Future Internet Resilience
Summary of Networking Research at The University of Kansas ITTC

James P.G. Sterbenz

Department of Electrical Engineering & Computer Science
Information Assurance, Communication & Network System Labs
Information Technology & Telecommunications Research Center
The University of Kansas

jgps@ittc.ku.edu
http://www.ittc.ku.edu/~jgps
http://wiki.ittc.ku.edu/resilinets

10 June 2010
Major related research themes

- future Internet architecture and infrastructure
- resilient and survivable networks
- information assurance and security
- disruptive and novel communication paradigms
Collaborators

- regional: K-State, UMKC, UNL, ...
- national: Rutgers, Penn State, CMU, ORNL, ...
- international: U. Lancaster UK, ETH Zürich, TU-Munich, ...

Funding

- NSF FIND, GENI, ...
- DoD DARPA, CTEIP, ...
- EU FP6 SAC, FP7 FIRE
- Industry: Sprint, ...
Resilient Networks

Motivation

• Increasing reliance on network infrastructure
 ⇒ Increasingly severe consequences of disruption
 ⇒ Increasing attractiveness as target from bad guys
• Internet is *critical infrastructure*
 • interdependent with other CI, e.g. power grid
Resilient Networks
Resilience Definition

- **Resilience**
 - provide and maintain acceptable service
 - in the face of faults and challenges to normal operation

- **Challenges**
 - faults
 - unintentional misconfiguration or operational mistakes
 - large scale disasters (natural and human-made)
 - malicious attacks from intelligent adversaries
 - environmental challenges (wireless, mobility, delay)
 - unusual but legitimate traffic
 - service failure at a lower level
Resilience Scope
Relationship to Other Disciplines

Challenge Tolerance
Survivability
- many ∨ targetted failures
Fault Tolerance
- (few ∧ random)
Traffic Tolerance
- legitimate, flash crowd, attack, DDoS

Disruption Tolerance
- environmental
- delay, mobility, connectivity, energy

Robustness Complexity

Trustworthiness
Dependability
- reliability, maintainability, safety

Availability
- confidentiality, nonrepudiability

Integrity
- auditability, authorisability, authenticity

AAA
- authenticity, authorisability

Performability
- QoS measures

Security
- confidentiality, nonrepudiability

Challenge Tolerance
Survivability
Fault Tolerance
Traffic Tolerance
Disruption Tolerance
- environmental
Robustness Complexity

Dependability
- reliability, maintainability, safety

Availability
- confidentiality, nonrepudiability

Integrity
- auditability, authorisability, authenticity

AAA
- authenticity, authorisability

Performability
- QoS measures
Resilience Architecture

ResiliNets Strategy: $D^2R^2 + DR$

- **Real time control loop:** D^2R^2
 - defend
 - passive
 - active
 - detect
 - remediate
 - recover

- **Background loop:** DR
 - diagnose
 - refine

[ComNet 2010]
Resilience Architecture

ResiliNets Principles

- Prerequisites: to understand and define resilience
- Tradeoffs: recognise and organise complexity
- Enablers: architecture and mechanisms for resilience
- Behaviour: require significant complexity to operate
Resilience Architecture
Multilevel Resilience and Cross-Layering

- ResiliNets Cube
 - multilevel
 - protocol layers
 - planes
 - mechanisms
- D^2R^2+DR strategy
 - D^2R^2 control plane
 - DR mgt. plane
- Cross-layering
 - knobs and dials are metrics
 - K, D ⊆ N u P
Resilience Quantification
State Space: Operational Resilience

- Operational resilience
 - minimal degradation
 - in the face of challenges
- Resilience state
 - remains in normal operation
Resilience Quantification
State Space: Service Resilience

- Service resilience
 - acceptable service
 - given degraded operation
- Resilience state
 - remains in acceptable service
- Resilience
 - $\mathbb{R} = \text{area under trajectory}$
 - for particular scenario
 - resilience \mathbb{R} over all scenarios
Resilience Quantification
$D^2R^2 + DR$ Relationship to State Space

- **Real time control loop:** D^2R^2
 - **defend** keeps toward origin
 - passive
 - active
 - detect when leaves
 - remediate pushes back
 - recover back to origin
- **Background loop:** DR
 - diagnose
 - refine tightens trajectory
Resilience Evaluation

Topology Generation: KU-LoCGen

- Generation of realistic topologies
- Multilevel hierarchy
 - level 1: represents (tier 1) backbone
 - level 2: represents access networks around a backbone PoP
 - level 3: represents subscriber nodes
- Constrained generation
 - geographic node location (infrastructure or population)
 - constrained link location (based on exiting fiber runs)
 - constrained cost (fixed + variable cost)
 - graph-theoretic constraints for resilient diversity
Resilience Evaluation
Evaluating Challenges in State Space

- Topology generation
 - use KU-LoCGen
- Challenge simulation
 - random failures
 - intelligent attacks
 - degree, betweenness, etc.
 - large scale disasters
 - hurricanes, blackouts
- Example
 - resilience of alternatives based on Sprint PoPs
• **KU-CSM Challenge Simulation Module**
 - **challenge specification** describes challenge scenario
 - **network coordinates** provide node geo-locations
 - **adjacency matrix** specifies link connectivity
 - **input to conventional** **ns-3 simulation run**
 - generates trace to **plot results**

KU-LoCGen
Resilience Evaluation
KU-CSM Challenge Simulation

- Example: evolving area-based challenge example
 - circle moving from Orlando to NY
- Performability analysis: packet delivery ratio
 - PDR varies with # links nodes down
Enabling Future Internet Research

GpENI Overview

- Great Plains Environment for Network Innovation
 - part of NSF GENI program
 - affiliated with EU FP7 FIRE programme / ResumeNet project
- Programmable network infrastructure (L1–7)
 - Midwest US optical backbone
 - International testbed
- Conduct experiments in:
 - future Internet architectures
 - resilience and survivability
 - cross-evaluation with analytical- and simulation-based eval.

<table>
<thead>
<tr>
<th>GpENI Layer</th>
<th>Programmability</th>
</tr>
</thead>
<tbody>
<tr>
<td>experiment</td>
<td>Gush, Raven</td>
</tr>
<tr>
<td>application</td>
<td>PlanetLab</td>
</tr>
<tr>
<td>end-to-end</td>
<td>Quagga, XОРP, Click</td>
</tr>
<tr>
<td>router</td>
<td>VINI</td>
</tr>
<tr>
<td>topology</td>
<td>DCN</td>
</tr>
<tr>
<td>VLAN</td>
<td>site-specific</td>
</tr>
<tr>
<td>lightpath</td>
<td>[TridentCom 2010]</td>
</tr>
</tbody>
</table>
Enabling Future Internet Research
GpENI Midwest Optical Node Cluster

- GpENI cluster
 - 5–10 PCs
 - GpENI mgt.
 - L4: PlanetLab
 - L3: prog. routers
- GbE switch
 - arbitrary site interconnection
 - L2: GpENI/GENI VLAN
 - SNMP cluster monitoring
- Ciena optical switch
 - L1 GpENI interconnection
Enabling Future Internet Research
GpENI Midwest Optical Backbone

- Physical topology
 - multiwavelength optical backbone
 - current or imminent deployment
 - 4 universities in 3 states
 - 1 switch/year with current funding
Enabling Future Internet Research
GpENI European Expansion

- European GpENI partners
 - 13 nations
 - 24 research institutions
 - ~120 nodes
 - more under discussion
Enabling Future Internet Research
GpENI Asian Expansion

- Asian GpENI partners
 - 3 nations
 - 5 research institutions
 - 25 nodes
 - more under discussion
ITTC Networking Research

Selected Project Examples

- Weather disruption-tolerant networking (Sterbenz)
- Highly-dynamic airborne networking (Sterbenz)
- Information security and privacy (Luo)
- SDRs and cognitive networking (Minden, Evans)
- Sensor networking (Frost)
WDTN Project Overview

• Mesh architecture
 – high degree of connectivity
 – alternate diverse paths
 • severely attenuated mm wave
 • alternate mm, lower-freq. RF
 • fiber bypass (competitor)

• Solution [INFOCOM 2009]
 – reroute before link failures they occur
 – P-WARP predictive routing
 • image radar to predict weather
 – XL-OSPF instantaneously reactive routing
 • cross-layered with BER estimation
Airborne Networking Project

Scenario

- **Very high relative velocity**
 - Mach 7 \(\approx 10 \) s contact
 - dynamic topology
- **Communication channel**
 - limited spectrum
 - asymmetric links
 - data down omni
 - C&C up directional
- **Multihop**
 - among TAs
 - through relay nodes
Airborne Network Project
Protocol Stack and Interoperability

- **AeroTP**: TCP-friendly transport
- **AeroNP**: IP-compatible forwarding
- **AeroRP**: routing

[HMI apps] gNET

[TA peripherals] [MILCOM 2008]
InfoSec and Privacy Projects
[Bo Luo PI]

- **CAT**: A node-failure-resilient anonymous communication protocol through commutative path hopping [INFOCOM 2010]
 - protect the identity/privacy of communication participants
 - group-based path probing & commutative path hopping: resilient to relay node failures

- **Secure in-network operations for smart grids**
 - in-network operations:
 distribute operations (e.g. aggregation) into smart meters
 - Secure operations:
 perform operations without revealing the data, using applied crypto methods
SDR and Cognitive Radio Projects

[Gary Minden and Joseph Evans PIs]

- **KUAR**: KU agile radio
 - experimental system: wireless networking & radio research
 - 5.8 GHz UNII band; independent 30MHZ tx/rx signal paths,
 - signal processing is entirely in an FPGA and GPU

- **Application**
 - sharing radio frequency spectrum with multiple users
 - configure radio software for specific missions
 - adaptation to dynamic RF environment and other users
 - radio network control and resource management

- **Cognitive networking**
 - new dynamic routing algorithms exploiting SDR technologies
SDR and Cognitive Radio Projects

KUAR Diagrams

Software Organisation

ResiliNets Overview
Objective and problem
- KC SmartPort is encouraging development
- transport systems require
 - visibility, accountability, efficiency, security

Transportation security approach
- sensing, communications, and information integration
- integrate sensor information and real-time tracking with... trade data documents to correlate
- expand the ORNL SensorNet technologies
 - to mobile rail network environment
End

Questions?