UCSD Center Piece Project -status report

rrao@ucsd.edu

Overview

- Physical Layer architecture and status
- Network layer architecture and status
- Experimental setup

Scenario

- three-tiered structure
- Wireless Local Loop applications
- picocell concept: wireless nodes serving small areas
- picocell nodes are connected through a mesh of free-space optical links (or some other wireless means)
- this mesh relays traffic towards geographically distributed Central Locations

Coverage of the service area through multiple Central Locations.

Connection of the grid structure to a Central Location (point of entry to pre-existing world-wide facilities).

Major networking issues

- QoS guarantees
- blocking:
 - ★ in the radio cell
 - ★ in the mesh
 - * on the direct links
- network capacity
- reliability/survivability
- mobility management

Capacity study

- goal: to evaluate the capacity of the network given the capacity of the links
- capacity: total amount of traffic which can always be routed to the CL without blocking regardless of the distribution throughout the network
- ullet main result: if C is the capacity of the links and of the radio cells, the network capacity is 5C
- extensions:
 - \star link capacity K times the radio cell capacity $(4K^2+K?)$
 - * multiple traffic classes (still 5 times?)

More on the network capacity

- the previous approach has the following problems:
 - * routing scheme may require rerouting
 - * no mobility considered
 - * the definition of capacity is somewhat too strict
- traffic study: instead of computing the capacity, we study the blocking probability versus the traffic load of the network
 - * this depends on the routing strategy
 - * optimal routing should be sought

Example of blocking results.

Reliability study

- understand the impact of link/node failures
- find how much capacity should be kept unused to guarantee that failures can be tolerated
- first scenario: Uninet mesh
 - * traffic directed toward central location
 - \star capacity limited to 4C for single-link failure
 - * double-link failures do not impact except for very special cases
 - * main conclusion: Uninet is fault-tolerant
- second scenario: perfect torus
 - * uniform traffic
 - \star all single-link faults can be tolerated if link capacity is increased by $1.5/\sqrt{N}$ (N number of nodes)
 - \star all double-link faults can be tolerated if link capacity is increased by α/\sqrt{N}
 - * main conclusion: mesh structure provides great potential for fault-tolerance

Reference topology for the reliability study.

Reference topology for the reliability study.

Mobility management

- uses the Virtal Connection Tree Concept
- at connection setup time, multiple paths are identified and stored for possible later use
- QoS calculations need not be performed in real-time (e.g., during hand-off)
- multiple trees improve efficiency
 - * algorithm to find multiple trees which have minimum overlap and maximum balance
- admission control must be made stricter to prevent overload

One spanning tree.

Multiple spanning trees.

Laser Communications

- Point-to-Point Wireless Access
- Very High Data Rate
 - -622 Mb/s Commercially Available
 - -1.25Gb/s in Development
- No Spectrum Licensing or Right-of-Way Requirements
- Difficult to Intercept or Jam
- Rapidly Deployable About One Hour

Alternatives and Comparisons

Type	Data Rate	Distance	Cost	Limitations
Microwave	45Mb/s	~20Km	\$30,000	Data rate, Line of Sight
Fiber	Several Gb/s	Unlimited	\$70,000/km	Right-of-Way
Laser	622Mb/s	5Km	\$65,000	Weather, Line of Sight
Laser	155Mb/s	1.5Km	\$15,000	Weather, Ling of Sight

Atmospheric Scintillation

Scintillation Fade Margin

Scintillation Fade Margin

Atmospheric Attenuation

Laser Communication Limitation Atmospheric Attenuation

LaserNet Overview

- A High Data Rate Wireless WAN
 - 5 wireless links, each capable of 622 Mb/s
 - Nodes at Local Institutions
 - UCSD
 - Qualcomm
 - CFRFNFT ...
- Demonstration of Feasibility
- Research Platform for
 - Hardware, Software & protocol development

Approach

- Physical Layer
 - Measure Errors
 - Bursty errors due to Scintillation
 - Correlate with Atmospheric Conditions
 - Visibility
 - Humidity
 - Temperature
 - Wind Speed
 - Model the Bursty Channel analytically

Approach

- Higher Layers
 - Study Effect of Burst Errors on
 - SONET, ATM, IP, TCP, FTP, HTTP
 - Investigate Alternate Automated Rerouting Schemes
 - Using Low Data Rate Microwave Backup
 - Using Existing Slow Data Rate Internet Channels

Setup

Ongoing Research

- Impact of Protocol Stacks
 - Protocol stacks modify source and channel characteristics
 - Channel seen by the application is not the raw physical channel
 - Source seen by the channel is not the original application source
- Optimal Error Control allocation
 - How much to fix atawhatvilevel

