
CSDL Overview
&

Compiler Techniques to Improve 
Program Performance

by

Prasad A. Kulkarni

1
ITTC Industrial Advisory Board 2010



CSDL Lab at ITTC

• Focus on design, implementation and verification 
of computer systems

• People

– Perry Alexander, Director

• formal modeling of computer systems, security

– Douglas Niehaus

• real time and distributed systems, operating systems

– Prasad Kulkarni

• code optimization, parallelism, VM performance

– Andy Gill

• functional language design, extensions and implementation

2
ITTC Industrial Advisory Board 2010



Professional Background

• Experience
– Assistant professor, EECS, University of Kansas (started in 

Fall 2007)
– Intern, IBM T. J. Watson Research Lab (Fall 2006)

• Education
– Ph.D. in computer science from Florida State University 

(Summer 2007)

• Research interests
– compiler analysis & optimizations, profiling, architecture
– to improve performance and security
– in embedded, general-purpose, high-performance systems

• Teaching
– compilers, operating systems, virtual machines

3
ITTC Industrial Advisory Board 2010



4

C#

Recent 

Trends

in

Computer 

Systems

Higher-level
programming

languages

Increased Internet 
use & accessibility

Safe & secure
runtimes

Growth in
embedded systems

Multicore architectures
ITTC Industrial Advisory Board 2010



Research Projects

• Improve performance and security of managed 
language programs on multicore machines

– future profiling for virtual machines

• improving Java start-up performance

– parallelization model for virtual machines

• Performance of embedded system applications

– understanding compiler optimization phase interactions

– providing faster & effective phase ordering searches

• Compiler-based program parallelization

– interactive generation of thread-safe programs

5
ITTC Industrial Advisory Board 2010



Future Profiling for Improved 
Virtual Machine Performance

6
ITTC Industrial Advisory Board 2010



Traditional Program Profiling

• Profiling
– monitor and understand program behavior to improve 

program characteristics

• Offline profiling uses information from past runs

 no runtime overhead

– requires user to find representative input, perform 
profile run, encode/use information

– reactive, fails if profile and current input do not match

Profiled Run

Current Run

Run 0

Run 1

7
ITTC Industrial Advisory Board 2010



Profiling in Virtual Machines

• Online profiling monitors the current run

 no prior program run needed

 can better adapt to changing input

– need runtime system and causes overhead

– still reactive?

• Java virtual machines use online profiling
– during selective compilation

– feedback-driven optimization

– security checks

Uses Profile informationCurrent run Profiled

8
ITTC Industrial Advisory Board 2010



Profiling During Selective Compilation

• Current online profiling schemes are still reactive

– employ very simple prediction models

– future behavior is same as past behavior

• Leads to incorrect speculations

– unnecessary compilation overhead at runtime

– delays compilation of actual hot methods

• Optimizations wait until profiling results available

– delays decisions based on profiling

– degrades performance at program start-up

9
ITTC Industrial Advisory Board 2010



Improving Online Profiling – Hypothesis

• Profiling to understand future program 
behavior!

• For each online prediction task
– construct program models

– that use values of key variables

– to know future program behavior

Current run

PC

Past Unprofiled Future

10
ITTC Industrial Advisory Board 2010



Parallelization Model 
for 

Virtual Machines

11
ITTC Industrial Advisory Board 2010



12

Inline Auxiliary Tasks

 Virtual machines perform several profiling tasks 
and security checks during program execution
 profiling for improved performance
 checks like taint propagation, on-access virus-scans

 Checks performed inline with the main program
 introduces overhead

1 2 3 4

Uniprocessor Program Flow

Auxiliary Tasks

ITTC Industrial Advisory Board 2010



13

Parallelizing Security Checks

 Algorithm

1.program slicing to determine code statements 
necessary for each security check

2.minimize slice using other optimizations

3.factor out each security thread with its program 
slice into new auxiliary thread

4.Run auxiliary threads concurrently with main 
thread

ITTC Industrial Advisory Board 2010



14

Parallelizing Auxiliary Tasks

1 2 3 4

Uniprocessor Program Flow

1 2 3 4

1'

1`

2'

2` 3`

4'

4`

Main Thread

Auxiliary Thread - 1

Auxiliary Thread - 2

ITTC Industrial Advisory Board 2010



15

Research Directions

 Techniques to find the smallest program slice
 automatically determine the slicing criteria for 

different security constraints

 Slice representation in program binary
 conserve binary size

 VM framework to concurrently execute auxiliary 
slices with main program thread
 interpret new binary file

 prevent auxiliary threads from changing global state

 ensure correct program execution

ITTC Industrial Advisory Board 2010



Understanding Optimization Phase 
Interactions for 

Faster Phase Ordering Searches

16
ITTC Industrial Advisory Board 2010



Optimization Phase Ordering

• Changing order of phases affects code generated
– large speed/size variations

• Current approach
– optimization phases considered as black boxes

– use heuristics to search part of phase order space

• Problems
– optimal phase ordering not guaranteed

– focus more on heuristic search techniques

– no understanding of phase ordering issues

– how to implement phases in future compilers?

17
ITTC Industrial Advisory Board 2010



Solution Approach

• Understand impact of registers on phase order space
– explore techniques to reduce false register dependences

– copy propagation applied after every relevant phase 
reduces phase order search space by 27%, on average

– locally remapping registers during optimizations improves 
performance by up to 14%

• Study partitioning of independent or cleanup phases
– removing DAE from the search space reduces search space 

by 49% on average

• Generate rules for implementing phases at compiler 
build time
– changing implementation later is difficult

18
ITTC Industrial Advisory Board 2010



Questions ?

19
ITTC Industrial Advisory Board 2010


