Grant could aid in effort to bolster computer performance


(04-02-2014)

From KU News
By Cody Howard



LAWRENCE — Turning powerful graphics cards that increase the speed and performance of video games into reliable processors for high-performance computing has earned a University of Kansas researcher a prestigious National Science Foundation (NSF) award.

Xin Fu, an assistant professor in electrical engineering and computer science (EECS), has received a $430,000 NSF Early Career Development (CAREER) Award. The five-year grant supports junior faculty members who have shown exceptional promise in teaching and research.

''I am honored to receive this award,'' Fu said. ''This grant will help me develop tools to assess the reliability of next-generation throughput processors integrated with emerging technologies. That assessment will then lead to predicting, detecting and, finally, tolerating various types of errors. The end result will be that a wide range of disciplines will be able to use throughput processors for their data processing needs.''

Complex 3D images were overwhelming computer resources, leading to decreased overall performance. To ease the strain, researchers developed a Graphic Processing Unit (GPU) to build images and manage other large efforts. GPUs consist of smaller, more efficient cores designed to perform multiple tasks simultaneously, known as parallel processing. Further advancements were needed, however, to improve performance and energy efficiency, so new technologies were added to GPU systems that were not necessarily reliable.

With her CAREER Award, Fu is developing tools to assess reliability in GPUs integrated with emerging technologies, such as non-volatile memory (NVM). Leaked power can account for nearly 50 percent of a chip's power consumption, according to EE Times. To create more energy-efficient computers, researchers started adding NVM to GPUs for its low rate of unintended power leaks. Fu's work will start with an assessment of the reliability of the data that these new integrated GPUs produce.

Since each new technology has positive and negative impacts on reliability, Fu will develop vulnerability models to asses for three kinds of reliability errors: particle-strike soft errors, aging-effect hard errors and manufacturing process variations. These models will lead to the prediction of errors in new GPU systems and the creation of lightweight error detections techniques. Finally, the error detection techniques will lead to designing systems that are fault-tolerant, or more reliable, at a lower cost.

''It is critical to harness novel technologies' benefits and overcome their shortcomings on reliability to develop robust, high-performance and energy-efficient GPU processors,'' Fu said.

Once Fu's work on this proposal is done, she hopes to benefit numerous real life applications by leveraging these advanced processing technologies. The varied fields of finance, medicine, biology, aerospace and geology could all benefit from faster and more reliable data computation. On a more general level, reliable chips are critical to large-scale growth in supercomputing.

Fu came to KU in 2010 after graduating with her doctorate in computer engineering from the University of Florida. She also is a recipient of Kansas NSF EPSCoR First Award and NSF Computing Innovation Fellow (CIFellow). She has taught courses in digital design, computer architecture and computer organization. She conducts research at KU's Information and Telecommunication Technology Center.

Her CAREER Award marks the second for the department this spring. EECS Assistant Professor Andy Gill also received a CAREER Award for his functional programming.

See more at: http://today.ku.edu/grant-could-aid-effort-bolster-computer-performance#sthash.SkEIvUV6.dpuf

For more information, contact ITTC.


Current News | More News | ITTC Newsletter


Partner with ITTC

The Information and Telecommunication Technology Center at the University of Kansas has developed several assistance policies that enhance interactions between the Center and local, Kansas, or national companies. 

ITTC assistance includes initial free consulting (normally one to five hours). If additional support is needed, ITTC will offer one of the following approaches: 

Sponsored Research Agreement

Individuals and organizations can enter into agreements with KUCR/ITTC and provide funds for sponsored research to be performed at ITTC with the assistance of faculty, staff and students.

Licensing and Royalty/Equity Agreement

An ITTC goal is the development of investment-grade technologies for transfer to, and marketing by, local, Kansas, and national businesses. To enhance this process, the Center has developed flexible policies that allow for licensing, royalty, and equity arrangements to meet both the needs of ITTC and the company.

Commercialization Development

Companies with a technology need that can be satisfied with ITTC's resources can look to us for assistance. We can develop a relationship with interested partners that will provide for the development of a technology suited for commercialization.

ITTC Resource Access

ITTC resources, including computers and software systems, may be made available to Kansas companies in accordance with the Center's mission and applicable Regents and University policies.

ITTC Calendar
There are no upcoming events at this time.