A Framework to Quantify Network Resilience

Abdul Jabbar, Manasa K., David Hutchison, James P.G. Sterbenz

wiki.ittc.ku.edu/resilinets

Introduction

- Network resilience
 - critical to meet service requirements
 - lack of rigorous and consistent evaluation methods
 - requires computational metrics
 - inherently complex problem
- Research objectives
 - characterize networks using fundamental properties
 - physical properties, data traffic, and service expectations
 - quantify operational and service aspects using metrics
 - compare resilience mechanisms
 - design and engineer networks with higher resilience

Network Characterisation

- Operational metrics N
 - quantify the operational state from network properties
 - probability distributions capture network dynamics
 - e.g. link connectivity, traffic load
- Service parameters P
 - quantify service using numerical functions
 - based on application/user requirements
 - e.g. response time, service request failures
- Network state S
 - discrete sets of oper. metrics and service parameters
 - aggregation limits number of states

Problem Formulation

- Network state is a tuple (N, P) of
 - operational metrics
 - service parameters
- State transitions
 - due to challenges
 - local perturbations
 - inter and intra state
 - severity of events
- Multi-level approach
 - At any abstraction level
 - operations and service can be defined

Resilience Evaluation

- State-space framework
 - divide operational and service space in to regions
 - plot states based on
 - network design
 - experimentation
 - monitoring
- Resilience measures
 - time in acceptable region
 - graceful degradation
 - state recovery
 - transition trajectory
 - steady state resilience

Funding for this research provided in part by the National Science Foundation and EU IST Programme

24 June 2008