PHY Aided MAC: A New Paradigm

Dola Saha1 Aveek Dutta2
Dirk Grunwald1 Douglas Sicker1

1Department of Computer Science
University of Colorado at Boulder

2Department of Electrical and Computer Engineering
University of Colorado at Boulder

INFOCOM Miniconference, 19 April, 2009
Outline

1. Introduction
2. Demonstrating Implementation Feasibility
 - Encoding the Signals
 - Detecting the Signals
 - Hardware Implementation
3. Efficient MAC Protocol Using PHY Signaling
 - Medium Access Control
4. Result And Analysis Of Simulation Study
 - Comparing with DCF
5. Future Work and Conclusion
Outline

1. Introduction

2. Demonstrating Implementation Feasibility
 - Encoding the Signals
 - Detecting the Signals
 - Hardware Implementation

3. Efficient MAC Protocol Using PHY Signaling
 - Medium Access Control

4. Result And Analysis Of Simulation Study
 - Comparing with DCF

5. Future Work and Conclusion
Why is the Internet so slow?

I need wired connection - wireless is too slow!!!
OFDM Basics

- Multicarrier modulation technique
- Non-interfering subcarriers
- Each subcarrier can be retrieved by FFT

\[
f_1 = f_c + 10 \times f_\delta
\]

\[
f_2 = f_c - 10 \times f_\delta
\]

Composite Waveform in time domain:
\[
f = f_1 + f_2
\]

FFT of \(f \)
Utilizing OFDM for Simultaneous Communication

- AP assigns unique subcarrier frequencies to each client.
- AP queries using the whole spectrum.
- Clients respond back in each subcarrier.

Figure: Infrastructure-based network

Figure: Schematic Illustration of OFDM Wave properties

Figure: Waterfall Plot in VSA

Saha, Dutta, Grunwald, Sicker (CU Boulder)
Outline

1. Introduction

2. Demonstrating Implementation Feasibility
 - Encoding the Signals
 - Detecting the Signals
 - Hardware Implementation

3. Efficient MAC Protocol Using PHY Signaling
 - Medium Access Control

4. Result And Analysis Of Simulation Study
 - Comparing with DCF

5. Future Work and Conclusion
Variation of Tone Duration with Queue Size

Table: Signaling Scheme for AP

<table>
<thead>
<tr>
<th>State</th>
<th>1<sup>st</sup> & 2<sup>nd</sup> symbol</th>
<th>3<sup>rd</sup> & 4<sup>th</sup> symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO packets to send</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>YES, LOW Priority, Queue < 33%</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>YES, MEDIUM Priority, 33% ≥ Queue ≤ 66%</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>YES, HIGH Priority, Queue > 66%</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Tone Detection

Near Far Effect

Figure: Signal Timing Diagram
Energy Detection
8 Clients transmitting tone with variable delays

Figure: Composite Waveform

Figure: FFT of Composite Waveform
Demonstrating Implementation Feasibility

Hardware Implementation

Hardware Implementation with 3 Nodes

Figure: Nallatech XtremeDSP Development Kit with Xilinx Virtex-IV FPGA

Based on previous work:
Transmitter a, Receiver b

a Fifield et. al., Experiences With a Platform for Frequency-Agile Techniques, DySPAN’07

b Dutta et. al., An Intelligent Physical Layer for Cognitive Radio Networks, WICON’08

(a) Broadcast

(b) ACKs
Outline

1. Introduction

2. Demonstrating Implementation Feasibility
 - Encoding the Signals
 - Detecting the Signals
 - Hardware Implementation

3. Efficient MAC Protocol Using PHY Signaling
 - Medium Access Control

4. Result And Analysis Of Simulation Study
 - Comparing with DCF

5. Future Work and Conclusion
Parallel Polling

- **DCF Contention Based Period**
- **Schedule Based Period**
 - Multiple Uplink Frames
 - Single Downlink Frame
 - Uplink Frames are flexible width
What do we gain?

Figure: Comparing SMACK with PCF/DCF
Result And Analysis Of Simulation Study

Outline

1. Introduction

2. Demonstrating Implementation Feasibility
 - Encoding the Signals
 - Detecting the Signals
 - Hardware Implementation

3. Efficient MAC Protocol Using PHY Signaling
 - Medium Access Control

4. Result And Analysis Of Simulation Study
 - Comparing with DCF

5. Future Work and Conclusion
Simulation in QualNet Network Simulator

Table: General Simulation Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seeds</td>
<td>10</td>
</tr>
<tr>
<td>Packet Size (VoIP)</td>
<td>120\textit{bytes} (G7.11 codec)</td>
</tr>
<tr>
<td>Packet Arrival Interval</td>
<td>15\textit{ms} (G7.11 codec)</td>
</tr>
<tr>
<td>Physical Layer Data Rate</td>
<td>36\textit{Mbps}</td>
</tr>
<tr>
<td>Simulation Time</td>
<td>120\textit{secs}</td>
</tr>
<tr>
<td>Pathloss Model</td>
<td>Two-Ray</td>
</tr>
<tr>
<td>Application Layer</td>
<td>CBR</td>
</tr>
<tr>
<td>Transport Layer</td>
<td>UDP</td>
</tr>
<tr>
<td>Mobility</td>
<td>None</td>
</tr>
</tbody>
</table>
Simulation Results - Comparing with 802.11a DCF

(a) Throughput

(b) Delay

(c) Jitter
Result And Analysis Of Simulation Study
Comparing with DCF

Bandwidth Utilization with Time

PAMAC

![Graph showing bandwidth utilization for PAMAC with time (msec) on the x-axis and node ID on the y-axis.]

802.11

![Graph showing bandwidth utilization for 802.11 with time (msec) on the x-axis and node ID on the y-axis.]

Saha, Dutta, Grunwald, Sicker (CU Boulder)
Outline

1. Introduction
2. Demonstrating Implementation Feasibility
 - Encoding the Signals
 - Detecting the Signals
 - Hardware Implementation
3. Efficient MAC Protocol Using PHY Signaling
 - Medium Access Control
4. Result And Analysis Of Simulation Study
 - Comparing with DCF
5. Future Work and Conclusion
Future Work and Conclusion

Future Work
- Compare with PCF and TDMA
- Extend the current protocol for multi-AP network
- Extend the signalling mechanism in decentralized network
- Utilizing the tones for reliable broadcast or multicast
- Increase the size of testbed

Conclusion
- Simultaneous tone transmission is feasible
- Lower layer signalling can be utilized in higher layers
- Implemented prototype in a reconfigurable hardware
Questions?