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1) Form a deterministic model of image formation
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A Better Approach to infer shape:

1) Model the uncertainties directly
2) Solve the problem probabilistically

Requires finding the most likely point of a
complex, high-dimensional probability

distribution:
P(Shape|Image)

 In general, statistical inference is NP-Hard
« Gradient ascent often struggles with local maxima

« Key insight: exploit local structure of the problem.
Many probability distributions can be factorized:

p(X) =1[fi(z)) #cX
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Background: Statistical Inference

e Key insight: exploit local structure of the problem.
Many probability distributions can be factorized:

p(X)=[]fi(z) &cX
Example:
P(CL, ba C, da 6) X fl(a'7 ba C)fQ(b7 d>f3(ca €)f4(d7 6)

Drawn as a Factor Graph:

solve using graph
based algorithms

Applications:

e Speech recognition

 disease diagnosis * error-correcting codes
 fraud detection e data compression

e genetic linkage analysis ¢ computer vision
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Belief Propagation

EX: P(a,b, c,d, 6) X fl(aaba C)fQ(ba d)f?,(C, €)f4(d, 6)

Great empirical successes: (d)
- Error-correcting codes, I
- Image super-resolution,
- Shape from stereo,
- Photometric stereo, etc. @

Slow for highly connected graphs

— Takes exponential time to compute
— Especially slow for continuous variables

— Loopy Belief Propagation for continuous variables
IS historically limited to pairwise-connected graphs
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Belief Propagation

EX: P(a,b, c,d, 6) X fl(aaba C)fQ(ba d)f?)(ca €>f4(d7 6)

Great empirical successes: (d)
- Error-correcting codes, I
- Image super-resolution,
- Shape from stereo,
- Photometric stereo, etc. @

Slow for highly connected graphs

— Takes exponential time to compute
— Especially slow for continuous variables

— Loopy Belief Propagation for continuous variables
IS historically limited to pairwise-connected graphs

| have developed a method to reduce complexity
(run-time) from exponential to linear.
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Shape-From-Shading

Goal: Recover 3D surface shape from a single image
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Shape-From-Shading

Goal: Recover 3D surface shape from a single image

(single pixe) j
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A factorized probability distribution
for shape-from-shading
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Shape-From-Shading Results

Ground-truth Previous state-of-the-art
3D shape: algorithms performed poorly:
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2D Input image 2D images generated by illuminating the reconstructed 3D shapes.



Ground-truth
3D shape:




