AeroTP: Aeronautical Transport Protocol

- Adaptive transport protocol
 - efficient flow setup: data overlaps control
 - multiple reliability modes
 - reliable: end-to-end segment ACKs
 - near-reliable: split ARQ using AeroGW custody transfer
 - quasi-reliable: erasure coding; sequential or multipath
 - none (connection): best effort over FECed links
 - none (datagram): stateless best effort for UDP
- TCP-friendly
 - splices with conventional TCP via AeroGW
 - uses ports, seq#, timestamp, & flags from TCP

AeroRP: Aeronautical Routing Protocol

- Phase 1: neighbor discovery
 - active snooping to determine node presence
 - network protocol header carries node GPS location
 - periodic hello beacons from idle nodes
 - ground station updates based on mission planning
- Phase 2: data forwarding
 - hop-by-hop forwarding towards destination
 - forwarding mode dependent on security requirements
 - open: location and trajectory data embedded in xmits
 - partial: GS broadcast state vectors
 - secure: route based on incidental contact information

Reliability Modes

- **Conn. Setup**:
 - Reliable: end-to-end segment ACKs
 - Near-reliable: split ARQ using AeroGW custody transfer
 - Quasi-reliable: erasure coding; sequential or multipath
 - None: best effort over FECed links
- **None**
 - Stateless best effort for UDP

Routing Simulation Results

- Performance at Mach 0.3 – Mach 3.5
- Overhead at Mach 0.3 – Mach 3.5
- Overhead at Mach 3.5

03 April 2009