Radar Pulse Compression

Chris Allen June 17, 2004

Outline

- Why is pulse compression needed?
- Pulse compression, the compromise
- How it works
- Simplified view of concept
- Pulse coding
 - Phase-coded pulse
 - Chirp (linear FM)
- Receiver signal processing
- Window functions and their effects

Why is pulse compression needed?

Radar range resolution depends on the bandwidth of the received signal.

 $\rho = \frac{c \tau}{2} = \frac{c}{2B}$ $c = \text{speed of light, } \rho = \text{range resolution,}$ $\tau = \text{pulse duration, } B = \text{ signal bandwidth}$

The bandwidth of a time-gated sinusoid is inversely proportional to the pulse duration.

– So short pulses are better for range resolution

Received signal strength is proportional to the pulse duration.

– So long pulses are better for signal reception

More Tx Power??

Why not just get a transmitter that outputs more power?

High-power transmitters present problemsRequire high-voltage power supplies (kV)Reliability problemsSafety issues (both from electrocution and irradiation)

Bigger, heavier, costlier, ...

Pulse compression, the compromise

Transmit a long pulse that has a bandwidth corresponding to a short pulse

Must modulate or code the transmitted pulse

- to have sufficient bandwidth, B
- can be processed to provide the desired range resolution, ρ

Example:

Desired resolution, $\rho = 15$ cm (~ 6")

Required pulse energy, E = 1 mJ

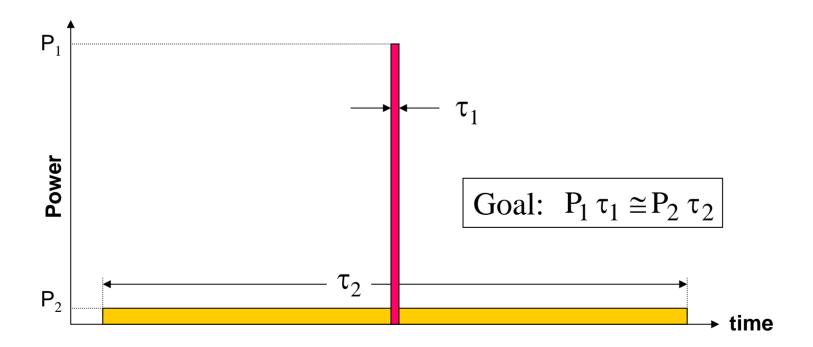
<u>Brute force approach</u>

Raw pulse duration, $\tau = 1$ ns (10⁻⁹ s)

Pulse compression approach

Pulse duration, $\tau = 0.1 \text{ ms} (10^{-4} \text{ s})$

Required bandwidth, $B = 1 \text{ GHz} (10^9 \text{ Hz})$ $E(J) = P(W) \cdot \tau(s)$


Required transmitter power, P = 1 MW !

Required transmitter power, P = 100 W

Simplified view of concept

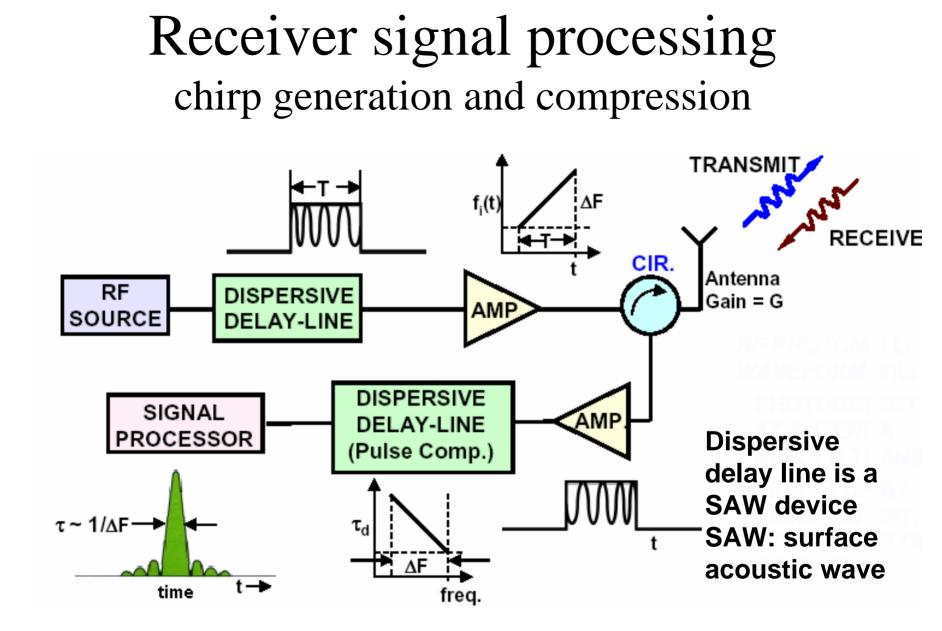
Energy content of long-duration, low-power pulse will be comparable to that of the short-duration, high-power pulse

 $\tau_1 \ll \tau_2$ and $P_1 \gg P_2$

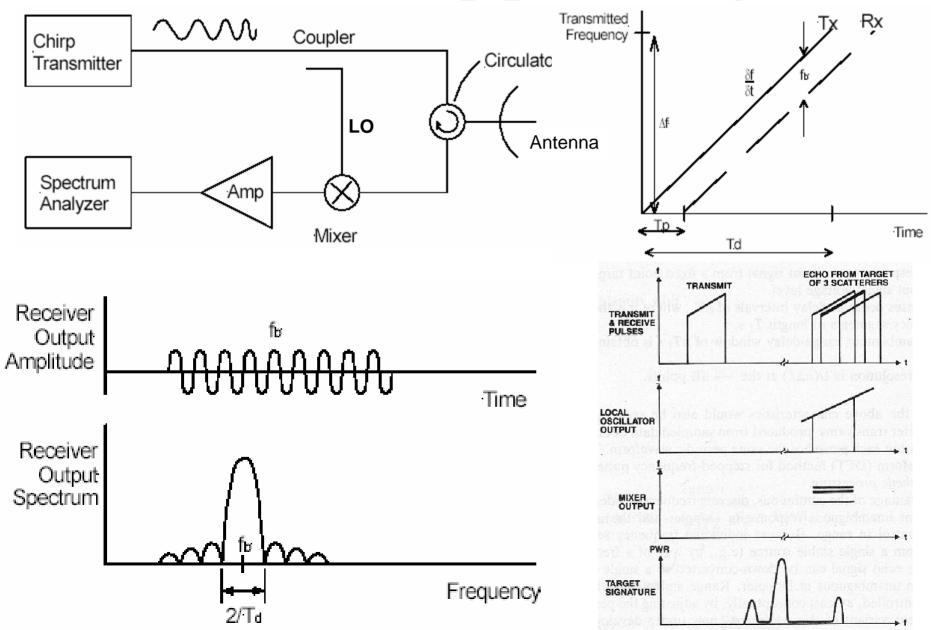

Pulse coding

Long duration pulse is coded to have desired bandwidth. Various ways to code pulse. __ → 1 ns ←___ Phase code short segments ++-1 Each segment duration = 1 ns Linear frequency modulation (chirp) $s(t) = A \cos(2\pi f_C t + 0.5 k t^2 + \phi_C)$ for $0 \le t \le \tau$ f_{C} is the starting frequency (Hz) k is the chirp rate (Hz/s) $B = k\tau^2 = 1 GHz$ Choice driven largely by required complexity of receiver

electronics


Receiver signal processing phase-coded pulse generation and compression Delay Transmit Matched Filter Receiver Receive -1 = -1 +1-1 = 0-1+1-1 = -1 + - + + + - + -+ + - - + * + - - + + -1-1+1+1 = 0+1-1-1-1+1 = -1+1+1-1+1-1=0+1+1+1+1+1+1+1+1 = 8+1+1-1+1-1=0etc

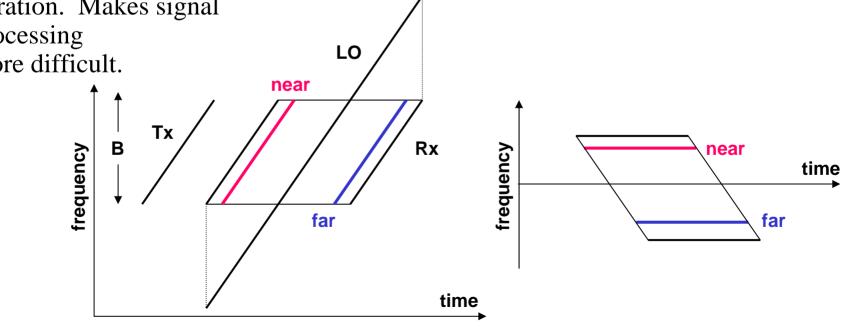
Receiver signal processing phase-coded pulse compression



Correlation process may be performed in analog or digital domain. A disadvantage of this approach is that the data acquisition system (A/D converter) must operate at the full system bandwidth (e.g., 1 GHz in our example).

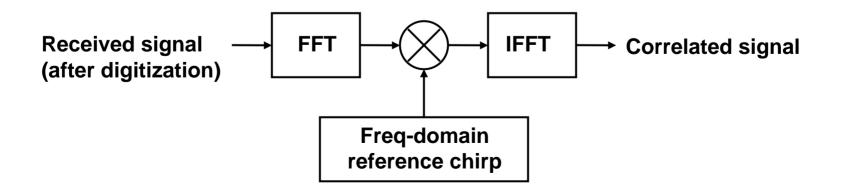
PSL: peak sidelobe level (refers to time sidelobes)

Stretch chirp processing

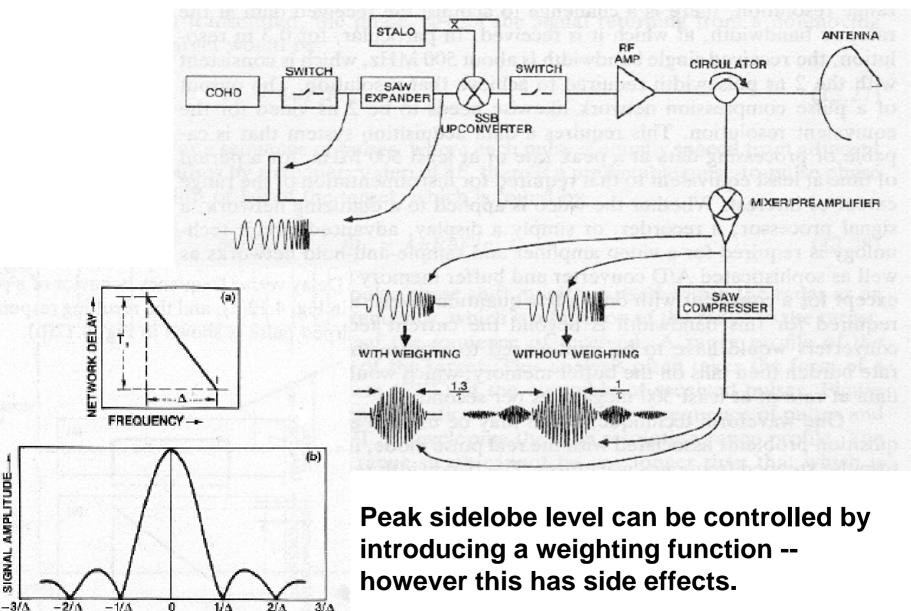

Challenges with stretch processing

Received signal (analog) Low-pass A/D filter converter

Reference chirp To dechirp the signal from extended targets, a local oscillator (LO) chirp with a much greater bandwidth is required. Performing analog dechirp operation relaxes requirement on A/D converter.


Digitized signal

Echos from targets at various ranges have different start times with constant pulse duration. Makes signal processing more difficult.



Correlation processing of chirp signals

- Avoids problems associated with stretch processing
- Takes advantage of fact that convolution in time domain equivalent to multiplication in frequency domain
 - Convert received signal to freq domain (FFT)
 - Multiply with freq domain version of reference chirp function
 - Convert product back to time domain (IFFT)

Chirp pulse compression and sidelobes

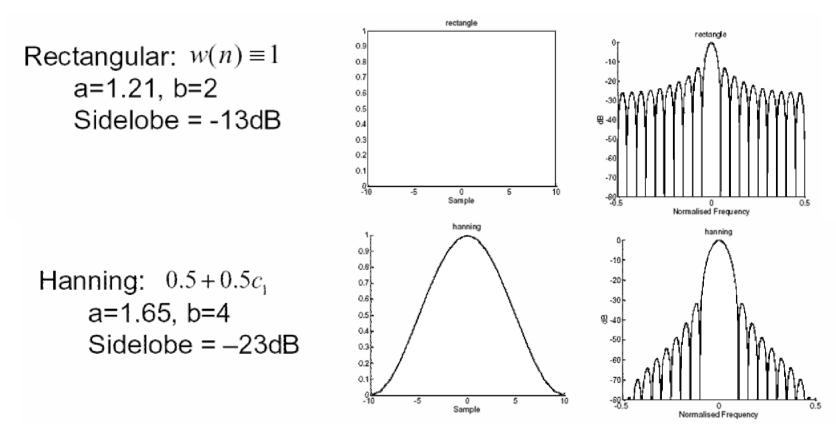
TIME

Window functions and their effects

Weighting Function	Peak Sidelobe Level	S/N Loss	Relative Mainlobe Width
Uniform	-13.2	0	1
0.33+0.66cos ² (πf/β)	-25.7	0.55	1.23
$\cos^2(\pi f/\beta)$	-31.7	1.76	1.65
Taylor (n=8)	-40	1.14	1.41
Dolph Chebyshev	-40	-	1.35
Hamming	-42.8	1.34	1.5

Time sidelobes are an side effect of pulse compression.

Windowing the signal prior to frequency analysis helps reduce the effect.

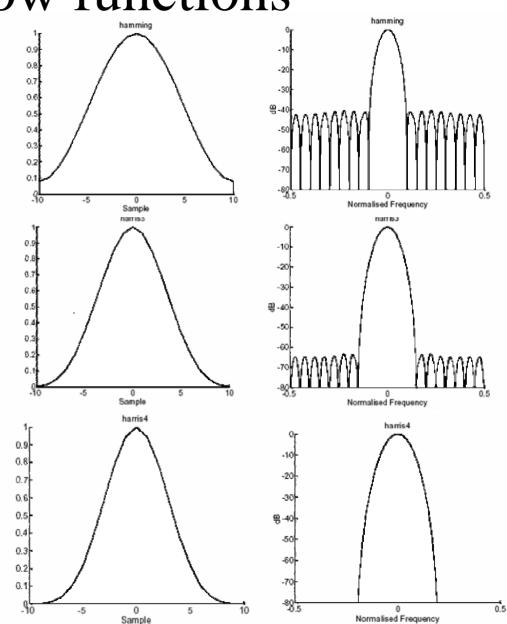

Some common weighting functions and key characteristics

	Rect	Ham ming	Black man	Blackman-Harris				
	angle			Х3	M3	X4	M4	
Worst Sidelobe (dB)	-13	-43	-58	-61	-67	-74	-92	
3dB beamwidth (bins)	0.89	1.3	1.68	1.56	1.66	1.74	1.9	
Resolution (bin)	1.21	1.81	2.35	2.19	2.2	2.44	2.72	
Scalloping Loss (dB)	3.92	1.78	1.1	1.27	1.13	1.03	0.83	
SNR Loss (dB)	0	1.34	2.37	2.07	2.33	2.53	3.02	
Main Lobe Width (bins)	2	4	6	6	6	8	8	
a0	1	0.54	0.42	0.44959	0.42323	0.40217	0.35875	
a1		0.46	0.50	0.44364	0.49755	0.49703	0.48829	
a2			0.08	0.05677	0.07922	0.09392	0.14128	
a3						0.00183	0.01168	
W(n)=a0-a1cos[2π(n-1)/N]+a2cos[4π(n-1)/N]-a3 cos[6π(n-1)/N]								

Less common window functions used in radar applications and their key characteristics

Window functions Basic function: $c_k = \cos(2k\pi(n-\frac{1}{2}N)/N)$

a and b are the -6-dB and $-\infty$ normalized bandwidths

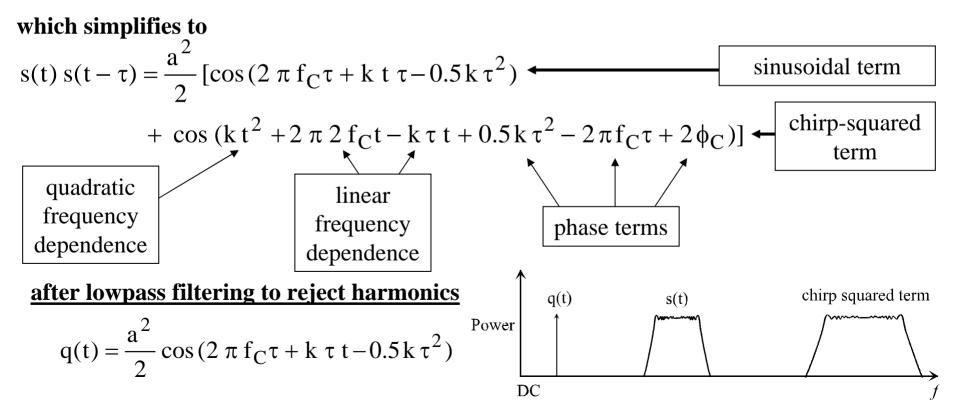


Window functions

Hamming: $0.54 + 0.46c_1$ a=1.81, b=4 Sidelobe = -43dB

Blackman-Harris: 3 term $0.423 + 0.498c_1 + 0.079c_2$ a=1.81, b=6 Sidelobe = -67dB

Blackman-Harris: 4 term $0.359 + 0.488c_1 + 0.141c_2 + 0.012c_3$ a=2.72, b=8 Sidelobe = -92dB


Detailed example of chirp pulse compression

received signal

 $s(t) = a \cos(2 \pi f_C t + 0.5 k t^2 + \phi_C)$

dechirp analysis

 $s(t) s(t - \tau) = a \cos(2\pi f_C t + 0.5 k t^2 + \phi_C) a \cos[2\pi f_C (t - \tau) + 0.5 k (t - \tau)^2 + \phi_C]$

Conclusions

Pulse compression allows us to use a reduced transmitter power and still achieve the desired range resolution.

- The costs of applying pulse compression include:
 - added transmitter and receiver complexity
 - must contend with time sidelobes

The advantages generally outweigh the disadvantages so pulse compression is used widely.