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Research Overview
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Bioinformatics

l. Initial DDI Network Construction Il. DDI Network Expansion
e “The mathematical, G B~ %Y | et
statistical and computing ... o e s
methods that aim to
solve biological problems
using DNA and amino
acid sequences and T -
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Assemble statistically significant DDIs
into a network

Extract network

 Example: Protein
function prediction

 Example: Binding site

with the biclustering algorithm,
and fill-in the missing DDIs

prediction %
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Example: predicting mutations enhancing
protein stability

The problem: native proteins are usually only marginally stable at ambient
temperature; consequently shelf lives of protein pharmaceuticals are
often not long enough, enzymes cannot work at elevated temperatures...

Possible Solutions:
- Adding protein stabilizers

- Engineering proteins: random screening, directed evolution, rational
design

Our approach: rational design using novel predictive models based on
large scale protein structure and sequence mining

Possible applications: pharmaceuticals, bio-energy, oil and gas, paper and
pulp, many more.
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Systems Biology

* Genes, proteins, cells, tissues and organisms form complex
networks of interacting systems to function

* Traditionally, study of individual biological and biochemical
processes generates a wealth of knowledge
— Networks are often constructed on conjecture
— Relatively limited insights about the biological system as a whole

* Recent advances in high-throughput technologies (e.g.,
genome sequencing, Y2H, microarray, ...)
— Data rich, information rich
— Systems-level research

— Left with more questions than answers
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Computational Systems Biology

* CSB tfocuses on developing computational
models for the systematic study of complex
interactions in biological systems (networks)
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Systems Biology: Computational
Modeling
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Biological Knowledge
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ldentifying Genes in the Same Functional Module
Select conditions Multiple HMM
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State transitions, o, move sequentially through the HMM. Probabilities for the “next” state

ftartmg s‘f}ate, tend to be 1; transitions between all states are allowed, if indicated in the training data
leftmost” state

Functionally
related genes

Emission probabilities, b, are the probability distributions for gene expression values at each column in the feature set
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BN-based Network Reconstruction

e P(x1, x2, x3, x4, x5) = P(x1)P(x2 | x1)P(x3 |x1)P(x4| x3)P(x5|x1, x2, x3)

X4

BN built with our algorithm for yeast
cell cycle-related genes. A total of 20
nodes (genes) and 34 edges
(interactions) were incorporated. This
network captured 65% of all currently
reported direct and indirect
interactions among these genes.
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Domain/Protein Interaction Networks

Binding Site Prediction
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Computational Cancer Biology

Proteins
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SELDI-TOF MS

M

Froteomic pattern Fattern recognition

Figure 1. Disease diagnastics using proteomic patterns. The sample drawn from the patient is applied to a protein chip which is made up of a specific
chromatographic surface. After several washing steps and the application of an energy-absorbing molecule, the species that are retained on the surface of

the chip are analyzed via mass spectrometry, The pattern of peaks within the spectrumis analyzed using sophisticated bioinformatic software to diagnose
the source of the biclogical sample

Diagnosis

miz: Mass to charge ratio; SELDI-TOF MS: Surface-enhanced laser desorptionfionization time-of-flight mass spectrometry,

* Example: disease diagnosis using proteomic patterns



Example: Computer Assisted Cancer

Diagnosis

® Visual features in tissue biopsies are heavily
relied on for cancer diagnosis.

® Hours examining mostly healthy tissue can
result in fatigue and human error.

®* For some forms of cancer, expert diagnosis
from a set of biopsies may vary widely
between experts.

®* Automated methods can prune obviously
healthy tissue from human search, and

reduce variability among experts. Different grades of prostate cancer are
distinguished by clear visual features.
However, many individual cases are

ambiguous.
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® Existing methods of computer-assisted
cancer diagnosis rely on ad hoc, manually
tuned visual features.

® QOur work focuses on the automated
extraction of visual features that are
optimally discriminative towards cancer
types and grades.

®* We are working to develop hierarchical
probabilistic graphical models capable of
extracting complex higher-order statistical
relationships that can be used to more
effectively and more reliably diagnose

Different grades of prostate cancer are
distinguished by clear visual features.
cancer. However, many individual cases are
ambiguous.



Other “Disease”-related Research

e Computational
identification of disease
genes :
— (e.g., using PPIs, & o

microarray, etc.) -

e Genome-wide Association
Study (GWAS)

=)

— (e.g., genotyped data
@
(=)

analysis, SNP-disease
association in autism etc.)

e Pathway analysis
Antigrowth signaling pathway

'e °



Chemical Genomics

e Chemical genomics studies the interaction of small
molecules with cellular systems in vitro and in vivo.

 Goal: developing advanced informatics approach
supporting the management, analysis, data mining,
and transformation of experimental data to predictive
models and to identify biologically active compounds
that may modulate biological systems.

e Focusing on prediction and reconstruction of chemical
interaction networks
— Protein-chemical interaction prediction
— Gene-chemical interaction prediction
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| Graph based QSAR-Tox Study

e Use graph representation

rather than numeric properties.

e Transformation of chemicals to
graphs is straight forward.

— Atoms correspond to vertices.
— Bonds correspond to edges.

— Vertices and edges are labeled
with atom element and bond
type, among other properties.
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Learning with Graphs

 Node labeling with membership test

— Each node in a graph is labeled with a vector of
bits indicating memberships to a set of features
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R Computational Pharmacology

Structure-based Drug Design Chemical Diversity Analysis
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B Strong Inactive

Moderate Inactive

Moderate Active

H Strong Active

Train predictive pharmacological

models to reproduce chemical biology Guide chemical synthesis efforts via
screening data using descriptors based Cartesian chemical property space
on properties of the enzyme-inhibitor models that distinguish compounds
complex

according to chemical novelty and
biological relevance
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Healthcare Informatics

New field

Web-enabled technology (mining, knowledge
discovery)

Health and wellness informatics
Computational Support for evidence-based care
Evaluation of health information system

EMR-based applications (e.g., keyword-based
search, knowledge discovery)

Mining of medical records



Cephalometric Benchmark Tracing

Cephalometric landmarks identification and tracing is very

important to orthognathic surgery.

ldentifying the medical points, lines, and faces is a difficult

and boring task for doctors.

X-ray images are not always clearly projected.

Low accuracy in manual identification and plotting.

Labor intensive — hundreds of cases per doctor per month.

Table 1: Landmarks for Cephalometric Tracing

Cranial

Supramaxilla

Mandible

Soft tissue

N. Nasion
S. Sella
Ba. Basion
Bolton

i R o

O. Orbitale

ANS. Anterior

Nasal Spine

PNS. Posterior

Nasal Spine

Ptm. Ptervgomaxillary
Fissure

A. Subspinale

SPr. Superior Prosthion
UL Upper Incisor

Co. Condylion
Ar. Articulare
Go. Gonion

B. Supramentale
Id. Infradentale
Li. Lower Incisor
Po. Pogonion
Me. Menton
Gn. Gnathion

G. Glabella
Ns. Nasion of
Soft Tissue

E. Eve

Prn

Sn. Subnasale
UL

LL

Pos. Pogonion
of Soft Tissue

Sample po.i‘:n':cs which are manually marked
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Cephalometric Benchmark Tracing

1Canny edge detector(soft & hard contour), Hough
transform (Sella circle, upper jaw), etc.

) Soft tissue detection using deformable template
1 Automatic localization of landmarks for hard tissue

! Will build an integrative system for analyzing both
images and text

Sample of cephalometric sketch Soft tissue deteiction using deformable template Hard tissue detection using deformable template



Next-Generation High Performance

Computing Facility
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KU received a $4.8 M NIH G20 fund to upgrade the cold room of the existing Bioinformatics Computing
Facility (BCF). Luke Huan plays a significant role in leading the KU G20 proposal development
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