
Next Generation Middleware Support for
Mobility

David L. Levine
Washington University, St. Louis

levine@cs.wustl.edu

8 March 2000

http://www.cs.wustl.edu/˜levine/research/srs00.ps.gz

Sponsors: Sprint, Siemens, Nortel, NSF, Motorola, Lockheed Martin,
Hughes Network Systems, DARPA, and Boeing

David L. Levine NG Middleware

Overview

� Motivation and context

� Middleware to support mobility

– Features
– State-of-the-art

� Next generation mobility middleware features

� Mobility middleware design guidelines

Copyright c
1997-2000 Dept. of Computer Science, Washington University 1

David L. Levine NG Middleware

Pervasive Web Access

BSC
CORE

NETWORK

BASE

STATION

PSTN

GATEWAYBASE

STATION RADIO

ACCESS

NETWORK

MSC

INTERNET

GATEWAY

� Web use is often, but not
always, anonymous

� Asymmetric throughput
requirements, i.e., mostly
download

� Dependability is important: 0
downtime

� Latency and predictability
(jitter) requirements not
usually stringent

Copyright c
1997-2000 Dept. of Computer Science, Washington University 2

David L. Levine NG Middleware: Motivation

Motivation for Middleware

� Reduced time-to-market and development cost

– Unpredicted/unanticipated web usage indicates short client product
lifetimes and requires flexible/adaptable servers

� Middleware eases object-oriented software development

– Provides location transparency
– Provides language/platform independence
– Provides modularity
– Provides robustness

Copyright c
1997-2000 Dept. of Computer Science, Washington University 3

David L. Levine NG Middleware: Motivation

Context: Levels of Abstraction in Software

INFRASTRUCTURE
MIDDLEWARE

DISTRIBUTION
MIDDLEWARE

COMMON
MIDDLEWARE

SERVICES

APPLICATIONS

Cons

ConsConsEVENTEVENT

CHANNELCHANNEL

OPERATINGOPERATING
SYSTEMS SYSTEMS &&
PROTOCOLSPROTOCOLS

HARDWAREHARDWARE DEVICESDEVICES
� Observations

– Historically, distributed apps
built directly atop OS

– Today, more and more apps
built atop middleware

– Middleware has several layers

� Decision Points

– Buy vs. build
– Identify reuse boundaries
– Determine where to add value

Copyright c
1997-2000 Dept. of Computer Science, Washington University 4

David L. Levine NG Middleware: Motivation

Context: Levels of Abstraction in
Internetworking and Middleware

HTTPFTP

FDDIATMETHERNET

IP

FIBRE CHANNEL

UDP TCP

TELNET

DNS

LYNXOSLINUXWIN NT

CORBA

SOLARIS

CORBA SERVICES

CORBA

APPLICATIONS

VXWORKS

MIDDLEWARE ARCHINTERNETWORKING ARCH

RTP

Copyright c
1997-2000 Dept. of Computer Science, Washington University 5

David L. Levine NG Middleware: State-of-the-Art

Mobility Issues

� Physical mobility

– Host movement, relative to other hosts (and network)
– Defines (dynamic) target execution environment

� Logical mobility

– Code and data movement between hosts
– Permits dynamic application/host component bindings

� Coordination

– Includes mechanisms for peer discovery, information exchange,
and cross-host synchronization

Copyright c
1997-2000 Dept. of Computer Science, Washington University 6

David L. Levine NG Middleware: State-of-the-Art

Mobility Middleware Requirements

� For physical mobility

– Specify context for an application
– Detect location changes
– Associate location changes with context changes
– Determine application effects of context changes

� For logical mobility

– Code and data migration support
– Clean model with robustness and security

Copyright c
1997-2000 Dept. of Computer Science, Washington University 7

David L. Levine NG Middleware: State-of-the-Art

Can Middleware Perform?

� It must offer low overhead . . .

– middleware/endsystem CPU overhead must be low
– (OS context switch time must be low)

� Priority inversion must be eliminated . . .

– to provide QoS to high priority requests

� Predictability must not impair application performance

� Middleware overhead must be low

� Memory footprint must be minimized

Copyright c
1997-2000 Dept. of Computer Science, Washington University 8

David L. Levine NG Middleware: State-of-the-Art

Implementation: The ACE ORB (TAO)

NETWORKNETWORK

ORBORB RUN RUN--TIMETIME

SCHEDULERSCHEDULER

operation()operation()

IDLIDL
STUBSSTUBS

IDLIDL
SKELETONSKELETON

in argsin args

out args + return valueout args + return value

CLIENTCLIENT

OS KERNELOS KERNEL

HIGHHIGH--SPEEDSPEED

NETWORK INTERFACENETWORK INTERFACE

REALREAL--TIME ITIME I//OO
SUBSYSTEMSUBSYSTEM

OBJECTOBJECT
((SERVANTSERVANT))

OS KERNELOS KERNEL

HIGHHIGH--SPEEDSPEED

NETWORK INTERFACENETWORK INTERFACE

REALREAL--TIME ITIME I//OO
SUBSYSTEMSUBSYSTEM

ACEACE COMPONENTSCOMPONENTS

OBJOBJ

REFREF

REALREAL--TIMETIME ORBORB CORECORE
IOPIOP

PLUGGABLEPLUGGABLE

ORBORB & & XPORTXPORT

PROTOCOLSPROTOCOLS

IOPIOP
PLUGGABLEPLUGGABLE

ORBORB & & XPORTXPORT

PROTOCOLSPROTOCOLS

REALREAL--TIMETIME

OBJECTOBJECT

ADAPTERADAPTER

http://www.cs.wustl.edu/˜schmidt/
TAO.html

TAO Overview !

� An open-source,
standards-based,
real-time,
high-performance
CORBA ORB

� Runs on POSIX,
Win32, & RTOS
platforms
– e.g., VxWorks,

LynxOS, Chorus

� Leverages ACE

Copyright c
1997-2000 Dept. of Computer Science, Washington University 9

David L. Levine NG Middleware: State-of-the-Art

Performance Experiment

[P]
0

[P]
1

SC
H

E
D

U
L

E
R

0

R
U

N
T

IM
E

[P]

I/O SUBSYSTEM

Server

0 nS1

nC

������������������
Pentium II

S S
0C 1C

...

...

Object Adapter
Servants

ORB Core

Client

...

[P]

Requests

Priority

...

[P][P]
1

[P]

n

n

http://www.cs.wustl.edu/
˜levine/research/RT-OS.ps.gz

� One 20 Hz high-priority
client

� 1..n 10 Hz low-priority
clients

– Increasing n
increases load

� Server factory
implements
thread-per-connection

– Each connection links
client with its servant

Copyright c
1997-2000 Dept. of Computer Science, Washington University 10

David L. Levine NG Middleware: State-of-the-Art

High-Priority Request Latency Results

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 1 2 5 10 15 20 25 30 35 40 45 50

Low Priority Clients

Tw
o-

w
ay

 R
eq

ue
st

 L
at

en
cy

, u
se

c

Linux

LynxOS

NT

Solaris

VxWorks

� Synopsis of results

– LynxOS provides
consistently low and
predictable latency

– VxWorks does not
scale on x86

– Non-RTOS’s are not
predictable

– ORB (TAO) provides
low latency and avoids
priority inversion

� i.e., high priority
client always has
lowest latency

Copyright c
1997-2000 Dept. of Computer Science, Washington University 11

David L. Levine NG Middleware: State-of-the-Art

TAO Performance on LynxOS 3.0.0

0

200

400

600

800

1000

1200

1400

1600

0 5 10 15 20 25 30 35 40 45

L
a
te

n
c
y
 p

e
r

tw
o
-w

a
y
 r

e
q
u
e
s
t,
 m

ic
ro

s
e
c
o
n
d
s

Number of Low priority Clients

Low Priority Clients
High Priority Client

Server and Client on Same CPU

0

200

400

600

800

1000

1200

1400

1600

0 5 10 15 20 25 30 35 40 45 50

L
a
te

n
c
y
 p

e
r

tw
o
-w

a
y
 r

e
q
u
e
s
t,
 m

ic
ro

s
e
c
o
n
d
s

Number of Low priority Clients

Low Priority Clients
High Priority Client

Server and Client on Different CPUs

Copyright c
1997-2000 Dept. of Computer Science, Washington University 12

David L. Levine NG Middleware: Limitations

Limitations of Current Middleware

� Large footprint

– Over 2 Mb of code for ACE+TAO libraries

� Lack of end-to-end QoS support

� Configurability does not extend to the code

Copyright c
1997-2000 Dept. of Computer Science, Washington University 13

David L. Levine NG Middleware: Limitations

Limited Configurability

� Mobile applications must be both statically and dynamically
configurable.

� Improved static configuration support must be engineered in to avoid
linking in all potential code.

� Dynamic linking aids configurability, but:

– must be careful to avoid objectionable overhead and
unpredictability.

– raises security issues.

Copyright c
1997-2000 Dept. of Computer Science, Washington University 14

David L. Levine NG Middleware: Features

Next Generation Middleware Features
Next generation middleware must have:

� Smaller footprint

– Middleware tries to provide for potential needs
– It’s difficult to include only the middleware code that a particular

application needs
– Demand will drive static footprint down

� Standardized real-time support

� Native QoS support

� Better configurability

� Better mobility support

� Smaller footprint

Copyright c
1997-2000 Dept. of Computer Science, Washington University 15

David L. Levine NG Middleware: Features

QoS Enabled Middleware

HTTPFTP

UDP TCP

TELNET

DNS

RTP

FDDIATMETHERNET

IP

FIBRE CHANNEL

INTERNETWORKING ARCH

ATMMPLSRTP

MIDDLEWARE

(QOS API)

RSVP DIFFSERV

QOS AWARE

SERVICES

ADVANCED

APPLICATIONS

QOS ENABLED

MIDDLEWARE ARCH

Copyright c
1997-2000 Dept. of Computer Science, Washington University 16

David L. Levine NG Middleware: Features

Creating a Framework to Support QoS Enabled
Middleware

INFRASTRUCTUREINFRASTRUCTURE
MIDDLEWAREMIDDLEWARE

DISTRIBUTIONDISTRIBUTION
MIDDLEWAREMIDDLEWARE

QQOOS S ADAPTIVEADAPTIVE
LAYERLAYER COMMONCOMMON

SERVICESSERVICES

OPERATING SYSTEMOPERATING SYSTEM

&& PROTOCOLS PROTOCOLS

operation()operation()
in argsin args

out args + return valueout args + return value
CLIENTCLIENT

OBJECTOBJECT
((SERVANTSERVANT))

OPERATING SYSTEMOPERATING SYSTEM

&& PROTOCOLS PROTOCOLS

WIRELESSWIRELESS//WIRELINE NETWORKWIRELINE NETWORKCLIENT HOSTCLIENT HOST SERVER HOSTSERVER HOST

RESOURCERESOURCE

MANAGERSMANAGERS

RESOURCERESOURCE

MANAGERSMANAGERS

OBJOBJ

REFREF

STATUSSTATUS

COLLECTORSCOLLECTORS

BANDWIDTHBANDWIDTH

CONTROLCONTROL

PROPERTYPROPERTY

MANAGERSMANAGERS

POLICYPOLICY

MANAGERSMANAGERS

QOS MECHANISMSQOS MECHANISMS

...

QOS MANAGERS

...

INFRASTRUCTURE
MIDDLEWARE

DISTRIBUTION
MIDDLEWARE

QOS ADAPTIVE
LAYER COMMON

SERVICES

Copyright c
1997-2000 Dept. of Computer Science, Washington University 17

David L. Levine NG Middleware: Features

Meeting End-to-End QoS Requirements

� Design Challenges

– QoS requirements specification

� Two levels of specifying QoS - application (e.g., audio sample,
video frame rate) and network (e.g., service type, bandwidth)
levels.

– Meeting operation scheduling deadlines
– Alleviating priority inversion and non-determinism
– Reducing demultiplexing overhead

Copyright c
1997-2000 Dept. of Computer Science, Washington University 18

David L. Levine NG Middleware: Features

ACE QoS API Overview

� Unified view of different QoS technologies

� Portability, QoS Parameters, Extensibility.

� Wrappers for low level QoS APIs

� Notion of a QoS session

� Handling QoS events through the ACE Reactor

� Limitations because of generalization

Copyright c
1997-2000 Dept. of Computer Science, Washington University 19

David L. Levine NG Middleware: Features

Event Notification

QoS Service

Provider

QoS

Event Handler

Connector/

Acceptor

Reactor

PATH
RESV
PATH_ERROR
RESV_ERROR
REQ_CONFIRM

RAPI
Daemon

GQoS
Service Provider

RAPI fd Win QoS Events

ACE

Application

QoS

Protocol

Network

RSVP ROUTER RSVP ROUTER

Copyright c
1997-2000 Dept. of Computer Science, Washington University 20

David L. Levine NG Middleware: Features

QoS Mapping

� Translation of QoS specifications between different levels, e.g.,
between application and network levels.

� Reserve network resources at connection establishment.

� Good mapping rules to avoid reservation of too much (or too little)
resources.

� QoS specification and parameter mapping.

� Required both at connection establishment and renegotiation time.

Copyright c
1997-2000 Dept. of Computer Science, Washington University 21

David L. Levine NG Middleware: Features

QoS Monitoring and Adaptation

� QoS Monitoring

– Mechanism for measuring end-to-end QoS parameters over a
finite time period.

– Typically done on the receiving side.
– Notification of QoS changes and violations to the application

through feedback channels.

� QoS Adaptation

– Take actions based on the measured QoS and the application QoS
requirements.

– Typically done on the sending side.
– Adaptation can be at the transport (e.g., flow control), application

(e.g., MPEG-II coding rate adaptation) and at the signalling (e.g.,
QoS renegotiation) levels.

Copyright c
1997-2000 Dept. of Computer Science, Washington University 22

David L. Levine NG Middleware: Features

QoS-Based Transport API

� Provides calls for provisioning, control (renegotiation and violation
notification) and media transfer.

� ACE-QoS API’s provide the required QoS-based transport API.

A/V SERVICE

ORB

ACE-QOS

RAPI G-Q OS

Copyright c
1997-2000 Dept. of Computer Science, Washington University 23

David L. Levine NG Middleware: Features

Mobility Middleware Design Guidelines

� Middleware can reduce lifecycle cost and time-to-market

� Mobile imposes additional constraints on middleware

� Next generation middleware must:

– Have smaller footprint
– Provide QoS support, including dependability. For example:

� Define generic QoS mappings for various flows.

� Design a flexible and extensible QoS monitoring and adaptation
framework.

� Understand QoS specifications for different flow protocols.
– Support configurability
– Support adaptability

Copyright c
1997-2000 Dept. of Computer Science, Washington University 24

David L. Levine NG Middleware: Features

For Further Information

� More detail on TAO:
http://www.cs.wustl.edu/˜schmidt/RT-ORB.ps.gz

� TAO Event Channel:
http://www.cs.wustl.edu/˜levine/research/JSAC98.ps.gz

� ORB Endsystem Architecture:
http://www.cs.wustl.edu/˜schmidt/RT-middleware.ps.gz

� OS Comparison:
http://www.cs.wustl.edu/˜levine/RT-OS.ps.gz

� These slides:
http://www.cs.wustl.edu/˜levine/research/srs00.ps.gz

Copyright c
1997-2000 Dept. of Computer Science, Washington University 25

