Next Generation Middleware Support for
Mobility

David L. Levine
Washington University, St. Louis
levine@cs.wustl.edu

8 March 2000

http://www.cs.wustl.edu/ levine/research/srs00.ps.gz

Sponsors: Sprint, Siemens, Nortel, NSF, Motorola, Lockheed Martin,
Hughes Network Systems, DARPA, and Boeing

David L. Levine NG Middleware
Overview

e Motivation and context

e Middleware to support mobility

— Features
— State-of-the-art

e Next generation mobility middleware features

e Mobility middleware design guidelines

Copyright ©1997-2000 Dept. of Computer Science, Washington University 1

David L. Levine NG Middleware
Pervasive Web Access

e Web use is often, but not
always, anonymous

e Asymmetric throughput
MSC 0 requirements, /.e., mostly

EEE download
Bl CORE PSTN
BAS BSC NETWORE— cateway [X| e Dependability is important: 0
RADIO downtime

ACCESS
NETWORK

e Latency and predictability

INTERNET (jitter) requirements not
BASE :
STATION GATEWAY usually stringent

Copyright ©1997-2000 Dept. of Computer Science, Washington University 2

David L. Levine NG Middleware: Motivation

Motivation for Middleware

e Reduced time-to-market and development cost

— Unpredicted/unanticipated web usage indicates short client product
lifetimes and requires flexible/adaptable servers

e Middleware eases object-oriented software development

— Provides location transparency

— Provides language/platform independence
— Provides modularity

— Provides robustness

Copyright ©1997-2000 Dept. of Computer Science, Washington University 3

David L. Levine NG Middleware: Motivation

Context: Levels of Abstraction in Software

[S e Observations

}AE%E;ONS — Historically, distributed apps

MIDDLEWARE built directly atop OS
SERVICES

— Today, more and more apps
O EWARY Em mm built atop middleware
— — Middleware has several layers

e Decision Points

OPERATING .
SYSTEMS & Hmmmm — Buy vs. build

ROTOCOLS s . .
— ldentify reuse boundaries

— Determine where to add value

Copyright ©1997-2000 Dept. of Computer Science, Washington University 4

David L. Levine NG Middleware: Motivation

Context: Levels of Abstraction in
Internetworking and Middleware

RTP TELNET CORBA
APPLICATIONS

DNS FTP HTTP

UDP TCP CORBA SERVICES

] SO

ETHERNET FDDI WIN NT @ LINUX @ LYNXOS
FIBRE CHANNEL SOLARIS @ VXWORKS

INTERNETWORKING ARCH MIDDLEWARE ARCH

Copyright ©1997-2000 Dept. of Computer Science, Washington University 5

David L. Levine NG Middleware: State-of-the-Art
Mobility Issues

e Physical mobility

— Host movement, relative to other hosts (and network)
— Defines (dynamic) target execution environment

e Logical mobility

— Code and data movement between hosts
— Permits dynamic application/host component bindings

e Coordination

— Includes mechanisms for peer discovery, information exchange,
and cross-host synchronization

Copyright ©1997-2000 Dept. of Computer Science, Washington University 6

David L. Levine NG Middleware: State-of-the-Art
Mobility Middleware Requirements

e For physical mobility

— Specify context for an application

— Detect location changes

— Associate location changes with context changes
— Determine application effects of context changes

e For logical mobility

— Code and data migration support
— Clean model with robustness and security

Copyright ©1997-2000 Dept. of Computer Science, Washington University 7

David L. Levine NG Middleware: State-of-the-Art
Can Middleware Perform?

e |t must offer low overhead . . .

— middleware/endsystem CPU overhead must be low
— (OS context switch time must be low)

e Priority inversion must be eliminated . . .

— to provide QoS to high priority requests
e Predictability must not impair application performance
e Middleware overhead must be low

e Memory footprint must be minimized

Copyright ©1997-2000 Dept. of Computer Science, Washington University 8

David L. Levine NG Middleware: State-of-the-Art

Implementation: The ACE ORB (TAO)

in args

operation() OBJECT
(SERVANT)

out args + return value
+—O0
SKELETO

TAO Overview —

e An open-source,
standards-based,

ORB RUN-TIME RP(J)‘;IJ_ET;? E real-tim e,
STUBS SCHEDULER C ADAPTER h | g h) p e rf ormance
CORBA ORB
7 - BB e Runs on POSIX,
- ‘ Win32, & RTOS
S | P
SUBSYSTEM SUBSYSTEM _ e g VXWOrkS

HIGH-SPEED HIGH-SPEED
NETWORK INTERFACE NETWORK INTERFACE

LynxOS, Chorus
e Leverages ACE

http://www.cs.wustl.edu/"schmidt/
TAO.html

Copyright ©1997-2000 Dept. of Computer Science, Washington University 9

David L. Levine

NG Middleware: State-of-the-Art

Performance Experiment

Pl P P 1) W(Servams @ g\ o O_ne 20 Hz high-priority
‘ @ @ [Object Adapter | |Z 2 client
P O =
c =< ..
C, C, .. C, ‘@ @ cm | e 1'.'” 10 Hz low-priority
S, & clients
:i Requests ORB Core
[P] Priority] 8l — | — Increasing n
] /O SUBSYSTEM . | d
. Client) N Server) Increases loa
o / //

Pentlum [
http://www.cs.wustl.edu/
“levine/research/RT-0S.ps.gz

e Server factory
implements
thread-per-connection

— Each connection links
client with its servant

Copyright ©1997-2000 Dept. of Computer Science, Washington University

10

David L. Levine

NG Middleware: State-of-the-Art

800

Two-way Request Latency, usec
|_\
o
o
o

600

400

200

High-Priority Request Latency Results

/\ e Synopsis of results

/\M — LynxOS provides

/\/ / * consistently low and

predictable latency

|| obmeos / / — VXxWorks does not

oo / / scale on x86

/ /\/ — Non-RTOS'’s are not
/

/A/ / X, predictable

— ORB (TAO) provides

W M / low latency and avoids

M priority inversion

= x [.e., high priority

client always has
0O 1 2 5 10 15 20 25 30 35 40 45 50
Low Priority Clients |OWGS’[|atency

Copyright ©1997-2000 Dept. of Computer Science, Washington University 11

Latency per two-way request, microseconds

David L. Levine NG Middleware: State-of-the-Art

TAO Performance on LynxOS 3.0.0

I I Low PrjorityClients —+— I I I I I I I Low Priorlity ChemsI ——

1600 |- High Priority Client --> -~ _ 1600 = High Priority Client —-- |

wmol o o -] , 1400 -
T
c
3

1200 § 1200 -
S
£

1000 | 7 1000 - e
3
g l

800 | = Jooeee s T— z 800 } i e e

kT 2 //T‘n»— 77777777
* I ¢
; E
IS S S S S o C SRR RSSO SR Dotttz
600 —— e i 5 6w {
%" > ,>‘<’j("""
1 é J\ 4

400 o S 00
-

200 [] 200 [

0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45 50
Number of Low priority Clients Number of Low priority Clients
Server and Client on Same CPU Server and Client on Different CPUs

Copyright ©1997-2000 Dept. of Computer Science, Washington University 12

David L. Levine

NG Middleware: Limitations

Limitations of Current Middleware

e Large footprint
— Over 2 Mb of code for ACE+TAO libraries

e Lack of end-to-end QoS support

e Configurability does not extend to the code

Copyright ©1997-2000 Dept. of Computer Science, Washington University 13

David L. Levine NG Middleware: Limitations

Limited Configurability

e Mobile applications must be both statically and dynamically
configurable.

e Improved static configuration support must be engineered in to avoid
linking in all potential code.

e Dynamic linking aids configurability, but:

— must be careful to avoid objectionable overhead and
unpredictability.
— raises security issues.

Copyright ©1997-2000 Dept. of Computer Science, Washington University 14

David L. Levine NG Middleware: Features

Next Generation Middleware Features

Next generation middleware must have:
e Smaller footprint

— Middleware tries to provide for potential needs

— It's difficult to include only the middleware code that a particular
application needs

— Demand will drive static footprint down

e Standardized real-time support
e Native QoS support

e Better configurability

e Better mobility support

e Smaller footprint

Copyright ©1997-2000 Dept. of Computer Science, Washington University 15

David L. Levine NG Middleware: Features

QoS Enabled Middleware

RTP TELNET ADVANCED
APPLICATIONS

DNS | | FTP | | HTTP

QOS AWARE
UDP| | TCP SERVICES

n MIDDLEWARE
(QoSAPI)
RSVP DIFESERV

FIBRE CHANNEL

INTERNETWORKING ARCH QOSENABLED
MIDDLEWARE ARCH

Copyright ©1997-2000 Dept. of Computer Science, Washington University 16

David L. Levine NG Middleware: Features

Creating a Framework to Support QoS Enabled

Middleware
in args
operation() OBJECT
CLIENT F out args + return value (SERVANT)
<«——O
QOS ADAPTIVE QOS MANAGERS QOS ADAPTIVE
LAYER COMMON LAYER COMMON
PROPERTY POLICY
DISTRIBUTION DISTRIBUTION
MIDDLEWARE QOS MECHANISMS MIDDLEWARE
INFRASTRUCTURE STATUS BANDWIDTH INFRASTRUCTURE
MIDDLEWARE COLLECTORS CONTROL MIDDLEWARE
OPERATING SYSTEM OPERATING SYSTEM
& PROTOCOLS & PROTOCOLS
RESOURCE RESOURCE
MANAGERS MANAGERS
CLIENT HOST WIRELESS/WIRELINE NETWORK SERVER HOST

Copyright ©1997-2000 Dept. of Computer Science, Washington University

17

David L. Levine NG Middleware: Features

Meeting End-to-End QoS Requirements

e Design Challenges

— QoS requirements specification
x Two levels of specifying QoS - application (e.g., audio sample,
video frame rate) and network (e.g., service type, bandwidth)
levels.
— Meeting operation scheduling deadlines
— Alleviating priority inversion and non-determinism
— Reducing demultiplexing overhead

Copyright ©1997-2000 Dept. of Computer Science, Washington University 18

David L. Levine NG Middleware: Features

ACE QoS API Overview

e Unified view of different QoS technologies

e Portability, QoS Parameters, Extensibility.

e Wrappers for low level QoS APIs

e Notion of a QoS session

e Handling QoS events through the ACE Reactor

e Limitations because of generalization

Copyright ©1997-2000 Dept. of Computer Science, Washington University 19

David L. Levine

NG Middleware: Features

Event Notification

Application QoS
Event Handler
ACE Connector/ Reactor
Acceptor

QoS Service
Provider

RAPI
Daemon

GQoS
Service Provider

@ PATH
@ RESV
QoS @ PATH_ERROR
Protocol @ RESV_ERROR
@ REQ_CONFIRM

Network P —

RSVP ROUTER RSVP ROUTER

Copyright (©1997-2000

Dept. of Computer Science, Washington University

20

David L. Levine NG Middleware: Features

QoS Mapping

e Translation of QoS specifications between different levels, e.g.,
between application and network levels.

e Reserve network resources at connection establishment.

e Good mapping rules to avoid reservation of too much (or too little)
resources.

e QoS specification and parameter mapping.

e Required both at connection establishment and renegotiation time.

Copyright ©1997-2000 Dept. of Computer Science, Washington University 21

David L. Levine NG Middleware: Features

QoS Monitoring and Adaptation
e Q0S Monitoring

— Mechanism for measuring end-to-end QoS parameters over a
finite time period.

— Typically done on the receiving side.

— Notification of QoS changes and violations to the application
through feedback channels.

e QoS Adaptation

— Take actions based on the measured QoS and the application QoS
requirements.

— Typically done on the sending side.

— Adaptation can be at the transport (e.g., flow control), application
(e.g., MPEG-II coding rate adaptation) and at the signalling (e.qg.,
QoS renegotiation) levels.

Copyright ©1997-2000 Dept. of Computer Science, Washington University 22

David L. Levine NG Middleware: Features

Qo0S-Based Transport API

e Provides calls for provisioning, control (renegotiation and violation
notification) and media transfer.

e ACE-Qo0S API’s provide the required QoS-based transport API.

A/V SERVICE

ORB

ACE-QoS

Copyright ©1997-2000 Dept. of Computer Science, Washington University 23

David L. Levine NG Middleware: Features

Mobility Middleware Design Guidelines

e Middleware can reduce lifecycle cost and time-to-market
e Mobile imposes additional constraints on middleware
e Next generation middleware must:

— Have smaller footprint
— Provide QoS support, including dependability. For example:
x Define generic QoS mappings for various flows.

x Design a flexible and extensible QoS monitoring and adaptation

framework.
x Understand QoS specifications for different flow protocols.

— Support configurability
— Support adaptability

Copyright ©1997-2000 Dept. of Computer Science, Washington University

24

David L. Levine

NG Middleware: Features

For Further Information

e More detail on TAO:
http://www.cs.wustl.edu/"schmidt/RT-ORB.ps.gz

e TAO Event Channel:
http://www.cs.wustl.edu/"levine/research/JSAC98.ps.gz

e ORB Endsystem Architecture:
http://www.cs.wustl.edu/"schmidt/RT-middleware.ps.gz

e OS Comparison:
http://www.cs.wustl.edu/"levine/RT-OS.ps.gz

e These slides:
http://www.cs.wustl.edu/"levine/research/srs00.ps.gz

Copyright ©1997-2000 Dept. of Computer Science, Washington University

25

