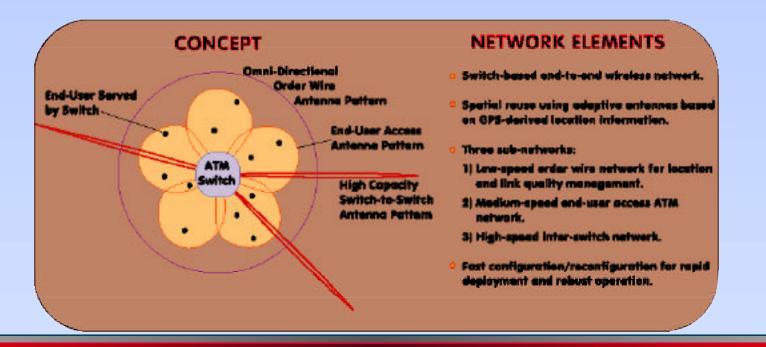
Rapidly Deployable Radio Network

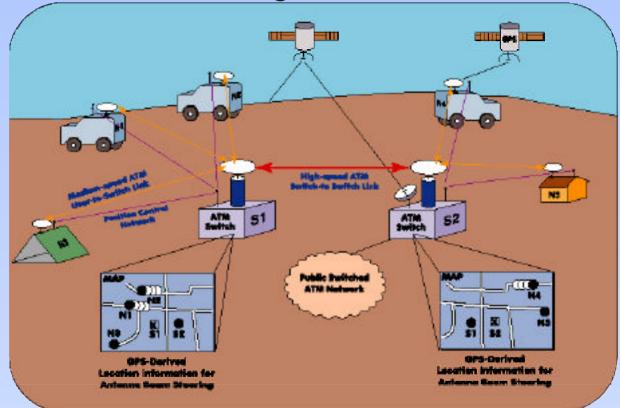
Spartan Symposium March 18-19, 1997

Dr. Gary J. Minden gminden@ittc.ukans.edu

The RDRN Team


Staff

Dan DePardo Mohan Kambhammetta Benjamin Ewy Craig Sparks


Steve Bush Shane Haas Vijayanand Paulrajan

Students

Ricardo Sanchez Deb Chatterjee Srikanth Gurrapu Christian Smit Sunil Jagannath P. Rajagopalan John Paden Harvind Samra

RDRN Project Overview

K. Sam Shanmugan, Gary Minden, Joseph Evans, Glenn Prescott, Victor Frost, David Petr, Jim Roberts, Richard Plumb

Goals and Objectives

- Design, implement, and evaluate:
 - A network architecture for a Rapidly Deployable Radio Network
 - A Network Control Protocol to support RDRN and mobile users
 - A wireless ATM protocol
 - A software radio with digital beamforming
 - Prototype sub-system components
- Demonstrate multimedia applications over wireless/wired ATM networks

RDRN Technical Challenges

- Rapid Deployment and Mobility imply
 - Limited a priori RF, topology, and deployment specific engineering
 - Adaptive techniques at link and network to achieve tasks at hand
 - Development of control and management techniques based on location information to meet performance goals
- Automatic network configuration and soft handoffs based on location and timing (GPS) information
- Adaptive communications based on channel estimation
- Baseband digital beamforming
- Conformal antenna arrays (analysis and design)
- Seamless integration of wireless/fiber/satellite networks

Accomplishments

- Implemented a network topology constructor that minimizes the maximum S/I for a set of nodes at known locations
- Implemented a Network Control Protocol that monitors node location and re-configures network connections at the ATM and link levels as needed
- Implemented a protocol for wireless ATM with minimal overhead and suitable forward error correction
- Implemented a software based ATM switch
- Implemented a software radio with digital baseband beamforming on trasmitter end
- Built two prototype nodes

Uniqueness of RDRN

• Emphasis on system level issues

- Digital beamforming antennas
- Software Based Tx/Rx
- Integration with end-to-end ATM/IP wireless/wired networks
- Channel estimation and link level Adaptation
- Integration of location information
 - Automatic initial system configuration
 - Anticipatory re-configuration and handoff
 - Adaptive beam forming

System Parameters

- Frequency: 1.27 GHz
- Symbol Rate: 1MBaud on each beam
- Radiated Power: <5W
- Range: 10 KM
- Tx Antenna: 8 element linear array
- Maximum number of beams: 4
- Independent modulation per beam (BPSK or QPSK)
- Rx Antenna: Omni
- Receiver sensitivity: ~-110 dBm
- Receiver dynamic range: ~100 dB
- 19.2 kbps packet radio for network control

RDRN Prototype Node

Proof of Concept System

This EPS image does not contain a screen preview. It will print correctly to a PostScript printer. File Name : RDRN_Figure_1.eps Title : Beam_Overview.eps Creator : Canvas 3.5 CreationDate : Fri, Apr 5, 1996 8:27 AM

Current Status

- Low speed packet radio and GPS receivers for network control completed
- Radio hardware
 - Two nodes built and integrated
 - Initial testing started
 - Long distance loopback, antenna beam patterns, end-to-end communication testing next
- Network Control Software completed and tested
- Hardware/Software integration just started
- Integration, test, and reports to be completed by 9/97

Plans and Milestones for Remainder of Project

- 1Q97 Test and Integration
 - Loopback in lab
 - Distance tests (5 KM, 10 KM, 20KM)
 - Beamforming measurements
 - ATM Signaling
 - Software/Hardware Integration
- 2Q97 End-to-End Network Performance Tests
 - Multi-media over RF link
 - Demonstrate end-to-end wireless/wired ATM
 - Characterize system performance
- 3Q97 Project Wrap-up
 - Final performance measurements
 - Final Report

Future Plans

- Adaptive communications at the link level
 - New algorithms
 - Design and implement beamforming with cylindrical and hemispheric microstrip antennas
- Improve software radio
 - Miniaturization
 - Implement adaptive algorithms
 - Beamforming on transmit and receive
- Adaptive MAC Protocols
 - Evaluate wireless ATM, IP, and ATM/IP protocols for highly mobile RDRN
- Scalability
 - Larger testbed
 - Large system performance evaluation