Future Internet Resilience
Summary of Networking Research at
The University of Kansas ITTC

James P.G. Sterbenz

Department of Electrical Engineering & Computer Science
Information Assurance, Communication & Network System Labs
Information Technology & Telecommunications Research Center
The University of Kansas

jpngs@ittc.ku.edu
http://www.ittc.ku.edu/~jpngs
http://wiki.ittc.ku.edu/resilinets

ITTC Networking Research
Major Themes

• Major related research themes
 – future Internet architecture and infrastructure
 – resilient and survivable networks
 – information assurance and security
 – disruptive and novel communication paradigms
ResiliNets Overview

Collaborators and Funding

- Collaborators
 - regional: K-State, UMKC, UNL, ...
 - national: Rutgers, Penn State, CMU, ORNL, ...
 - international: U. Lancaster UK, ETH Zürich, TU-Munich, ...

- Funding
 - NSF FIND, GENI, ...
 - DoD DARPA, CTEIP, ...
 - EU FP6 SAC, FP7 FIRE
 - Industry: Sprint, ...

Resilient Networks

Motivation

- Increasing reliance on network infrastructure
 ⇒ Increasingly severe consequences of disruption
 ⇒ Increasing attractiveness as target from bad guys
- Internet is critical infrastructure
 - interdependent with other CI, e.g. power grid
Resilient Networks

Resilience Definition

- **Resilience**
 - provide and maintain acceptable service
 - in the face of faults and challenges to normal operation

- **Challenges**
 - faults
 - unintentional misconfiguration or operational mistakes
 - large scale disasters (natural and human-made)
 - malicious attacks from intelligent adversaries
 - environmental challenges (wireless, mobility, delay)
 - unusual but legitimate traffic
 - service failure at a lower level

Resilience Scope

Relationship to Other Disciplines

- **Challenge Tolerance**
 - Survivability
 - random + targeted failures
 - Fault Tolerance
 - few + random
 - Traffic Tolerance
 - legitimate + flash crowd, attack + DDoS
 - Disruption Tolerance
 - delay + mobility
 - connectivity
 - energy

- **Robustness Complexity**
- **Trustworthiness**
 - Dependability
 - reliability + maintainability + safety
 - Availability
 - availability + integrity
 - Security
 - confidentiality + non-repudiation
 - AAA
 - authorisation + accountability + auditability
 - Performability
 - QoS measures
ResiliNets Strategy: $D^2R^2 + DR$

- Real time control loop: D^2R^2
 - defend
 - passive
 - active
 - detect
 - remediate
 - recover
- Background loop: DR
 - diagnose
 - refine

[ComNet 2010]

ResiliNets Principles

- Prerequisites: to understand and define resilience
- Tradeoffs: recognise and organise complexity
- Enablers: architecture and mechanisms for resilience
- Behaviour: require significant complexity to operate
Future Internet Resilience research at KU ITTC

Resilience Architecture
Multilevel Resilience and Cross-Layering

- ResiliNets Cube
 - multilevel
 - protocol layers
 - planes
 - mechanisms
- D²R²+DR strategy
 - D²R² control plane
 - DR mgt. plane
- Cross-layering
 - knobs and dials are metrics
 - $K, D \subseteq N \cup P$

Resilience Quantification
State Space: Operational Resilience

- Operational resilience
 - minimal degradation
 - in the face of challenges
- Resilience state
 - remains in normal operation

Operational State N

- Normal Operation
- Partially Degraded
- Severely Degraded

10 June 2010 ResiliNets Overview

© James P.G. Sterbenz
Resilience Quantification

State Space: Service Resilience

- Service resilience
 - acceptable service
 - given degraded operation
- Resilience state
 - remains in acceptable service
- Resilience
 - $R = \text{area under trajectory}$
 - for particular scenario
 - resilience \forall over all scenarios

Resilience Quantification

$D^2R^2 + DR$ Relationship to State Space

- Real time control loop: D^2R^2
 - defend keeps toward origin
 - passive
 - active
 - detect when leaves
 - remediate pushes back
 - recover back to origin
- Background loop: DR
 - diagnose
 - refine tightens trajectory
Resilience Evaluation

Topology Generation: KU-LoCGen

- Generation of realistic topologies
- Multilevel hierarchy
 - level 1: represents (tier 1) backbone
 - level 2: represents access networks around a backbone PoP
 - level 3: represents subscriber nodes
- Constrained generation
 - geographic node location (infrastructure or population)
 - constrained link location (based on exiting fiber runs)
 - constrained cost (fixed + variable cost)
 - graph-theoretic constraints for resilient diversity

Evaluating Challenges in State Space

- Topology generation
 - use KU-LoCGen
- Challenge simulation
 - random failures
 - intelligent attacks
 - degree, betweenness, etc.
 - large scale disasters
 - hurricanes, blackouts
- Example
 - resilience of alternatives based on Sprint PoPs
Resilience Evaluation
KU-CSM Challenge Simulation

- **KU-CSM Challenge Simulation Module**
 - **challenge specification** describes challenge scenario
 - **network coordinates** provide node geo-locations
 - **adjacency matrix** specifies link connectivity
 - **input to** conventional ns-3 simulation run
 - generates trace to plot results

- Example: evolving area-based challenge example
 - circle moving from Orlando to NY
- Performability analysis: packet delivery ratio
 - PDR varies with # links nodes down
Enabling Future Internet Research

GpENI Overview

- Great Plains Environment for Network Innovation
 - part of NSF GENI program
 - affiliated with EU FP7 FIRE programme / ResumeNet project
- Programmable network infrastructure (L1–7)
 - Midwest US optical backbone
 - International testbed
- Conduct experiments in:
 - future Internet architectures
 - resilience and survivability
 - cross-evaluation with analytical- and simulation-based eval.

GpENI Layer	Programmability
experiment | Gush, Raven
application | PlanetLab
end-to-end | PlanetLab
router | Quagga, XORP, Click
topology | VINI
VLAN | DCN
lightpath | DCN
RF, photonics | site-specific

[TridentCom 2010]

GpENI Midwest Optical Node Cluster

- GpENI cluster
- 5–10 PCs
 - GpENI mgt.
 - L4: PlanetLab
 - L3: prog. routers
- GbE switch
 - arbitrary site interconnection
 - L2: GpENI/GENI VLAN
 - SNMP cluster monitoring
- Ciena optical switch
 - L1 GpENI interconnection

GbE net

control & management

GENI
VLANS

site specific
KUAR, sensor, ...

GbE net

optical backbone

GENI
VLANS

KUAR, sensor, ...

GbE net

optical backbone

GENI
VLANS

KUAR, sensor, ...

GbE net

optical backbone

GENI
VLANS
Enabling Future Internet Research
GpENI Midwest Optical Backbone

- Physical topology
 - multiwavelength optical backbone
 - current or imminent deployment
 - 4 universities in 3 states
 - 1 switch/year with current funding

- European GpENI partners
 - 13 nations
 - 24 research institutions
 - ~120 nodes
 - more under discussion
Enabling Future Internet Research

GpENI Asian Expansion

- Asian GpENI partners
 - 3 nations
 - 5 research institutions
 - 25 nodes
 - more under discussion

ITTC Networking Research

Selected Project Examples

- Weather disruption-tolerant networking (Sterbenz)
- Highly-dynamic airborne networking (Sterbenz)
- Information security and privacy (Luo)
- SDRs and cognitive networking (Minden, Evans)
- Sensor networking (Frost)
WDTN Project
Overview

- Mesh architecture
 - high degree of connectivity
 - alternate diverse paths
 - severely attenuated mm wave
 - alternate mm, lower-freq. RF
 - fiber bypass (competitor)
- Solution [INFOCOM 2009]
 - reroute before link failures they occur
 - P-WARP predictive routing
 - image radar to predict weather
 - XL-OSPF instantaneously reactive routing
 - cross-layered with BER estimation

Airborne Networking Project
Scenario

- Very high relative velocity
 - Mach 7 ≈ 10 s contact
 - dynamic topology
- Communication channel
 - limited spectrum
 - asymmetric links
 - data down omni
 - C&C up directional
- Multihop
 - among TAs
 - through relay nodes
ResiliNets Overview

Airborne Network Project
Protocol Stack and Interoperability

- **AeroTP**: TCP-friendly transport
- **AeroNP**: IP-compatible forwarding
- **AeroRP**: routing [MILCOM 2008]

InfoSec and Privacy Projects [Bo Luo PI]

- **CAT**: A node-failure-resilient anonymous communication protocol through commutative path hopping [INFOCOM 2010]
 - protect the identity/privacy of communication participants
 - group-based path probing & commutative path hopping: resilient to relay node failures
- **Secure in-network operations for smart grids**
 - in-network operations:
 - distribute operations (e.g. aggregation) into smart meters
 - Secure operations: perform operations without revealing the data, using applied crypto methods
SDR and Cognitive Radio Projects
[Gary Minden and Joseph Evans PIs]

- **KUAR**: KU agile radio
 - experimental system: wireless networking & radio research
 - 5.8 GHz UNII band; independent 30MHZ tx/rx signal paths,
 - signal processing is entirely in an FPGA and GPU

- **Application**
 - sharing radio frequency spectrum with multiple users
 - configure radio software for specific missions
 - adaptation to dynamic RF environment and other users
 - radio network control and resource management

- **Cognitive networking**
 - new dynamic routing algorithms exploiting SDR technologies

KUAR Diagrams

- Software Organisation
Transportation Security SensorNet
[Victor Frost PI]

- Objective and problem
 - KC SmartPort is encouraging development
 - transport systems require
 - visibility, accountability, efficiency, security

- Transportation security approach
 - sensing, communications, and information integration
 - integrate sensor information and real-time tracking with...
 - trade data documents to correlate
 - expand the ORNL SensorNet technologies
 - to mobile rail network environment

Questions?