Lightwave System Modeling at the Lightwave Communication Systems Laboratory

Information and Telecommunications
Technology Center
University of Kansas

Why Numerical Simulation

• Dispersion and fiber nonlinearities make analytical approaches nearly impossible

Most effects can be included

- More cost-effective than experiments
- They are very useful tools for system design

Simulations Capabilities

- Dispersion and nonlinear effects in optical fiber links
- Evaluate the performance of TDM/WDM systems
- Compare different kinds of fibers
- Simulate different waveform transmissions
- Explore new system configurations

What effects are Included in Our Simulations?

- Fiber loss and dispersion
- Fiber nonlinear effects:
 - * Self-phase modulation (SPM)
 - * Cross-phase modulation (XPM)
 - * Stimulated Raman Scattering (SRS)
 - * Four-wave mixing (FWM)
- Polarization mode dispersion (PMD)
- Spontaneous amplified emission (ASE)

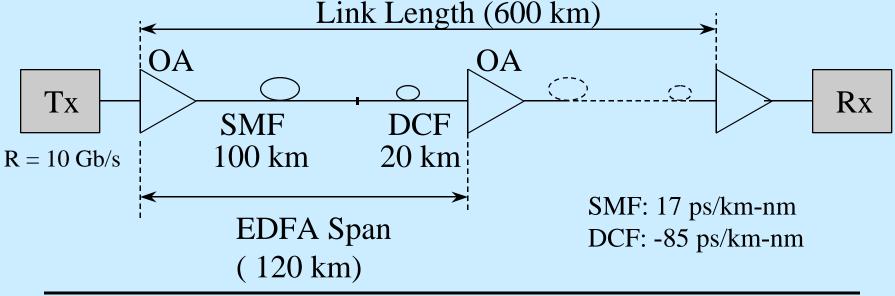
Modeling Optical Fiber Links

- Modeling
 - * Two Parts: Numerical methods and component models
 - * Two Dimensions: TDM and WDM
 - * Two Models: Linear model and nonlinear model
- Model architecture
 - * Links (Point to Point)
 - * Fibers (SMF, DSF, DCF, etc.)
 - * Spans (EDFA Span)

Creator: fig2dev

CreationDate: Wed Mar 12 21:52:17 1997

Creator: fig2dev


CreationDate: Sun Mar 16 20:03:18 1997

Simulation Results

- TDM system with two fiber types: SMF & DCF
- FWM effects in a two-channel WDM system
- Interaction between solitons and NRZ signals in WDM systems

A TDM System to evaluate the dispersion compensation effect

- Two fiber types
 Standard single mode fiber (SMF) and dispersion compensation fiber (DCF)
- Link structure

Creator: fig2dev

CreationDate: Thu Mar 13 16:21:55 1997

Creator: fig2dev

CreationDate: Thu Mar 13 18:05:55 1997

A WDM System to evaluate the four-wave mixing (FWM) effect

Two links:
 Dispersion-shifted fiber (DSF) and TrueWave[™] fiber

Link Structures

Link Length (200 km)

OA DSF 50 km QA

Rx

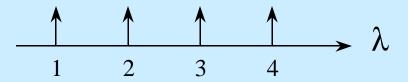
Link Length (200 km)

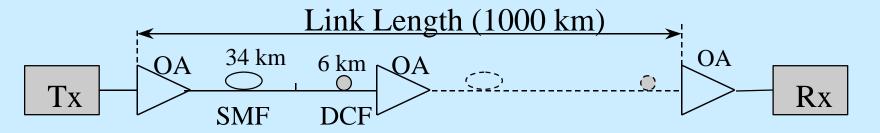
OA TrueWave™ 50 km QA

Rx

The University of Kansas / ITTC

Creator: fig2dev


CreationDate: Thu Mar 13 17:01:34 1997


Creator: fig2dev

CreationDate: Mon Mar 17 17:18:18 1997

Interaction between Solitons and NRZ Signals in WDM Systems

- Objective
 - * Study network transparency for different signal formats
- System Configurations
 - * Four-channel WDM: one soliton, three NRZ channels
 - * Channel spacing: 0.8 nm
 - * Bit rate per channel: 10 Gb/s

Creator: fig2dev

CreationDate: Thu Mar 13 17:53:37 1997

Creator: fig2dev

CreationDate: Thu Mar 13 17:50:26 1997

Conclusions

- We have developed a powerful, comprehensive modeling tool for lightwave communication systems.
- This tool has proven valuable for diagnosing poor performance in systems under development.
- We intend to apply this modeling capability to address questions concerning networking evolution issues.