Network Resilience Improvement Using Link Additions

Mohammed J.F. Alenazi**, Egemen K. Çetinkaya§, and James P.G. Sterbenz**

**EECS and ITTC, The University of Kansas – http://www.ittc.ku.edu/resilinet, *Department of Computer Engineering, King Saud University, Riyadh, Saudi Arabia

§ECE, Missouri University of Science and Technology, Rolla, *SCC and InfoLab21, Lancaster University

I. Introduction and Background

- **Motivation**
 - Computer network resilience to attacks
 - Targeted attacks and natural disasters
 - Disrupt its normal operation and services
 - Problem statement
 How to increase network resilience by adding a set of links while minimising the total cost
 - Possible solutions:
 - Random addition
 - Full mesh
 - Not feasible due to high cost
 - Selection Algorithms
 - Maximise resilience
 - Minimise cost

- **Finding Optimal Solution Complexity**
 - Given \(G = (V, E) \), where \(V \) nodes \(E \) links. The number of complement links in the graph is \(\bar{E} \)
 - Let \(T(G) \) be the number of graph instances that has the optimal solution
 - Optimal solution with budget constraint: \(T(G) = 2^{E} \)
 - Optimal solution with number of links constraint: \(T(G) = \left(\binom{E}{n} \right) \)
 - Both intractable as the size of \(V \) gets larger

- **Graph Robustness Metrics**
 - **Algebraic Connectivity \(a(G) \)**
 - 2nd smallest eigenvalue of the Laplacian matrix
 - Indicator of network resilience
 - **Total Graph Diversity (TGD)**
 - Average diversity between every connected pair
 - Large TGD value indicates high resilience

- **Centrality Metrics**
 - Examples: betweenness, closeness, and degree
 - Attacking nodes with high centrality can disrupt the network normal operation
 - Add links to lower the centrality variance among the nodes, which in turn remove the vulnerability via nodes with high centrality

II. Optimisation Algorithm

- **Greedy Algorithms**
 - We implement heuristic optimisation algorithms based on a greedy approach. Given a graph, the links are added one at a time to maximise the objective function and minimise the cost. The objective functions are:
 - Maximising the algebraic connectivity
 - Maximising the total path diversity
 - Minimising centrality variance

- **Optimisation Cost**
 - The cost is defined as the Euclidean distance between the two ends of the link
 - After adding a link, we accumulated total cost of the added links as shown in Figure 1
 - Adding link length constraint to the selection of candidate links because very long links that are not practical to be added to a physical graph
 - For example, adding a physical fibre link between Los Angeles and Boston is unlikely to be feasible for providers given the high cost incorporated by adding this link

- **Optimisation Evaluation**
 - Measure the resilience of graphs in terms of flow robustness
 - The ratio of connected node pairs to the maximum number of node pairs
 - Apply three centrality-based attacks namely betweenness-based, closeness-based, and degree-based attacks. After every node removal, we measure the flow robustness value of the graph as shown in Figure 2

III. Conclusion

- **Summary and Conclusion**
 - Investigate several optimisation objective functions based on the robustness metrics maximising the algebraic connectivity, maximising the total path diversity, and minimising centrality variance
 - We show the cost incurred while adding links using each objective function
 - For evaluation
 - Apply three centrality-based attack on the non-optimised graphs
 - The results show the cost of using \(a(G) \) optimisation is higher than the other objective functions
 - \(a(G) \) optimisation yields the best resilience in most cases for the studied physical graphs
 - **Future Work**
 - Plan to investigate more graph robustness metrics
 - Perform a comprehensive comparison among all common metrics
 - Using weighted graphs

IV. References

Acknowledgements: This project is supported in part by the US DoD and IFT Programs and the Saudi Arabian Cultural Mission (SACM) March 2014