

Introduction to Matlab

Functional Programming

and Current Uses at ITTC

Instructor

Timothy Rink

M-Files

- •M-files
 - -M-files can be used to create functional
 - programs
 - •Loops, switches, if...then statements
 - •Functions

Loops

•Loops

for variable = expression
 statement...
end

while logical_expr statement... end

•Switches

switch switch_expr

case case_expr

statement...

case case_expr

statement...

otherwise

statement...

end

if...then

•if...then

if logical_expr

statement...

else

statement...

end

Functions

Functions are stored in m-filesM-file must begin with a declaration

function [out] = function_name(arg1, arg2, ..., argN)

Functions

•Example: Trapezoid Rule for Numerical Integration

$$\int_{a}^{b} f(x)dx \approx h\left(\frac{1}{2}y_{0} + y_{1} + y_{2} + \dots + \frac{1}{2}y_{n}\right)$$

Functions

```
function [sum] = trpzdint(f,a1,b1,points)
x=linspace(a1,b1,points);
h=x(2)-x(1);
f=eval(f);
sum=0;
for n=1:points
    if((n==1)|(n==points))
        sum=sum+(1/2)*f(n);
    else
        sum=sum+f(n);
    end
end
```

sum=h*sum;

Matlab Uses

•Common Engineering Uses

- -Mathematical Modeling
- -Interpretation / Presentation of Results
- -Filter Synthesis
- -System Stability Analysis
- -Statistics
- -Computer-controlled Experiments
- -Logging Experimental Data

Objective :

To characterize surface and sub – surface layers of Mars.

Principles :

- Every material on earth can be characterized by its Permittivity.
- Permittivity contrast in layered media causes reflection of incident EM Wave.

Challenges :

- Radar return is corrupted by noise & scattering components.
- ➤ This is a non linear problem !

Solution :

Model Based Signal Processing !

Model the radar return using Propagation model, scattering model and noise model.

Permittivity profile can be obtained by minimizing the mean square error (MSE) between measured and modeled data.

Permittivity Profile

How can MATLAB help?

Modeling:

Simulation of physical phenomenon(e.g, propagation, scattering, noise).

Signal Processing:

Filtering, System effect compensation, model parameter estimation.

Analysis:

Spectral Analysis (using Fourier transforms, other spectral estimation techniques)

Use Iterative Non-linear parameter Estimation techniques

Simulation results

- . Type of radar: FMCW radar
- . Freq range: 2-8 GHz
- . Duration of chirp: 10 mS
- . Free space Range resolution: 2.5cm
- . SNR of simulated data: 10 dB

Near-Surface Internal Layers in Polar Ice Sheets

The Clutter Problem

The Solution – Phased Array Processing

Basic Principle: Constructive & Destructive Interference

Actual Implementation

Computer Simulation of Rough Surface Clutter using MATLAB

Signal Processing Techniques Applied to Simulated Data

