A Framework to Quantify Network Resilience

Abdul Jabbar and James P.G. Sterbenz

wiki.ittc.ku.edu/resilinets/Metrics_and_Modeling

Introduction

- Network resilience
 - critical to meet service requirements
 - metrics needed to measure & evaluate (ResiliNets P4)
 - inherently complex problem, needs tractable solution
- Approach
 - characterise networks using orthogonal dimensions:
 - operational state (N) and service state (P)
 - quantified as tuple of metrics objective functions (N, P)
 - model challenges as perturbations in operational state
 - evaluate resilience as transitions in state space
 - for $S_1 \rightarrow S_2$ ordering of states $S_1 < S_2$ indicates improvement

Resilience State Space

- State space divided into 3×3 regions
 - boundaries defined by service requirements
 - piece-wise axes
 - D^3R^2 strategy trajectory
 - e.g. defend: $S_0 \rightarrow S_{1,\neq 0}$
 - e.g. remediate: $S_1 < S_c$
- Objective functions (N, P)
 - derived from parameter set
 - linear or logical combinations
- Resilience measured by
 - trajectory through state space
 - aggregate metric: $R = 1 - \text{norm. area under trajectory}$

Multilevel Framework

- Resilience at an arbitrary layer boundary
 - isolates resilience at any level
 - quantifies the impact of
 - challenges on the service
 - resilience mechanisms
- State space mappings
 - service parameters become operations at layer above
 $N_{i+1,j+1} = P_{i,j}$
 - resilience as seen by application at L_{47} boundary
 - bottom-up approach

Simulation Results

- Multilevel resilience of ISP-level networks
 - resilience of AT&T, Sprint, GÉANT2 topologies
 - resilience of multi-path mechanism using k paths

Funding for this research provided in part by the National Science Foundation FIND program [ICNP 2006, PhD 2010] 10 May 2010