Language Technology and Functional Programming

Andy Gill

Information and Telecommunication Technology Center
The University of Kansas

April 3, 2009

Ph.D. — Compilers & Functional Programming 1991-1995
g&jﬁigég Optimization of Functional Languages

Brief History

Ph.D. — Compilers & Functional Programming 1991-1995

ﬁf‘c’;ﬁ?ﬁéﬁ% Optimization of Functional Languages

Compilers and Micro-Architectures 1996-1999

[() bttt |A-64/Itanium Low-Level Optimizations 120,000
VM Optimizati

metroheld Java Optimizations 200

g Legacy Code Translation

SEMANTIC DESTGNS, e,

v

Brief History

Ph.D. — Compilers & Functional Programming 1991-1995
gfgﬂig&% Optimization of Functional Languages

Compilers and Micro-Architectures 1996-1999
[() bttt [A-64/Itanium Low-Level Optimizations 120,000
motromchd Java VM Optimizations 200
g Legacy Code Translation 10

v

Functional Programming and Technology Transfer

SCHOOL OF

OGI Es=s, Applied Language Research

galOiS Functional Programming Products and Services 4 to 40

KUKANSAS Applied Language Research (again)

The Science of Programming Languages: Compilation

Program Executable

The Science of Programming Languages: Compilation

Program Executable

Haskell % ghc a.out
Java \J,] javac bytecode JT
C % gcc a.out

The Science of Programming Languages: Compilation

Program Executable

S ohe |
Haskell hc .out
aske -8 a OL\(
Java ,]\J javac bytecode JT
V
sl gee
C > & a.outV

Faster,
Smaller,
Better
Executables

KU

The Science of Programming Languages: Compilation

Program Executable

Haskell % ghc a.OL‘{t
Java ,]\J javac bytecode JT
V
C % gcc a.outV

Faster,
Smaller,
Better
Executables

KU

Optimizations
and <~
Representations

The Science of Programming Languages: Compilation

Program Executable

Haskell % ghc a.OL‘{t
Java ,]\J javac bytecode JT
V
C % gcc a.outV

Faster,
Smaller,
Better
Executables

KU

Optimizations
~ and <~
Representations

Semantics <~~~

The Science of Programming Languages: Compilation

Program Executable

Heavy
Lifting

Haskell % ghc a.OL‘{t
Java q javac bytecode JT
= N
C % gcc a.outV

Faster,
Smaller,
Better
Executables

KU

Optimizations
~ and <~

Semantics <~~~ . _
epresentations

The Science of Programming Languages: Compilation

Program Executable

Heavy
Lifting

Transformations <=~~~

Haskell % ghc a.OL‘(t
Java ’T\J javac bytecode JT

V

> gcc a.out

C gl -out
. - Optimiz;tions N SF:\ZtIIeer;,
Semantics <~~~ and <~ SRR
Representations Executables

KU

The Science of Programming Languages: Abstraction

Descriptive
Haskell

Java

Prescriptive

The Science of Programming Languages: Abstraction

Descriptive
Higher-order Categorical Referential
HaSke” Functions Structures Transparency
Exception Automatic . :
Java Handling Allocation Inheritance Generics
C Procedure Structured
Calls Data

Prescriptive

@ Expect more of new abstractions!

@ How can they help a programmer be more descriptive?

@ Can we customize abstractions to specific problem domains?

KU

Embedded Domain Specific Languages

Embedded Domain Specific Languages (EDSLs) provide new abstractions
by using powerful language features, not by extending languages.

EDSLs

share syntax, type system and semantics with host language.

provide additional semantics via a published interface.

°

°

@ sometimes are just a library based round a categorical structure.

@ sometimes provide hooks to allow other tools to execute the user’s program.
°

sometimes combine both a library and externally invokable interface.

EDSL Example: Lava

@ Lava is a EDSL written in Haskell developed by Xilinx
and Chalmers University of Technology in Sweden.

@ Based on u-FP, a calculus for circuits.

@ Expresses structural circuits directly.

halfAdder (a,b) = (carry,sum)
where carry = and2 (a,b)
sum xor2 (a,b)

Can also capture physical layout and wiring suggestions.
Uses the abstractions in Haskell to provide abstractions in Lava.
Circuits built in Lava can be directly executed.

Circuits can be compiled into VHDL.

Circuits can also be compared to other circuits. KU

Islands of Implementations

Lava
Structural
Model
A

Compare
y
Lava
Structural
Model
A

Compare
y
Lava
Structural
Model

Islands of Implementations

Lava
Structural — VHDL
Model
A

Compare
v
Lava
Structural — VHDL
Model
A

Compare
v
Lava
Structural — VHDL
Model

KU

Islands of Implementations

Lava
Structural — VHDL
Model
A

Compare
y
Lava
~>Structural — VHDL
Model
A

Low-level
(signal-based) Compare
Behavioral
Model

Compare

y
Lava
Structural — VHDL
Model

KU

Islands of Implementations

Lava
Structural — VHDL
Model
A

Compare
v
Lava

Dbt = Betavioral |~ ~> Structural — VHDL
Model
A

Low-level

Model
Compare

y
Lava
Structural — VHDL
Model

KU

Islands of Implementations

Lava
Structural —— VHDL
Model
A

Translation

Compareé
Low-level L;;a
Higher-leve| Compare (signal-based) Compare
gModel = - Bgehavioral) comeare Structural — VHDL
—_—
M d I Translation Model
oae A
Compare%
Translation V
Lava
Structural — VHDL
Model

KU

Islands of Implementations

Lava
Structural — VHDL
Model
A

Translation

Compare
Low-level L;;a
Higher-level ~Compare (signal-based) Compare
8 R .. (signal-based) Compare o ctural —= VHDL
Model . Behavioral — > Model
Translation Model Translation A
Compare
Translation V
Lava
Structural — VHDL
Model

KU

Historical Evidence

o At Galois, was Pl for a hardware back-end for a cryptographic
language, Cryptol.

@ Cryptol is a functional language with powerful abstractions for
arbitrary sized, arbitrary dimensioned vectors of bits.

@ This allowed for high-level specifications of cryptographic algorithms.
@ The project targeted VHDL from Cryptol specifications.

@ The Cryptol compiler used the semantics of u-FP, and
well-understood retiming translations to provide world-class circuits
from specifications.

Research Opportunity

@ These specifications are strongly stylized.
@ The interesting problems, like taming allocations, remain unsolved.
A\

Research Program at KU

Translating any model to another model involves changing representation. Three

pieces of KU research are investigating ways to change representation.

Reflection Support

Worker/Wrapper

The worker/wrapper
transformation is a
theoretical framework for
changing the type of a
computation in a
systematic way.

It captures exactly the
preconditions for
performing rewrites, as
well as unifying previously
unrelated translations.

(joint work with the
University of Nottingham)

KURE + HERA

KURE is small language
hosted in Haskell for
writing transformations as
first-class entities, and is
used for writing rewrite
engines.

HERA is a language on
top of KURE, for rewriting
Haskell programs directly.

Using the same program
fragment in different
contexts is critical to the
value offering of Lava and
other languages embedded
in Haskell. We are
exploring a new style of
restricted reflection in
Haskell, to expand the
scope and applicability of
these languages.

KU

Research Program at KU (continued)

These three pieces support the larger objective of generating quality
hardware descriptions for telemetry circuits.

Low-level L
Viterbi Behavioral
Algorlthm W Model Translation MOdel . = = VHDL
of Viterbi of Viterbi

@ Benefit of a “power steering” approach to making design decisions.
@ Research result: What makes an abstraction pliable?
@ Low risk of failure:

o We can already write in Lava.
o Even a few degrees of freedom will be useful.

