Future Internet Resilience

Summary of Networking Research at The University of Kansas ITTC

James P.G. Sterbenz

Department of Electrical Engineering & Computer Science
Information Assurance, Communication & Network System Labs
Information Technology & Telecommunications Research Center
The University of Kansas

jpgs@ittc.ku.edu http://www.ittc.ku.edu/~jpgs http://wiki.ittc.ku.edu/resilinets

10 June 2010

© 2010 James P.G. Sterbenz

© James P.G. Sterbenz

ITTC Networking Research Major Themes

- Major related research themes
 - future Internet architecture and infrastructure
 - resilient and survivable networks
 - information assurance and security
 - disruptive and novel communication paradigms

10 June 2010 ResiliNets Overview 2

ITTC Networking Research

Collaborators and Funding

- Collaborators
 - regional: K-State, UMKC, UNL, ...
 - national: Rutgers, Penn State, CMU, ORNL, ...
 - international: U. Lancaster UK, ETH Zürich, TU-Munich, ...
- Funding
 - NSF FIND, GENI, ...
 - DoD DARPA, CTEIP, ...
 - EU FP6 SAC, FP7 FIRE
 - Industry: Sprint, ...

10 June 2010

ResiliNets Overview

3

© James P.G. Sterbenz

Resilient Networks

Motivation

- Increasing reliance on network infrastructure
- ⇒ Increasingly severe consequences of disruption
- \Rightarrow Increasing attractiveness as target from bad guys
- Internet is *critical infrastructure*
 - interdependent with other CI, e.g. power grid

10 June 2010

ResiliNets Overview

Resilient Networks

Resilience Definition

Resilience

- provide and maintain acceptable service
- in the face of faults and challenges to normal operation

Challenges

- faults
- unintentional misconfiguration or operational mistakes
- large scale disasters (natural and human-made)
- malicious attacks from intelligent adversaries
- environmental challenges (wireless, mobility, delay)
- unusual but legitimate traffic
- service failure at a lower level

10 June 2010

ResiliNets Overview

Resilience Evaluation

Topology Generation: KU-LoCGen

- Generation of realistic topologies
- Multilevel hierarchy
 - level 1: represents (tier 1) backbone
 - level 2: represents access networks around a backbone PoP
 - level 3: represents subscriber nodes
- Constrained generation
 - geographic node location (infrastructure or population)
 - constrained link location (based on exiting fiber runs)
 - constrained cost (fixed + variable cost)
 - graph-theoretic constraints for resilient diversity

10 June 2010 ResiliNets Overview 13

KU © James P.G. Sterbenz **Resilience Evaluation Evaluating Challenges in State Space** Topology generation use KU-LoCGen Challenge simulation - random failures - intelligent attacks unacceptable • degree, betweeness, etc. large scale disasters impaired · hurricanes, blackouts Example acceptable - resilience of alternatives partially severely degraded degraded normal based on Sprint PoPs # of link cuts 10 June 2010 **ResiliNets Overview** 14

Enabling Future Internet Research

GpENI Overview

- Great Plains Environment for Network Innovation
 - part of NSF GENI program
 - affiliated with EU FP7 FIRE programme / ResumeNet project
- Programmable network infrastructure (L1–7)
 - Midwest US optical backbone
 - International testbed
- Conduct experiments in:
 - future Internet architectures
 - resilience and survivability
 - cross-evaluation with analyticaland simulation-based eval.

GpENI Layer Programmability
experiment Gush, Raven
application end-to-end router Quagga, XORP, Click
topology VINI

VLAN lightpath
RF,photonics site-specific

[TridentCom 2010]

10 June 2010

ResiliNets Overview

KU SEITTC

© James P.G. Sterbenz

ITTC Networking Research

Selected Project Examples

- Weather disruption-tolerant networking (Sterbenz)
- Highly-dynamic airborne networking (Sterbenz)
- Information security and privacy (Luo)
- SDRs and cognitive networking (Minden, Evans)
- Sensor networking (Frost)

10 June 2010

ResiliNets Overview

InfoSec and Privacy Projects [Bo Luo PI]

- CAT: A node-failure-resilient anonymous communication protocol through commutative path hopping [INFOCOM 2010]
 - protect the identity/privacy of communication participants
 - group-based path probing & commutative path hopping: resilient to relay node failures
- Secure in-network operations for smart grids
 - in-network operations:
 distribute operations (e.g. aggregation) into smart meters
 - Secure operations: perform operations without revealing the data, using applied crypto methods

10 June 2010

ResiliNets Overview

SDR and Cognitive Radio Projects

[Gary Minden and Joseph Evans PIs]

- KUAR: KU agile radio
 - experimental system: wireless networking & radio research
 - 5.8 GHz UNII band; independent 30MHZ tx/rx signal paths,
 - signal processing is entirely in an FPGA and GPU
- Application
 - sharing radio frequency spectrum with multiple users
 - configure radio software for specific missions
 - adaptation to dynamic RF environment and other users
 - radio network control and resource management
- Cognitive networking
 - new dynamic routing algorithms exploiting SDR technologies

10 June 2010 ResiliNets Overview

