Service Oriented Architecture
for Monitoring Cargo in Motion
Along Trusted Corridors

Martin Kuehnhausen

Department of Electrical Engineering & Computer Science
Master's Thesis Defense
July 1, 2009

Committee
Dr. Victor S. Frost (Chair)
Dr. Joseph B. Evans
Dr. Gary J. Minden
Acknowledgment

• Defense Committee
 • Dr. Victor S. Frost
 • Dr. Joseph B. Evans
 • Dr. Gary J. Minden

• SensorNet Team
 • Leon Searl, Ed Komp, Dan DePardo, Daniel Deavours
 • Daniel Fokum, Matt Zeets, Angela Oguna, Jim Stevens, George Cox
Outline

• Introduction
• Statement of Problem
• Service Oriented Architecture
• Design & Architecture of TSSN
• Service implementations
• Implementation Results
• Conclusion
• Future Work
Introduction

• Transportation Security SensorNet project
 • Service Oriented Architecture
 • Open Geospatial Consortium
 • Sensor Networks

• Main goals
 • Remote sensor management
 • Alarm notification
 • Use of open standards, tools and software
 • Combination of SOA, OGC and sensor networks
Statement of Problem

“How can a Service Oriented Architecture, open standards and specifications be used to overcome the problems of proprietary systems that are currently in place and provide a reusable framework that can be implemented across the entire transportation industry?”
Service Oriented Architecture

• Concept:
 • Information processing and sharing across various applications using so-called *web services*
 • Components are *web services*
 • *Clients* utilize *web services* through clearly defined open web standards interfaces

• Standard protocols for communication
• Independent of technologies, platforms, programming languages
• Interfaces follow web service standards
Service Overview
Benefits for TSSN

• Related to the transportation industry:
 • Automation
 • Efficient communication
• Efficient development through modularity
• More reuse of the system
• Simplified maintenance
• Incremental adoption
• Graceful evolution
Web Service Specifications

- **SOAP**
 - Flexible message format
- **WS-Addressing**
 - Message propagation
 - Routing
- **WS-Eventing**
 - Event subscriptions and publications
- **WS-Security**
 - Encryption
 - Signatures

SOAP message format:
- Envelope
- Header
- Body
- Fault
Web Service Specifications

• UDDI
 • Universal Description, Discovery and Integration
 • Service Discovery
 • Scalability

• WSDL 2.0
 • Web Service Description Language
 • Elements, operations, interface and binding definitions

WSDL 2.0 overview
Design & Architecture

• **Transportation Security SensorNet**
 • Based on Service Oriented Architecture
 • Utilize web services and Open Geospatial Consortium specifications
 • Combine web services with sensor network technology

• **Provide:**
 • Service Oriented Architecture for cargo monitoring
 • Remote sensor management
 • Event processing
 • Alarm notifications
Design & Architecture

- Distributed service clouds
 - Trade Data Exchange
 - Virtual Network Operation Center
 - Mobile Rail Network

![Service clouds diagram]
Apache Axis2

• Basis for TSSN
 • Provides basis for web services and clients
 • Supports variety of transports (HTTP, HTTPS, JMS, etc.)
 • Allows several data bindings (Axis Data Binding (ADB), XMLBeans, JibX, etc.)
 • Modular approach to web service specifications

Axis2 module architecture from [16]
A KTEC Center of Excellence

Service composition

- WSDL
- Service XML Schema
- External XML Schemas

WSDL2Java

Service Java Classes
- Schema Elements
- Service Skeleton
- External Service Stub A
- External Service Stub B

Data A
Data B
External library A
External library B

Service Implementation

Service
Automatic Code Generation

• Axis2 provides tools for:
 • XML schema compilations -> data bindings
 • Java service classes generation from WSDL
• Use of Apache Ant as a build system
• Improvements to standard implementation
 • Schema compilation of OGC schema elements
 • Ping module
 • Logging module
 • Subscriptions/Publications mechanism
 • Build process
Components

• Services
 • Long term storage (MySQL database & Hibernate)
 • Event processing (Esper)
 • Sensor management (Hi-G-Tek (HGT))
 • Location tracking (GPS)
 • Stateless vs. stateful web services

• Clients
 • Standalone & embedded in a service
 • User interfaces (Apache CLI & Command Center GUI)

• Modules
 • Ping, Logging
 • Web service specifications (Addressing, Savan, Rampart)
Service message overview
Mobile Rail Network

- Located on train
- Responsibilities
 - Sensor management
 - Sensor monitoring
 - Propagation of sensor events

Mobile Rail Network message overview
MRN Sensor Node

- Abstraction layer to dealing with HGT, GPS and other sensors

- Provides
 - Sensor monitoring
 - Sensor control
 - Location retrieval
 - OGC specifications
 - GetCapabilities and GetObservation (SOS)
MRN Alarm Processor

- Processes events that it receives from Sensor Node
- Provides
 - Initial event processing
 - Monitoring state control
 - Security vs. information
 - Alarm notifications
Virtual Network Operation Center

- Located at KU
- Management facility of TSSN
- Responsibilities
 - Sensor management
 - Complex event processing
 - Interfacing with trade information
 - Alarm notifications

Virtual Network Operation Center message overview
VNOCC Sensor Management

- Remote sensor management via message relay
- Provides
 - Sensor control
 - Monitoring control
 - Location retrieval
VNOC Alarm Processor

- Processes events that it receives from MRNs
- Provides
 - Complex event processing using Esper
 - Correlation of trade information with events
 - Alarm notifications
VNOC Alarm Reporting

- Sends alarm notifications using email and/or SMS
- Provides
 - Alarm to contact mappings management
 - Alarm history
 - Alarm notifications
Trade Data Exchange

• Located in Overland Park, KS
• Interface to transport systems
• Responsibilities
 • Providing trade data and other information
TDE Trade Data Exchange

- Supplies Alarm Processor with trade information
- Provides
 - Alarm storage
 - Shipment information
Implementation Results

• Several tools used during trials and analysis

• Logging module
 • Capture message flows

• Log parser
 • Reconstructs messages
 • Provides listing and analysis functionality

SOAP message (left) to Log parser classes (right) comparison
Visual SensorNet
Message Relationships

• Transmit-Receive Pair
 • Combination of outgoing and incoming messages with the same message id
 • Allows computation of
 - Transmit times

• Message Couple
 • Combination of outgoing request and outgoing response
 • Allows computation of
 - Round trip times
 - Processing times
Trial results

• Road tests with trucks
 • MRN deployed on a truck
 • Sensor read range about 400 meters
 • Temporary GSM and GPS loss
 • All messages (sensor management and alarms) successfully sent and received

• Short Haul Rail Trial
 • MRN deployed on a locomotive
 • Train traveled approximately 35 kilometers from a rail intermodal facility to a rail yard
 • Similar GSM and GPS issues
Short Haul Rail Trial

• Message counts
 • 546 alerts at the MRN
 • 131 alarms at the VNOC
 • 63 Shipment information inquiries at the TDE
 • 30 location retrievals

• Message sizes
 • Control messages such as getLocation, startMonitoring, etc. on average 690 bytes
 • Alarms from the MRN around 1420 bytes
Request Performance

- Sensor Management to Sensor Node or Alarm Processor
 - Fastest: 0.9 seconds
 - Slowest: 11 seconds
 - Average: 4.4 seconds

- Bottleneck: network
 - Processing on average only 0.6 seconds
 - 85% spent on message transmission

Network transmission and processing performance from [31]

Request performance from [31]
Alarm Notification Performance

• Time going through entire TSSN
 • Fastest: 1.9 seconds
 • Slowest: 4.9 seconds
 • Average: 2.1 seconds

• Problem
 • Clock drift on the MRN

• Solution
 • Approximation using request transmit times

System alarm notification performance from [31]
Conclusion

• Implementation works
 • Trials successful
 • Performance evaluated

• Transportation Security SensorNet
 • Sensor management and alarm notification infrastructure
 • Built using open standards and specifications
 • Integration with OGC standards

• Demonstrates combination of SOA, OGC and sensor networks
Future Work

• Clock synchronization
 • NTP over GPS integrated into Sensor Node

• Service discovery
 • Basic framework in place, bug fixing needed

• Multiple service clouds
 • Most of the services already support this

• Security
 • Policy based security for subscriptions in development

• Asynchronous communication
 • JMS transport implemented for clients and services
 • Deployment using ActiveMQ currently being tested
Thank you for coming today.

Any questions?