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Overview

� Motivation and context

� Middleware to support mobility

– Features
– State-of-the-art

� Next generation mobility middleware features

� Mobility middleware design guidelines
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� Web use is often, but not
always, anonymous

� Asymmetric throughput
requirements, i.e., mostly
download

� Dependability is important: 0
downtime

� Latency and predictability
(jitter) requirements not
usually stringent
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Motivation for Middleware

� Reduced time-to-market and development cost

– Unpredicted/unanticipated web usage indicates short client product
lifetimes and requires flexible/adaptable servers

� Middleware eases object-oriented software development

– Provides location transparency
– Provides language/platform independence
– Provides modularity
– Provides robustness
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Context: Levels of Abstraction in Software
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� Observations

– Historically, distributed apps
built directly atop OS

– Today, more and more apps
built atop middleware

– Middleware has several layers

� Decision Points

– Buy vs. build
– Identify reuse boundaries
– Determine where to add value
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Context: Levels of Abstraction in
Internetworking and Middleware
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Mobility Issues

� Physical mobility

– Host movement, relative to other hosts (and network)
– Defines (dynamic) target execution environment

� Logical mobility

– Code and data movement between hosts
– Permits dynamic application/host component bindings

� Coordination

– Includes mechanisms for peer discovery, information exchange,
and cross-host synchronization
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Mobility Middleware Requirements

� For physical mobility

– Specify context for an application
– Detect location changes
– Associate location changes with context changes
– Determine application effects of context changes

� For logical mobility

– Code and data migration support
– Clean model with robustness and security
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Can Middleware Perform?

� It must offer low overhead . . .

– middleware/endsystem CPU overhead must be low
– (OS context switch time must be low)

� Priority inversion must be eliminated . . .

– to provide QoS to high priority requests

� Predictability must not impair application performance

� Middleware overhead must be low

� Memory footprint must be minimized
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Implementation: The ACE ORB (TAO)
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http://www.cs.wustl.edu/˜schmidt/
TAO.html

TAO Overview !

� An open-source,
standards-based,
real-time,
high-performance
CORBA ORB

� Runs on POSIX,
Win32, & RTOS
platforms
– e.g., VxWorks,

LynxOS, Chorus

� Leverages ACE
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Performance Experiment

[P  ]
0

[P  ]
1

SC
H

E
D

U
L

E
R

0

R
U

N
T

IM
E

[P  ]

I/O SUBSYSTEM

Server

0 nS1

nC

������������������
Pentium II

S S
0C 1C

...

...

Object Adapter
Servants

ORB Core

Client

...

[P]

Requests

Priority

...

[P  ][P  ]
1

[P  ]

n

n

http://www.cs.wustl.edu/
˜levine/research/RT-OS.ps.gz

� One 20 Hz high-priority
client

� 1..n 10 Hz low-priority
clients

– Increasing n
increases load

� Server factory
implements
thread-per-connection

– Each connection links
client with its servant
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High-Priority Request Latency Results
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� Synopsis of results

– LynxOS provides
consistently low and
predictable latency

– VxWorks does not
scale on x86

– Non-RTOS’s are not
predictable

– ORB (TAO) provides
low latency and avoids
priority inversion

� i.e., high priority
client always has
lowest latency
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TAO Performance on LynxOS 3.0.0
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Limitations of Current Middleware

� Large footprint

– Over 2 Mb of code for ACE+TAO libraries

� Lack of end-to-end QoS support

� Configurability does not extend to the code
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Limited Configurability

� Mobile applications must be both statically and dynamically
configurable.

� Improved static configuration support must be engineered in to avoid
linking in all potential code.

� Dynamic linking aids configurability, but:

– must be careful to avoid objectionable overhead and
unpredictability.

– raises security issues.
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Next Generation Middleware Features
Next generation middleware must have:

� Smaller footprint

– Middleware tries to provide for potential needs
– It’s difficult to include only the middleware code that a particular

application needs
– Demand will drive static footprint down

� Standardized real-time support

� Native QoS support

� Better configurability

� Better mobility support

� Smaller footprint
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QoS Enabled Middleware
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Creating a Framework to Support QoS Enabled
Middleware
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Meeting End-to-End QoS Requirements

� Design Challenges

– QoS requirements specification

� Two levels of specifying QoS - application (e.g., audio sample,
video frame rate) and network (e.g., service type, bandwidth)
levels.

– Meeting operation scheduling deadlines
– Alleviating priority inversion and non-determinism
– Reducing demultiplexing overhead
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ACE QoS API Overview

� Unified view of different QoS technologies

� Portability, QoS Parameters, Extensibility.

� Wrappers for low level QoS APIs

� Notion of a QoS session

� Handling QoS events through the ACE Reactor

� Limitations because of generalization
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Event Notification
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QoS Mapping

� Translation of QoS specifications between different levels, e.g.,
between application and network levels.

� Reserve network resources at connection establishment.

� Good mapping rules to avoid reservation of too much (or too little)
resources.

� QoS specification and parameter mapping.

� Required both at connection establishment and renegotiation time.
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QoS Monitoring and Adaptation

� QoS Monitoring

– Mechanism for measuring end-to-end QoS parameters over a
finite time period.

– Typically done on the receiving side.
– Notification of QoS changes and violations to the application

through feedback channels.

� QoS Adaptation

– Take actions based on the measured QoS and the application QoS
requirements.

– Typically done on the sending side.
– Adaptation can be at the transport (e.g., flow control), application

(e.g., MPEG-II coding rate adaptation) and at the signalling (e.g.,
QoS renegotiation) levels.
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QoS-Based Transport API

� Provides calls for provisioning, control (renegotiation and violation
notification) and media transfer.

� ACE-QoS API’s provide the required QoS-based transport API.
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Mobility Middleware Design Guidelines

� Middleware can reduce lifecycle cost and time-to-market

� Mobile imposes additional constraints on middleware

� Next generation middleware must:

– Have smaller footprint
– Provide QoS support, including dependability. For example:

� Define generic QoS mappings for various flows.

� Design a flexible and extensible QoS monitoring and adaptation
framework.

� Understand QoS specifications for different flow protocols.
– Support configurability
– Support adaptability
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For Further Information

� More detail on TAO:
http://www.cs.wustl.edu/˜schmidt/RT-ORB.ps.gz

� TAO Event Channel:
http://www.cs.wustl.edu/˜levine/research/JSAC98.ps.gz

� ORB Endsystem Architecture:
http://www.cs.wustl.edu/˜schmidt/RT-middleware.ps.gz

� OS Comparison:
http://www.cs.wustl.edu/˜levine/RT-OS.ps.gz

� These slides:
http://www.cs.wustl.edu/˜levine/research/srs00.ps.gz

Copyright c
1997-2000 Dept. of Computer Science, Washington University 25


