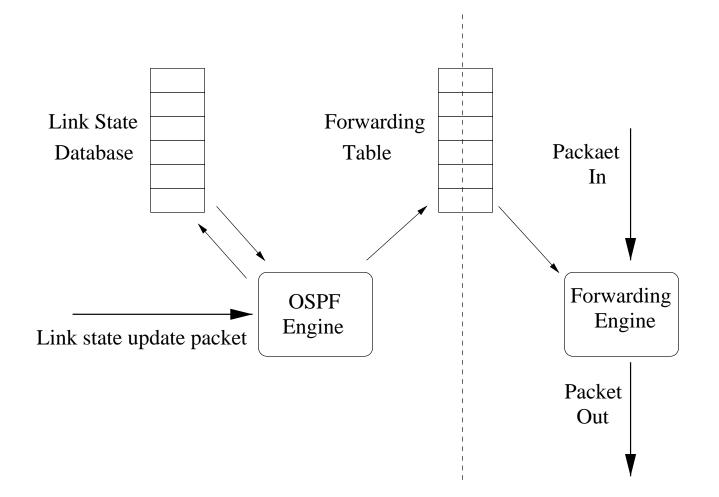
Traffic Engineering in IP Networks

Prof. Kai-Yeung (Sunny) Siu Massachusetts Institute of Technology

Traffic Engineering in IP Networks

- Key Ideas adaptive routing, increased robustness, faster convergence time.
- □ A fast algorithm to recompute a shortest path tree.

Solution ⇒ Uses information on the previous shortest path tree.


An efficient data structure to compute multiple viable paths.

- ↔ Metric based approach which ranks the desirability of each path.
- ➡ Modify traffic behavior on a small time scale.
- Allows efficient load balancing and avoids route flapping.

A robust protocol to reroute traffic with minimum communication overhead.

Keeps information on the network conditions in the local neighborhood.

How OSPF Works

Open Shortest Path Tree (OSPF)

- Severy link state update is broadcast to the entire network.
- Every router has an entire link state database and computes the shortest path tree using Dijkstra's algorithm.

Advantages

- Sast Convergence Fast Convergence
- Sho Loops

Deficiencies

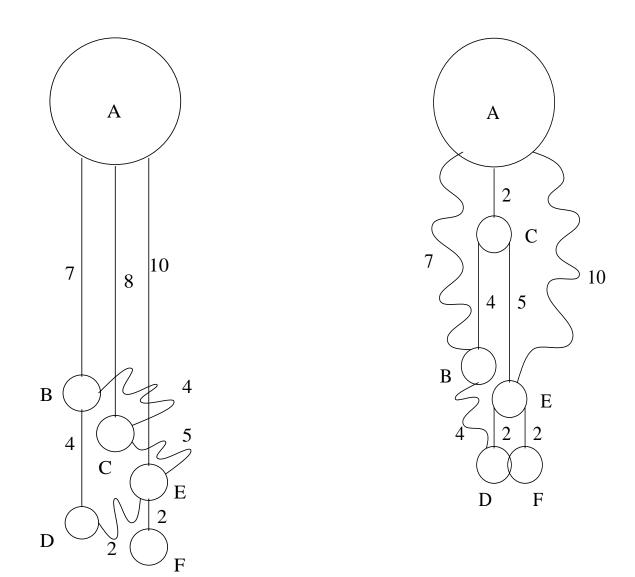
- Complexity: In the existing implementations, the shortest path tree has to be computed from scratch after each link state change.
- ⇒ The size of an OSPF area is limited by the computational complexity.
- SPF might cause unnecessary changes in the routing tables.

Dynamic SPT Algorithm

Recomputation:

Algorithm to recompute the shortest path tree after changes in the link state.

Locality:

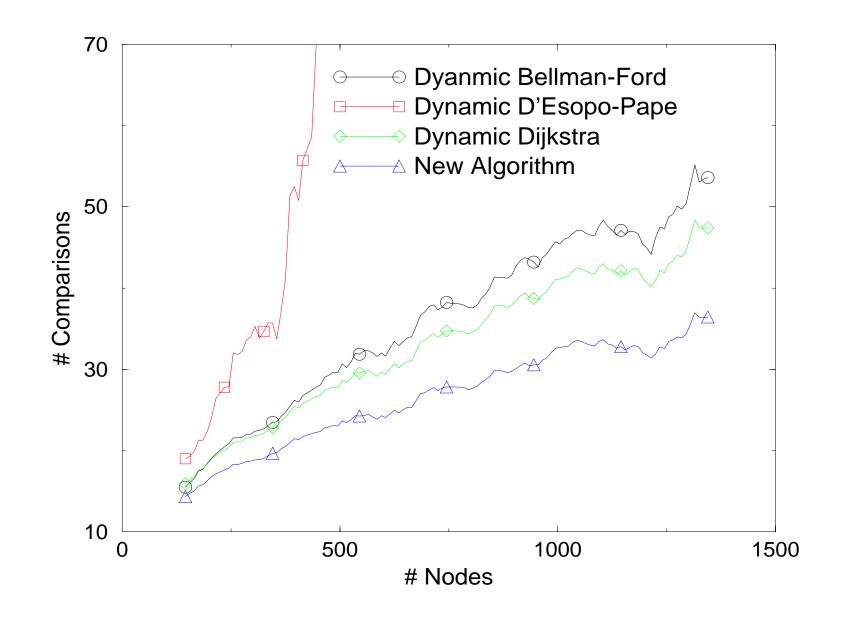

Algorithm only visits nodes that are affected by the new changes in the link state database.

□ Speed:

Algorithm visits fewer nodes.

□ Stability:

Algorithm makes fewer changes in the routing table.


Lowest Complexity

She new algorithm visits the minimum number of nodes.

□ Route Stability

➡ The new algorithm makes the minimum number of changes to the structure of the SPT.

Complexity - Dynamic

D Purpose:

- Setter bandwidth utilization.
- Sector State of the sector of the sector

Objectives:

- Sho Loops.
- Scompatible with conventional OSPF routers.
- Sho collaboration between routers.

Principle

Sext hop must be closer to destination.

□ Search

- 1. Build alternative paths to destination through every port.
- 2. When two paths for the same port collide, choose the shortest one.
- 3. When the extra length of a path (inefficiency) is greater than the cost of the first hop, discard the path.

Obtain best path for each output port to every destination.

Classifies each path.

Provides a quantitative measure which indicates how good or desirable is each path.

Linear Complexity.

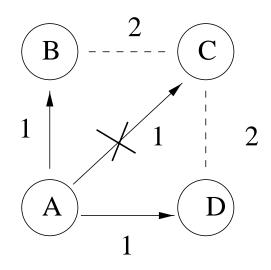
Show the set of th

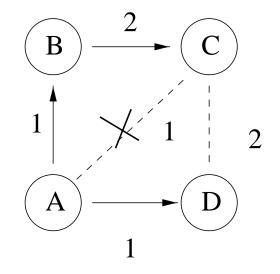
Can be done dynamically.

Can be incorporated into any dynamic or static algorithm that fits in the general framework.

Data Structure

□ At each node:

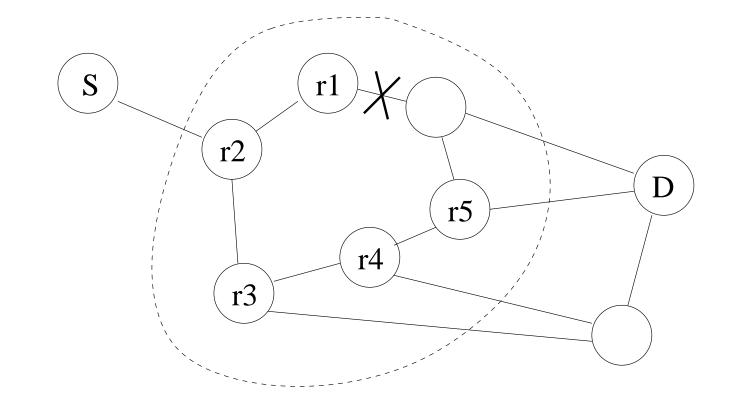

Node X Optimal Distance	Port A	threshold	distance A	parent
	Port B	threshold	distance B	parent
	Port C	threshold	distance C	parent
	Port D	threshold	distance D	parent
	Port E	threshold	distance E	parent


Potential Problems with OSPF

- Requires all routers in the same area to have consistent link information.
- Maintaining such consistency may require large communication overhead.
- During flooding, inconsistent states might lead to routing loops. Flooding a large area takes time.
- The above limits the scalability of OSPF to large routing areas, and limits the frequency of updates.

What happens if a link fails

- A router attached to the failed link informs every router about the failure by flooding the entire area.
- Each router recomputes its shortest paths to every other router based on the new link states.



- A new routing algorithm that restores loop-free routing after link failures.
- **Does not require flooding.**
- Informs only the minimum number of routers after a link failure.
- □ Interoperable with OSPF.

- **Compute a restoration path R and save it(1)**
- □ Inform only routers on the restoration path **R**.
- These routers update their forwarding table using our new procedure (2).
 - Key Idea: Use different levels of metric values. Use a vector metric rather than a scalar metric.

Virtual Node

