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The Science of Programming Languages: Abstraction

Descriptive
Higher-order Categorical Referential
HaSke” Functions Structures Transparency
Exception Automatic . :
Java Handling Allocation Inheritance Generics
C Procedure Structured
Calls Data

Prescriptive

@ Expect more of new abstractions!

@ How can they help a programmer be more descriptive?

@ Can we customize abstractions to specific problem domains?

KU



Embedded Domain Specific Languages

Embedded Domain Specific Languages (EDSLs) provide new abstractions
by using powerful language features, not by extending languages.

EDSLs

share syntax, type system and semantics with host language.

provide additional semantics via a published interface.

°

°

@ sometimes are just a library based round a categorical structure.

@ sometimes provide hooks to allow other tools to execute the user’s program.
°

sometimes combine both a library and externally invokable interface.



EDSL Example: Lava

@ Lava is a EDSL written in Haskell developed by Xilinx
and Chalmers University of Technology in Sweden.

@ Based on u-FP, a calculus for circuits.

@ Expresses structural circuits directly.

halfAdder (a,b) = (carry,sum)
where carry = and2 (a,b)
sum xor2 (a,b)

Can also capture physical layout and wiring suggestions.
Uses the abstractions in Haskell to provide abstractions in Lava.
Circuits built in Lava can be directly executed.

Circuits can be compiled into VHDL.

Circuits can also be compared to other circuits. KU
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Historical Evidence

o At Galois, was Pl for a hardware back-end for a cryptographic
language, Cryptol.

@ Cryptol is a functional language with powerful abstractions for
arbitrary sized, arbitrary dimensioned vectors of bits.

@ This allowed for high-level specifications of cryptographic algorithms.
@ The project targeted VHDL from Cryptol specifications.

@ The Cryptol compiler used the semantics of u-FP, and
well-understood retiming translations to provide world-class circuits
from specifications.

Research Opportunity

@ These specifications are strongly stylized.
@ The interesting problems, like taming allocations, remain unsolved.
A\




Research Program at KU

Translating any model to another model involves changing representation. Three

pieces of KU research are investigating ways to change representation.

Reflection Support

Worker/Wrapper

The worker/wrapper
transformation is a
theoretical framework for
changing the type of a
computation in a
systematic way.

It captures exactly the
preconditions for
performing rewrites, as
well as unifying previously
unrelated translations.

(joint work with the
University of Nottingham)

KURE + HERA

KURE is small language
hosted in Haskell for
writing transformations as
first-class entities, and is
used for writing rewrite
engines.

HERA is a language on
top of KURE, for rewriting
Haskell programs directly.

Using the same program
fragment in different
contexts is critical to the
value offering of Lava and
other languages embedded
in Haskell. We are
exploring a new style of
restricted reflection in
Haskell, to expand the
scope and applicability of
these languages.
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Research Program at KU (continued)

These three pieces support the larger objective of generating quality
hardware descriptions for telemetry circuits.

Low-level L
Viterbi Behavioral
Algorlthm W Model Translation MOdel . = = VHDL
of Viterbi of Viterbi

@ Benefit of a “power steering” approach to making design decisions.
@ Research result: What makes an abstraction pliable?
@ Low risk of failure:

o We can already write in Lava.
o Even a few degrees of freedom will be useful.



