Practical Experience in Control Architecture Development

Sean Rooney, May 1998

Control Architectures

- a control architecture is ... ;
- examples: SS7, ATMF UNI/NNI, RSVP;
- congruent with the services that the network they control is expected to support;
- so how many will we need ?

University of Cambridge Computer Laboratory

The Tempest

Control Architectures

- one (big one) according to one school of thought;
- how can we know about what the control needs of future services ?
- suppose we could; would this be a wise approach?

University of Cambridge Computer Laboratory

The Tempest

Control Architectures

- the Tempest environment permits multiple control architectures:
 - Q.Port (A portable imp. of UNI signalling)
 - RSVP (Reservation Protocol for IP)
 - Hollowman (A proof-of-concept open control architecture)
- others candidates:
 - B-ISUP, XBind, TINA, MPLS, UNITE, OPENET etc.
- which is "the best" ?

Control Architectures

- an ATM control architecture contains:
 - addressing scheme;
 - signalling transport;
 - a UNI, NNI;
 - a switch interface;
 - switch controller (Routing, CAC, OAM);
 - host controller;
 - an API.
- their design and *implementation* are influenced by the nature of the services the control architecture supports.

Control Architectures

- adding extra functionality carries a cost;
- requirement trade-offs:
 - Security/Ease of use,
 - Reliability/Efficiency,
 - Generality/Simplicity.
- do you want to pay for what you don't need/use/want?

Case Study: Q.Port

Case Study: Hollowman

Computer Laboratory

Control Architectures

- Q.Port & Hollowman offer similar functionality (e.g. pt-to-pt, pt-to-mt signalling)
- Hollowman is simpler, Q.Port more general;
- Example differences:
 - addressing;
 - signalling transport;
 - switch interface;
- Hollowman extensions for "advanced features", connection caching, soft PVCs, anycast, groupcast, connection closures ...

Control Architectures

Name	Latency (ms)	Environment
Q.Port/GSMP	20	Off-switch on Linux PC
Hollowman/GSMP	5+2	Off-Switch on Solaris
UNI, Fore ASX-200WG	10	On Switch

Name	Size Install	Caveat
Q.Port	60M	With docs, Tcl, passMT
		Not inc. FORE, switch interface.
Hollowman+Tempest	2M	Not inc. SNMP, ACE,
		GSMP, FORE

Name	Footprint	Caveat
Hollowman switch manager	4M	90%+ due to the DPE
Q.Port switch manager	7M	Using Tcl !

What about ubiquity ?

- one solution; *networks without frontiers*:
 - all switches run a divider server;
 - run any control architecture anywhere;
 - however ...
- another solution; use a "glue" control architecture;
- P-NNI seems like a good candidate;
- Hollowman and Q.Port can interoperate.

Conclusion

- switches will need several CAs (MPLS, ATMF ...);
- multiple instances of ATMF signalling:
 - having different function subsets;
 - privileging different requirements;
- also role for more advanced ATM CAs.

