Next Generation Middleware Support for
Mobility

David L. Levine
Washington University, St. Louis
levine@cs.wustl.edu

8 March 2000

http://www.cs.wustl.edu/ levine/research/srs00.ps.gz

Sponsors: Sprint, Siemens, Nortel, NSF, Motorola, Lockheed Martin,
Hughes Network Systems, DARPA, and Boeing



David L. Levine NG Middleware
Overview

e Motivation and context

e Middleware to support mobility

— Features
— State-of-the-art

e Next generation mobility middleware features

e Mobility middleware design guidelines
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Pervasive Web Access
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Motivation for Middleware

e Reduced time-to-market and development cost

— Unpredicted/unanticipated web usage indicates short client product
lifetimes and requires flexible/adaptable servers

e Middleware eases object-oriented software development

— Provides location transparency

— Provides language/platform independence
— Provides modularity

— Provides robustness
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Context: Levels of Abstraction in Software

[ S e Observations

}AE%E;ONS — Historically, distributed apps

MIDDLEWARE built directly atop OS
SERVICES

— Today, more and more apps
O EWARY Em mm built atop middleware
— — Middleware has several layers

e Decision Points

OPERATING .
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ROTOCOLS s . .
— ldentify reuse boundaries

— Determine where to add value
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Context: Levels of Abstraction in
Internetworking and Middleware
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Mobility Issues

e Physical mobility

— Host movement, relative to other hosts (and network)
— Defines (dynamic) target execution environment

e Logical mobility

— Code and data movement between hosts
— Permits dynamic application/host component bindings

e Coordination

— Includes mechanisms for peer discovery, information exchange,
and cross-host synchronization
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Mobility Middleware Requirements

e For physical mobility

— Specify context for an application

— Detect location changes

— Associate location changes with context changes
— Determine application effects of context changes

e For logical mobility

— Code and data migration support
— Clean model with robustness and security
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Can Middleware Perform?

e |t must offer low overhead . . .

— middleware/endsystem CPU overhead must be low
— (OS context switch time must be low)

e Priority inversion must be eliminated . . .

— to provide QoS to high priority requests
e Predictability must not impair application performance
e Middleware overhead must be low

e Memory footprint must be minimized
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Implementation: The ACE ORB (TAO)

in args

operation() OBJECT
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out args + return value
+—O0
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http://www.cs.wustl.edu/"schmidt/
TAO.html
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NG Middleware: State-of-the-Art

Performance Experiment
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e Server factory
implements
thread-per-connection

— Each connection links
client with its servant
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NG Middleware: State-of-the-Art
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Latency per two-way request, microseconds
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TAO Performance on LynxOS 3.0.0
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NG Middleware: Limitations

Limitations of Current Middleware

e Large footprint
— Over 2 Mb of code for ACE+TAO libraries

e Lack of end-to-end QoS support

e Configurability does not extend to the code
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Limited Configurability

e Mobile applications must be both statically and dynamically
configurable.

e Improved static configuration support must be engineered in to avoid
linking in all potential code.

e Dynamic linking aids configurability, but:

— must be careful to avoid objectionable overhead and
unpredictability.
— raises security issues.
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Next Generation Middleware Features

Next generation middleware must have:
e Smaller footprint

— Middleware tries to provide for potential needs

— It's difficult to include only the middleware code that a particular
application needs

— Demand will drive static footprint down

e Standardized real-time support
e Native QoS support

e Better configurability

e Better mobility support

e Smaller footprint
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QoS Enabled Middleware

RTP TELNET ADVANCED
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Creating a Framework to Support QoS Enabled

Middleware
in args
operation() OBJECT
CLIENT F out args + return value (SERVANT)
<«——O
QOS ADAPTIVE QOS MANAGERS QOS ADAPTIVE
LAYER COMMON LAYER COMMON
PROPERTY POLICY
DISTRIBUTION DISTRIBUTION
MIDDLEWARE QOS MECHANISMS MIDDLEWARE
INFRASTRUCTURE STATUS BANDWIDTH INFRASTRUCTURE
MIDDLEWARE COLLECTORS CONTROL MIDDLEWARE
OPERATING SYSTEM OPERATING SYSTEM
& PROTOCOLS & PROTOCOLS
RESOURCE RESOURCE
MANAGERS MANAGERS
CLIENT HOST WIRELESS/WIRELINE NETWORK SERVER HOST
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Meeting End-to-End QoS Requirements

e Design Challenges

— QoS requirements specification
x Two levels of specifying QoS - application (e.g., audio sample,
video frame rate) and network (e.g., service type, bandwidth)
levels.
— Meeting operation scheduling deadlines
— Alleviating priority inversion and non-determinism
— Reducing demultiplexing overhead
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ACE QoS API Overview

e Unified view of different QoS technologies

e Portability, QoS Parameters, Extensibility.

e Wrappers for low level QoS APIs

e Notion of a QoS session

e Handling QoS events through the ACE Reactor

e Limitations because of generalization
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NG Middleware: Features

Event Notification

Application QoS
Event Handler
ACE Connector/ Reactor
Acceptor

QoS Service
Provider
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@ PATH
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QoS Mapping

e Translation of QoS specifications between different levels, e.g.,
between application and network levels.

e Reserve network resources at connection establishment.

e Good mapping rules to avoid reservation of too much (or too little)
resources.

e QoS specification and parameter mapping.

e Required both at connection establishment and renegotiation time.
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QoS Monitoring and Adaptation
e Q0S Monitoring

— Mechanism for measuring end-to-end QoS parameters over a
finite time period.

— Typically done on the receiving side.

— Notification of QoS changes and violations to the application
through feedback channels.

e QoS Adaptation

— Take actions based on the measured QoS and the application QoS
requirements.

— Typically done on the sending side.

— Adaptation can be at the transport (e.g., flow control), application
(e.g., MPEG-II coding rate adaptation) and at the signalling (e.qg.,
QoS renegotiation) levels.
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Qo0S-Based Transport API

e Provides calls for provisioning, control (renegotiation and violation
notification) and media transfer.

e ACE-Qo0S API’s provide the required QoS-based transport API.

A/V SERVICE

ORB

ACE-QoS
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Mobility Middleware Design Guidelines

e Middleware can reduce lifecycle cost and time-to-market
e Mobile imposes additional constraints on middleware
e Next generation middleware must:

— Have smaller footprint
— Provide QoS support, including dependability. For example:
x Define generic QoS mappings for various flows.

x Design a flexible and extensible QoS monitoring and adaptation

framework.
x Understand QoS specifications for different flow protocols.

— Support configurability
— Support adaptability
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NG Middleware: Features

For Further Information

e More detail on TAO:
http://www.cs.wustl.edu/"schmidt/RT-ORB.ps.gz

e TAO Event Channel:
http://www.cs.wustl.edu/"levine/research/JSAC98.ps.gz

e ORB Endsystem Architecture:
http://www.cs.wustl.edu/"schmidt/RT-middleware.ps.gz

e OS Comparison:
http://www.cs.wustl.edu/"levine/RT-OS.ps.gz

e These slides:
http://www.cs.wustl.edu/"levine/research/srs00.ps.gz
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