{-14}</td>
<td>2.55 \times 10^{11}</td>
<td>2.58 \times 10^{11}</td>
<td>0.003032</td>
<td>0.999418</td>
</tr>
<tr>
<td>6</td>
<td>2.38×10^{-17}</td>
<td>2.11 \times 10^{13}</td>
<td>2.13 \times 10^{13}</td>
<td>0.000501</td>
<td>0.999919</td>
</tr>
<tr>
<td>7</td>
<td>4.77×10^{-20}</td>
<td>1.49 \times 10^{15}</td>
<td>1.51 \times 10^{15}</td>
<td>7.09 \times 10^{-5}</td>
<td>0.999990</td>
</tr>
<tr>
<td>8</td>
<td>9.56×10^{-23}</td>
<td>9.16 \times 10^{16}</td>
<td>9.31 \times 10^{16}</td>
<td>8.76 \times 10^{-6}</td>
<td>0.999999</td>
</tr>
</tbody>
</table>
Survivability Assessment Models

• Finding survivability functions
 – depends on the routing protocol, user priorities and network load
 – consider only the routing protocol – DV and flooding
 – in case of DV
 + find optimal commodity for each failure scenario ζ
 + multi-flow commodity route optimization can be set as linear programming problem
 + can be solved using a linear programming package (e.g. PPRN)
 + constraint matrix too large with few non-zero elements
 – heuristic procedure based on Seidler’s result
 + optimal multi-commodity flows x^* are a superposition of the nonbifurcated flows on all shortest paths where the length of the path is the cost of sending unit data on all the component links
Survivability Assessment Models

- Finding survivability functions

Find optimum multicommodity flows, minimizing cost function \(\varphi(x) \) subject to:

- flow conservation constraint

\[
\sum_{m \in \{m \in \{\{i, j\} \in A; i = 1, 2, ..., N; j \neq n\} \}} x_{k,m} - \sum_{m \in \{m \in \{\{n, j\} \in A; j = 1, 2, ..., N; j \neq n\} \}} x_{k,m} = \begin{cases} -r_k, & \text{if } n = s_k \\ +r_k, & \text{if } n = t_k \\ 0, & \text{otherwise} \end{cases}
\]

- finite arc capacities

\[
\sum_{k=1}^{K} x_{k,m} \leq c_m; \quad m = 1, 2, \ldots, M
\]

- nonnegativity constraints

\[
x_{k,m} > 0; \quad k = 1, 2, \ldots, K; \quad m = 1, 2, \ldots, M
\]

The linear cost function is defined as

\[
\varphi(x) = \sum_{k=1}^{K} \sum_{m=1}^{M} \text{cost}_{k,m} x_{k,m}
\]
Survivability Assessment - Heuristic procedure (DV)

0. preparatory step:
 - define disaster type (node/arc), c.p.m threshold,
 - calculate prob. of no failures and let $S(x = 0) = 0$

1. generate the next most probable failure scenario ζ
2. set to zero all elements of A corresponding to failures in ζ
 1. check for net. partitioning, if so add $P(\zeta)$ to value of $S(x = 0)$ else go to step 1
Survivability Assessment - Heuristic procedure (DV)

0. preparatory step:
 define disaster type (node/arc), c.p.m threshold,
 calculate prob. of no failures and let \(S(x = 0) = 0 \)

1. generate the next most probable failure scenario \(\zeta \)

2. set to zero all elements of \(A \) corresponding to failures in \(\zeta \)
 1. check for net. partitioning, if so add \(P(\zeta) \) to value of \(S(x = 0) \) else go to step 1

3. for each commodity, find the shortest path and its capacity
 1. if demand < capacity, set flow = demand; calculate residual capacity on the path and go to set 3.3.
 2. if demand > capacity, set flow = capacity; find the next shortest path and allocate the remaining portion of the demand to it
 3. calculate which percentage of total flow \(x_s \) has been found and save pair \((S_x, P(\zeta)) \) to the database

4. if c.p.m < threshold, go to step 1, otherwise go to step 5

5. group, order results and calculate the survivability function for whole range (0 – 100%) of \(x \) with specified granularity (say 1%)
Survivability Assessment - Heuristic procedure (FL)

1. For flooding algorithm
 - same as DV except for step 3
 - 3.1 allocates multi commodity flows on shortest paths
 - 3.2 the possibility of sending additional flows is examined.
 + at a selected node the procedure finds any other non-zero capacity paths
 + if found, either the unsatisfied demand or the capacity of the new path is assigned for this commodity flow (as supplementary fraction).
 + stop if no path with non-zero capacity available.
Survivability Assessment

- Demand matrix
 - how are the demands in the previous algorithms determined?
 - find maximum feasible and fair flows in fully operational network
 - denote this flow matrix as the optimal flows matrix F^*
 - for a given load, the matrix of required flows (demand matrix) is
 \[R = \text{load} \times F^* \]
 - in case of priority traffic, demand matrices for each priority are specified
 \[R_1, R_2, \ldots, R_p \]
Backbone Network Example

- Polish backbone network
 - \(N = 12, \quad M = 34 \); \(C_m = 2.5 \text{ Gb/s} \)
 - survivability function in case of routing protocols
 + based on minimum number of hops and on flooding

<table>
<thead>
<tr>
<th></th>
<th>By</th>
<th>Gd</th>
<th>Ka</th>
<th>Kr</th>
<th>Lu</th>
<th>Łd</th>
<th>Ol</th>
<th>Po</th>
<th>Rz</th>
<th>Sz</th>
<th>Wa</th>
<th>Wr</th>
</tr>
</thead>
<tbody>
<tr>
<td>By</td>
<td>-</td>
<td>908</td>
<td>628</td>
<td>56</td>
<td>0</td>
<td>796</td>
<td>852</td>
<td>426</td>
<td>0</td>
<td>852</td>
<td>740</td>
<td>426</td>
</tr>
<tr>
<td>Gd</td>
<td>908</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>426</td>
<td>426</td>
<td>0</td>
<td>852</td>
<td>796</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Ka</td>
<td>314</td>
<td>0</td>
<td>-</td>
<td>426</td>
<td>426</td>
<td>852</td>
<td>0</td>
<td>426</td>
<td>426</td>
<td>0</td>
<td>796</td>
<td>852</td>
</tr>
<tr>
<td>Kr</td>
<td>426</td>
<td>0</td>
<td>482</td>
<td>-</td>
<td>852</td>
<td>482</td>
<td>426</td>
<td>0</td>
<td>740</td>
<td>0</td>
<td>908</td>
<td>426</td>
</tr>
<tr>
<td>Lu</td>
<td>426</td>
<td>0</td>
<td>0</td>
<td>852</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>426</td>
<td>0</td>
<td>852</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Łd</td>
<td>740</td>
<td>0</td>
<td>852</td>
<td>852</td>
<td>426</td>
<td>-</td>
<td>0</td>
<td>426</td>
<td>0</td>
<td>0</td>
<td>426</td>
<td>852</td>
</tr>
<tr>
<td>Ol</td>
<td>426</td>
<td>426</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>426</td>
<td>-</td>
<td>0</td>
<td>426</td>
<td>426</td>
<td>426</td>
<td>0</td>
</tr>
<tr>
<td>Po</td>
<td>426</td>
<td>426</td>
<td>426</td>
<td>0</td>
<td>0</td>
<td>426</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>426</td>
<td>0</td>
<td>426</td>
</tr>
<tr>
<td>Rz</td>
<td>0</td>
<td>0</td>
<td>426</td>
<td>796</td>
<td>426</td>
<td>314</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>852</td>
<td>0</td>
</tr>
<tr>
<td>Sz</td>
<td>852</td>
<td>852</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>426</td>
<td>426</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>852</td>
<td>56</td>
</tr>
<tr>
<td>Wa</td>
<td>740</td>
<td>852</td>
<td>852</td>
<td>482</td>
<td>426</td>
<td>426</td>
<td>426</td>
<td>0</td>
<td>796</td>
<td>852</td>
<td>-</td>
<td>426</td>
</tr>
<tr>
<td>Wr</td>
<td>426</td>
<td>0</td>
<td>852</td>
<td>426</td>
<td>0</td>
<td>852</td>
<td>0</td>
<td>426</td>
<td>0</td>
<td>0</td>
<td>482</td>
<td>-</td>
</tr>
</tbody>
</table>

Source: Molisz-2004
Fig 1: Survivability function $S(x)$ for node (or arc) failures
load=60%, routing based on minimum number of hops

$E[x] = 80.41\%$

$E[x] = 95.69\%$

[Source: Molisz-2004]
Backbone Network Example - Analysis

Fig 1: Survivability function $S(x)$ for node (or arc) failures
load=90%, routing based on minimum number of hops

$E[x] = 78.03\%$

$E[x] = 89.60\%$

[Source: Molisz-2004]
Backbone Network Example - Analysis

Fig 1: Survivability function $S(x)$ for node failures only. Load=60%, routing based on minimum number of hops; traffic has five priorities.

$E[x] = 80.47\%$

[Source: Molisz-2004]
Backbone Network Example - Analysis

Fig 1: Survivability function $S(x)$ for node failures only. Load=90%, routing based on minimum number of hops. Traffic has five priorities.
Backbone Network Example - Analysis

Fig 1: Survivability function $S(x)$ for node failures only, load=200%, routing based on minimum number of hops, traffic has five priorities.

[Source: Molisz-2004]
Backbone Network Example - Analysis

Fig 1: Survivability function $S(x)$ for node failures only; three loads, routing based on minimum number of hops

[Source: Molisz-2004]
Backbone Network Example - Analysis

Fig 1: Survivability function $S(x)$ for node failures only; load=60%, routing based on flooding; traffic has five priorities.

[Source: Molisz-2004]
Conclusions

• lowest survivability occurs due to node failures
 • routing protocol has significant impact
 – min. num of hops gives relatively good results
 – flooding diminishes survivability dramatically
• congestion further reduces survivability
• greater degradation is observed at higher loads
 – more visible when dealing with priority traffic
• Quantitative evaluation of flow degradation due to failure scenarios is achieved
THANK YOU!