Future Internet Resilience Summary of Networking Research at The University of Kansas ITTC

James P.G. Sterbenz

Department of Electrical Engineering & Computer Science
Information Assurance, Communication & Network System Labs
Information Technology & Telecommunications Research Center
The University of Kansas

jpgs@ittc.ku.edu

http://www.ittc.ku.edu/~jpgs

http://wiki.ittc.ku.edu/resilinets

10 June 2010 © 2010 Sterbenz

ITTC Networking Research Major Themes

- Major related research themes
 - future Internet architecture and infrastructure
 - resilient and survivable networks
 - information assurance and security
 - disruptive and novel communication paradigms

ITTC Networking Research Collaborators and Funding

Collaborators

- regional: K-State, UMKC, UNL, ...
- national: Rutgers, Penn State, CMU, ORNL, ...
- international: U. Lancaster UK, ETH Zürich, TU-Munich, ...

Funding

- NSF FIND, GENI, ...
- DoD DARPA, CTEIP, ...
- EU FP6 SAC, FP7 FIRE
- Industry: Sprint, ...

Resilient Networks Motivation

- Increasing reliance on network infrastructure
- ⇒ Increasingly severe consequences of disruption
- ⇒ Increasing attractiveness as target from bad guys
- Internet is critical infrastructure
 - interdependent with other CI, e.g. power grid

Resilient Networks Resilience Definition

Resilience

- provide and maintain acceptable service
- in the face of faults and challenges to normal operation

Challenges

- faults
- unintentional misconfiguration or operational mistakes
- large scale disasters (natural and human-made)
- malicious attacks from intelligent adversaries
- environmental challenges (wireless, mobility, delay)
- unusual but legitimate traffic
- service failure at a lower level

Resilience Scope Relationship to Other Disciplines

Resilience Architecture ResiliNets Strategy: D²R² + DR

- Real time control loop: D²R²
 - defend
 - passive
 - active
 - detect
 - remediate
 - recover
- Background loop: DR
 - diagnose
 - refine

[ComNet 2010]

Resilience Architecture ResiliNets Principles

- Prerequisites: to understand and define resilience
- Tradeoffs: recognise and organise complexity
- Enablers: architecture and mechanisms for resilience
- Behaviour: require significant complexity to operate

10 June 2010 ResiliNets Overview 8

Resilience Architecture Multilevel Resilience and Cross-Layering

- ResiliNets Cube
 - multilevel
 - protocol layers
 - planes
 - mechanisms
- D²R²+DR strategy
 - D²R² control plane
 - DR mgt. plane
- Cross-layering
 - knobs and dials are metrics
 - $\mathbb{K}, \mathbb{D} \subseteq \mathbb{N} \cup \mathbb{P}$

Resilience Quantification State Space: Operational Resilience

- Operational resilience
 - minimal degradation
 - in the face of challenges
- Resilience state
 - remains in normal operation

Operational State N

Normal **Partially** Severely Operation Degraded Degraded

Resilience Quantification State Space: Service Resilience

- Service resilience
 - acceptable service
 - given degraded operation
- Resilience state
 - remains in acceptable service
- Resilience
 - $-\mathbb{R}$ = area under trajectory
 - for particular scenario
 - resilience \mathbb{R}over all scenarios

Resilience Quantification D²R² + DR Relationship to State Space

Unacceptable

mpaired

cceptable

- Real time control loop: D²R²
 - defend keeps toward origin
 - passive
 - active
 - detect when leaves
 - remediate pushes back
 - recover back to origin
- Background loop: DR
 - diagnose
 - refine tightens trajectory

Operational State N

Normal Partially Severely

Operation Degraded Degraded Sc Remediate **Defend** Recover

Service Parameters P

Resilience Evaluation Topology Generation: KU-LoCGen

- Generation of realistic topologies
- Multilevel hierarchy
 - level 1: represents (tier 1) backbone

- level 2: represents access networks around a backbone PoP
- level 3: represents subscriber nodes
- Constrained generation
 - geographic node location (infrastructure or population)
 - constrained link location (based on exiting fiber runs)
 - constrained cost (fixed + variable cost)
 - graph-theoretic constraints for resilient diversity

Resilience Evaluation Evaluating Challenges in State Space

- Topology generation
 - use KU-LoCGen
- Challenge simulation
 - random failures
 - intelligent attacks
 - degree, betweeness, etc.
 - large scale disasters
 - hurricanes, blackouts
- Example
 - resilience of alternatives based on Sprint PoPs

KU-LoCGen

Resilience Evaluation KU-CSM Challenge Simulation

- KU-CSM Challenge Simulation Module
 - challenge specification describes challenge scenario
 - network coordinates provide node geo-locations
 - adjacency matrix specifies link connectivity
 - input to conventional ns-3 simulation run
 - generates trace to plot results

Resilience Evaluation KU-CSM Challenge Simulation

- Example: evolving area-based challenge example
 - circle moving from Orlando to NY
- Performability analysis: packet delivery ratio
 - PDR varies with # links nodes down

Enabling Future Internet Research GpENI Overview

- Great Plains Environment for Network Innovation
 - part of NSF GENI program
 - affiliated with EU FP7 FIRE programme / ResumeNet project
- Programmable network infrastructure (L1–7)
 - Midwest US optical backbone
 - International testbed
- Conduct experiments in:
 - future Internet architectures
 - resilience and survivability
 - cross-evaluation with analyticaland simulation-based eval.

	GpENI Layer	Programmability
	experiment	Gush, Raven
7	application	PlanetLab
4	end-to-end	
3	router	Quagga, XORP, Click
3	topology	VINI
2	VLAN	DCN
2	lightpath	
1	RF,photonics	site-specific

[TridentCom 2010]

Enabling Future Internet Research GpENI Midwest Optical Node Cluster

- GpENI cluster
- 5–10 PCs
 - GpENI mgt.
 - L4: PlanetLab
 - L3: prog. routers
- GbE switch
 - arbitrary site interconnection
 - L2: GpENI/GENI VLAN
 - SNMP cluster monitoring
- Ciena optical switch
 - L1 GpENI interconnection

Enabling Future Internet Research GpENI Midwest Optical Backbone

- Physical topology
 - multiwavelength optical backbone
 - current or imminent deployment
 - 4 universities in 3 states
 - 1 switch/year with current funding

UNL - NE

dark fiber

Enabling Future Internet Research
GpENI European Expansion

Enabling Future Internet Research GpENI Asian Expansion

ITTC Networking Research Selected Project Examples

Weather disruption-tolerant networking (Sterbenz)

Highly-dynamic airborne networking (Sterbenz)

Information security and privacy (Luo)

SDRs and cognitive networking (Minden, Evans)

Sensor networking (Frost)

WDTN Project Overview

- Mesh architecture
 - high degree of connectivity
 - alternate diverse paths
 - severely attenuated mm wave
 - alternate mm, lower-freq. RF
 - fiber bypass (competitor)
- Solution [INFOCOM 2009]
 - reroute *before* link failures they occur
 - P-WARP predictive routing
 - image radar to predict weather
 - XL-OSPF instantaneously reactive routing
 - cross-layered with BER estimation

Airborne Networking Project Scenario

Very high relative velocity

Mach 7 ≈ 10 s contact

dynamic topology

Communication channel

- limited spectrum
- asymmetric links
 - data down omni
 - C&C up directional
- Multihop
 - among TAs
 - through relay nodes

TA – test article GS – ground statior RN – relay node GW – gateway

Airborne Network Project Protocol Stack and Interoperability

- AeroTP: TCP-friendly transport
- AeroNP: IP-compatible forwarding
- AeroRP: routing [MILCOM 2008]

10 June 2010 ResiliNets Overview 25

InfoSec and Privacy Projects [Bo Luo PI]

- CAT: A node-failure-resilient anonymous communication protocol through commutative path hopping [INFOCOM 2010]
 - protect the identity/privacy of communication participants
 - group-based path probing & commutative path hopping: resilient to relay node failures
- Secure in-network operations for smart grids
 - in-network operations:
 distribute operations (e.g. aggregation) into smart meters
 - Secure operations:
 perform operations without revealing the data,
 using applied crypto methods

SDR and Cognitive Radio Projects [Gary Minden and Joseph Evans PIs]

- KUAR: KU agile radio
 - experimental system: wireless networking & radio research
 - 5.8 GHz UNII band; independent 30MHZ tx/rx signal paths,
 - signal processing is entirely in an FPGA and GPU
- Application
 - sharing radio frequency spectrum with multiple users
 - configure radio software for specific missions
 - adaptation to dynamic RF environment and other users
 - radio network control and resource management
- Cognitive networking
 - new dynamic routing algorithms exploiting SDR technologies

SDR and Cognitive Radio Projects KUAR Diagrams

Software Organisation

Transportation Security SensorNet [Victor Frost PI]

- Objective and problem
 - KC SmartPort is encouraging development
 - transport systems require
 - visibility, accountability, efficiency, security

- Transportation security approach
 - sensing, communications, and information integration
 - integrate sensor information and real-time tracking with...
 trade data documents to correlate
 - expand the ORNL SensorNet technologies
 - to mobile rail network environment

End

Questions?