
Blacktooth: Breaking through the Defense of Bluetooth in Silence
Mingrui Ai

University of Science and Technology
of China, Hefei, Anhui, China
amr2016@mail.ustc.edu.cn

Kaiping Xue
University of Science and Technology

of China, Hefei, Anhui, China
kpxue@ustc.edu.cn

Bo Luo
University of Kansas
Lawrence, KS, USA

bluo@ku.edu

Lutong Chen
University of Science and Technology

of China, Hefei, Anhui, China
lutong98@mail.ustc.edu.cn

Nenghai Yu
University of Science and Technology

of China, Hefei, Anhui, China
ynh@ustc.edu.cn

Qibin Sun
University of Science and Technology

of China, Hefei, Anhui, China
qibinsun@ustc.edu.cn

Feng Wu
University of Science and Technology

of China, Hefei, Anhui, China
fengwu@ustc.edu.cn

ABSTRACT
Bluetooth is a short-range wireless communication technology
widely used by billions of personal computing, IoT, peripheral,
and wearable devices. Bluetooth devices exchange commands and
data, such as keyboard/mouse inputs, audio, and files, through a
secure communication channel that is established through a pairing
process. Due to the sensitivity of those commands and data, security
mechanisms, such as encryption, authentication, and authorization,
have been developed and adopted in the standards. Nevertheless,
vulnerabilities continue to be discovered.

In the literature, few successful attacks against the Bluetooth
connection establishment stage have been reported. Many attacks
simply assume that connections are already established or use a
compromised agent, e.g, a malicious app or a careless user, to initial-
ize the connection. We argue that such assumptions are strong and
impractical. A stealthily established connection is a critical starting
point for any practical attack against Bluetooth devices. In this
paper, we demonstrate that the Bluetooth Specification contains a
series of vulnerabilities that will enable an attacker to impersonate
a Bluetooth device and successfully establish a connection with a
victim device. The entire process does not require any involvement
of the device owner/user or any malicious app on the victim de-
vice. The attacker could further escalate permissions by switching
Bluetooth profiles to retrieve sensitive information from the victim
device and inject arbitrary commands. We name our new attack
as the Blacktooth Attack. To demonstrate the effectiveness and
practicality of the Blacktooth attack, we evaluate it against 21 dif-
ferent Bluetooth devices with diverse manufacturers and operating

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’22, November 7–11, 2022, Los Angeles, CA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9450-5/22/11. . . $15.00
https://doi.org/10.1145/3548606.3560668

systems, and all major Bluetooth versions. We show that the newly
proposed attack is successful on all victim devices.

CCS CONCEPTS
• Security and privacy→Mobile and wireless security.

KEYWORDS
Blutooth security; spoofing; permission escalation

ACM Reference Format:
Mingrui Ai, Kaiping Xue, Bo Luo, Lutong Chen, Nenghai Yu, Qibin Sun,
and Feng Wu. 2022. Blacktooth: Breaking through the Defense of Bluetooth
in Silence. In Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’22), November 7–11, 2022, Los Angeles,
CA, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3548606.3560668

1 INTRODUCTION
The Bluetooth technology has been widely deployed in billions
of electronic devices for low-power, short-range wireless commu-
nications [11]. The Bluetooth specifications are standardized by
the Bluetooth Special Interest Group (SIG), which currently main-
tains two partly incompatible variants of Bluetooth protocols: Blue-
tooth BR/EDR and Bluetooth Low Energy (BLE). Since Bluetooth
is designed for and well-adopted by personal computing and mo-
bile/wearable devices, a large amount of sensitive information is
being transmitted over Bluetooth connections. Hence, significant
efforts have been devoted to Bluetooth security. However, vulnera-
bilities continue to be discovered [17, 23, 34]. In particular, proto-
col vulnerabilities were exploited by several high-profile attacks,
which eventually led to substantial revisions of the specifications
[7, 22, 30]. Recently, a wide spectrum of attacks have been discov-
ered in different stages of the Bluetooth stack [8, 32], e.g., Antonioli
et al. presented the BIAS attack [5] to spoof Bluetooth authentica-
tion and the KNOB attack [4] to downgrade the Bluetooth session
key entropy. Xu et al. [36] discovered that a Bluetooth device is still
trusted by a paired Android phone even if its profile has changed.

However, to the best of our knowledge, there does not exist an
effective attack that autonomously triggers a Bluetooth connection

https://doi.org/10.1145/3548606.3560668
https://doi.org/10.1145/3548606.3560668
https://doi.org/10.1145/3548606.3560668

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Mingrui Ai, Kaiping Xue, Bo Luo, Lutong Chen, Nenghai Yu, Qibin Sun, and Feng Wu

without interacting with the user. In practice, connection establish-
ment is the first step of many attacks that target the later stages of
Bluetooth communications. In the literature, attacks often assume a
pre-established connection, e.g., [3, 21, 31], or set up the connection
with a user misoperation or a pre-installed malicious application
on the victim device, e.g., [33, 36]. Such assumptions could be too
strong in real-world settings. While some existing works focus on
other stages of the connection establishment process, they neglect
the initial connection trigger stage [6, 21]. We argue that an ef-
fective attack that is capable of stealthily establishing a Bluetooth
connection with the victim device is a significant threat to billions
of Bluetooth users, because such an attack would make all the
subsequent attacks more practical and dangerous.

In this paper, we presentBlacktooth, an autonomous and stealthy
attack against the connection establishment phase of Bluetooth
communications. We first demonstrate that the Bluetooth Specifi-
cation contains a series of vulnerabilities, which can be exploited
by the attacker to (1) impersonate a peripheral Bluetooth device
and establish a connection with a victim device without prompting
the device owner for confirmation, (2) bypass authentication by
downgrading to unilateral Legacy Authentication and only “au-
thenticating” the victim device, (3) break encryption by forcing the
victim device to use a short encryption key and brute-forcing the
key, and (4) escalate privileges by switching Bluetooth profiles, and
retrieve sensitive information from the victim device or inject arbi-
trary commands. In this attack, the attacker (or attacking device)
does not need to be present when the impersonated device (e.g., a
benign Bluetooth headset) and the victim device (e.g., a smartphone)
are paring, does not need to observe any previous communication
between the impersonated device and the victim device, does not
know the link key of the connection, and does not need to have any
pre-shared secret between them. The proposed attack is completely
stealthy such that no notification or prompt dialog would pop up
on the victim device during the whole attack process.

In a proof-of-concept implementation, we demonstrate that the
Blacktooth attack is effective against commodity Bluetooth devices.
We test smartphones and tablets with different Bluetooth chips
and versions, manufactured by the major vendors, including Apple,
Google, Samsung, Lenovo, HUAWEI, HONOR, OnePlus, OPPO,
Xiaomi, etc. The attacks are successful on all the tested devices.

We summarize our main contributions as follows:

• We articulate a series of vulnerabilities in the Bluetooth Spec-
ification, including novel vulnerabilities. We demonstrate that
a malicious device can initiate a connection due to the unfixed
master-slave roles in a piconet. Combining the new vulnerability
with two known vulnerabilities, we are able to establish a ma-
licious connection with the victim device in an utterly stealthy
manner. This attack also makes many previously reported at-
tacks practical, since it eliminates the main obstacle in the initial
connection establishment stage.

• We further demonstrate that the attacker can exploit two more
vulnerabilities in the Bluetooth profile authentication process
to escalate the connection to sensitive profiles. We show that
the newly proposed attack is completely stealthy, i.e., no alert or
notice is presented to the device owner and no user confirmation
is needed to launch the attack. The attack is also very practical

that it does not assume any prior knowledge or require any pre-
installed malicious agent on the victim devices.

• To demonstrate the practicality of the proposed Blacktooth attack
against real-world devices, we successfully launch the attack on
21 different Bluetooth devices. Our device samples include a wide
range of smartphone and PC manufacturers, Bluetooth chips,
operating systems, and all major Bluetooth versions. Finally, we
discuss possible defenses against the new attack.

Ethical Considerations and Responsible Disclosure. The ob-
jective of this research is to investigate unknown vulnerabilities
in a widely adopted technology. The research may potentially ben-
efit billions of end-users. All the experiments presented in this
paper were conducted in research labs. We have never attacked
any real-world device outside of the lab. In April 2022, we disclosed
the technical details of the Blacktooth attack and potential coun-
termeasures to the manufacturers of the tested devices. We also
disclose our attacks to the Bluetooth SIG. As of the publication
of this manuscript, we have received responses from several com-
panies, who acknowledged our findings, successfully replicated
the attack, and/or planned to further explore this issue. We are in
close collaboration with some manufacturers in developing effec-
tive patches. We have not disclosed the attack to anyone other than
the device manufacturers and the Bluetooth SIG.

The rest of the paper is organized as follows: in Section 2, we
briefly introduce Bluetooth BR/EDR. In Section 3, we present the
system and adversary model, followed by a series of vulnerabilities
to be exploited. We present the details of the Blacktooth attack in
Section 4, followed by the implementation and evaluation results in
Section 5. We further discuss several practical issues of the attack
and propose potential defenses in Section 6, review the literature
in Section 7, and finally conclude the paper in Section 8.

2 BACKGROUND
2.1 Bluetooth BR/EDR Overview
Bluetooth Basic Rate/Extended Data Rate (Bluetooth BR/EDR), also
known as Bluetooth Classic, is a low-power wireless technology
widely used in short-range communications. Bluetooth BR/EDR
uses the ISM band at 2.4GHz [10]. One device, called the Master, pro-
vides the reference clock signal, and all other devices (no more than
seven), called the Slave(s), are synchronized to the clock. All syn-
chronized devices build a network called piconet. Every Bluetooth
device has a 48-bit Bluetooth device address (BD_ADDR).

The Bluetooth system consists of the Bluetooth core stack and
the applications. The Bluetooth core stack contains the Physical,
Logical, and Logical Link Control Adaptive Protocol (L2CAP) layers,
and some protocols to support applications. The Bluetooth devices
implement the physical and logical layers in Bluetooth chips, known
as the Bluetooth Controller, and implement the L2CAP layer and
the application-orientated protocols in the device operating system
(OS), known as the Bluetooth Host. The Bluetooth Host communi-
cates with the Controller through the Host Controller Interface
(HCI). The Bluetooth devices broadcast the supported services and
the associated parameters to other devices using Service Discovery
Protocol (SDP). The application layer implements the Bluetooth
service interfaces and functions offered to users in userspace.

Blacktooth: Breaking through the Defense of Bluetooth in Silence CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

2.2 Bluetooth Connection and Pairing
To establish a secure connection between two Bluetooth devices, the
Master first queries the Slave to get the device name and features.
Then, the Master sends a Connection Request to initiate connec-
tion establishment. Note that the device roles are not fixed–the
specification only defines the Master as the device that initiates a
connection. That is, any arbitrary Bluetooth BR/EDR device can
initiate a connection and become the Master regardless of its func-
tionality or previous role. For example, Bluetooth headsets, which
are usually slave devices, can also take master roles and proactively
initiate connections with smartphones. The devices can switch the
Master-Slave roles after establishing a piconet.

The Bluetooth Specification provides link layer mechanisms to
authenticate devices to avoid adversarial connections. Pairing is
to negotiate a link key between two Bluetooth devices with the
Link Manager Protocol (LMP). Secure Simple Pairing (SSP) is the
most popular pairing mechanism, which uses Elliptic Curve Diffie-
Hellman (ECDH) for key agreement. User confirmation is required
when a new device attemps to pair with the user’s smartphone.
When the are paired, two Bluetooth devices share the common
link key to be used for future authenticates. Once authentication
is successful, the devices derive an encryption key from the link
key and public parameters. The entropy of an encryption key is in
the range of 1 to 16 bytes according to the key length negotiation
procedure. Note that the procedures mentioned above are neither
integrity protected nor encrypted. If both devices support Secure
Connections, Secure Authentication is used for authentication, and
AES CCM is used for encryption. Otherwise, Legacy Authentication
and 𝐸0 stream cipher are used for authentication and encryption.

2.3 The Bluetooth Profile
Different Bluetooth devices produced by different manufacturers
may provide the same functionalities; hence, protocols, known as
Bluetooth profiles, are developed to regulate all kinds of commu-
nications between the devices. The Bluetooth profiles define the
necessary functions in the Bluetooth core stack and other required
settings. As of now, the Bluetooth SIG has specified about 40 profiles
for the Bluetooth BR/EDR. There are some commonly used profiles
in Bluetooth devices, like the Advanced Audio Distribution Profile
(A2DP) used for audio communication between Bluetooth headsets
and smartphones, the Human Interface Device Profile (HID) used
to send keystrokes from keyboards to smartphones, and the Phone
Book Access Profile (PBAP) used to get contacts. A Bluetooth device
can implement multiple profiles simultaneously and indicate all
available services to other devices using SDP.

3 SECURITY ANALYSIS OF BLUETOOTH
BR/EDR

The existing Bluetooth security mechanisms are deployed in the
Bluetooth Controller and Host. The Controller authenticates the
remote device in pairing and ensures communication confidential-
ity through encryption. The Host identifies the Class of Device
(CoD) and restricts the capabilities of a remote device. These mech-
anisms work under the assumption that they are well-coordinated.
However, we find that this assumption is unreliable, especially, the
security mechanisms do not fully understand the behaviors and

Mallory impersonates Bob

Bob Alice
Link key shared between Alice and Bob,

and unknown to Mallory

Alice

Blacktooth Attack

Figure 1: Blacktooth attack overview: Alice and Bob share
a link key that is unknown to Mallory. Mallory’s goal is to
establish a Bluetooth connection with Alice and get the privi-
lege through sensitive profiles while impersonating Bob. The
attack is utterly stealthy without the victim’s interactions.

threats from their counterparts. An adversary can take advantage of
such fundamental design flaws in each mechanism, break through
the defense step-by-step and finally control the target device.

3.1 The System Model
We consider two victim devices, Alice and Bob, who securely com-
municate with each other over Bluetooth BR/EDR (Figure 1). Since
both victims are not required to be present at the time of the attack,
we only assume that two legitimate devices exist and have commu-
nicated in the past. That is, Alice and Bob have already shared and
stored the link key, which is a long-term key that is unknown to
the attacker. The key has been established through Bluetooth’s Se-
cure Simple Pairing (either using Legacy Authentication or Secure
Authentication). These standardized security mechanisms are ex-
pected to protect Bluetooth communication against eavesdropping,
impersonation, and man-in-the-middle attacks.

Without loss of generality, we assume that Alice is the Bluetooth
Master, e.g., a smartphone, and Bob is the Bluetooth Slave, e.g., Blue-
tooth earbuds. Alice can initiate and establish a secure connection
with Bob using the existing link key, while Bob is willing to accept
a connection from Alice using this key. We assume all the security
primitives in use, such as FIPS and AES, are perfectly secure.

3.2 Attacker Model
The attacker, Mallory, aims to impersonate Bob to establish a se-
cure Bluetooth connection with Alice and control Alice through
advanced permissions (such as keyboard input) obtained from sen-
sitive profiles (such as the HID profile). In Section 4, we present the
technical details of all the steps.

Mallory must be physically in the victim device’s Bluetooth con-
nection range. Mallory does not observe the secure pairing process
between Alice and Bob, nor does it know the link key. Mallory is
capable of eavesdropping, decoding, and manipulating unencrypted
packets, and jamming the Bluetooth spectrum. Mallory knows the
public information about Alice and Bob, such as Bluetooth names
and addresses, protocol versions, capabilities, etc. Since connection
establishment is not encrypted, Mallory can gather the exchanged

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Mingrui Ai, Kaiping Xue, Bo Luo, Lutong Chen, Nenghai Yu, Qibin Sun, and Feng Wu

attributes by eavesdropping the communication. After a secure con-
nection is established between Alice and Bob, Mallory could force
them to disconnect by jamming the Bluetooth spectrum. Mallory
could attempt to re-establish a secure connection with Alice.

3.3 Security Vulnerabilities in Bluetooth
BR/EDR

Here we articulate 5 vulnerabilities in the connection/pairing pro-
cess described in Section 2.2. In particular, Vulnerability #1 is newly
discovered in this research, while Vulnerability #4 was previously
reported on Android but we confirmed it on iOS, iPadOS, macOS,
HarmonyOS, and the latest version of Android as well.
Vulnerability #1 (new): Unfixed Roles (Inquiry). Alice and Bob
discover each other in the inquiry procedure and then connect over
Bluetooth BR/EDR. Alice (Master) is expected to send a Connection
Request to Bob to start establishing a connection. This process
usually requires a user confirmation on the Master (Alice) side to
avoid misconnection to unintended (malicious) devices. However,
Bluetooth BR/EDR does not bind Alice and Bob to the Master-
Slave roles; hence, either device can switch to the other role. In
practice, the paging device always becomes the Master, even if
the device takes the functionality of a traditional Slave device (e.g.,
Bluetooth headset). The role change can be performed anytime after
the connection is complete. That is, Mallory could first impersonate
Bob, who has paired with Alice before. Mallory then makes full use
of the Master definition rule and the role switching mechanism to
send a Connection Request to Alice. Since Mallory (impersonating
Bob) now serves as the Master and Alice becomes the Slave, user
confirmation is NOT prompted on Alice.

Please note that some commodity Bluetooth devices on the mar-
ket, especially some headsets, utilize this vulnerability as a feature
to implement the “automatic reconnect” function. However, we
demonstrate that this design introduces a serious security vulner-
ability in the Bluetooth Specification, which causes severe conse-
quences when it is exploited in an attack. TheMaster/Slave roles are
symmetric in most link layer communications, so that the roles are
considered switchable from a communication perspective, which is
the current practice in the Bluetooth standard and in the products.
However, the two roles are not symmetric in the security design. In
particular, the authentication and handshake process is dominated
by the Master. Moreover, the protocol does not bind the device roles
with the upper layer functions, while the functions of the paired
devices are also not symmetric. Therefore, role switching introduces
a serious security vulnerability in the Bluetooth standard. We con-
sider the vulnerability of unfixed roles as an amplifier of other
(known or unknown) threats, since it may enable other attacks to
be launched silently. We are concerned that new vulnerabilities
may be discovered in future research that can exploit the unfixed
roles vulnerability to perform a complicated and silent attack.
Vulnerability #2: Unilateral Legacy Authentication (Connec-
tion) [5]. During connection, Alice and Bob use the shared link key
for authentication. Secure Authentication (SA) is used only if both
devices support Secure Connections. Meanwhile, the Specification
only requires unilateral authentication in Legacy Authentication
(LA), i.e., mutual authentication is not required in LA. Antonioli et
al. [5] confirm that only the Master authenticates the Slave during

LA. Therefore, the attacker without the link key can impersonate
the Master and complete secure connection establishment without
authenticating the Slave. Even if both devices support Secure Con-
nections, the attacker can downgrade SA to LA by declaring that
the impersonated device does not support Secure Connections.
Vulnerability #3: Potential Low Encryption Key Entropy
(Connection) [4]. During Connection, Alice and Bob compute
an encryption key 𝐾𝐶 and negotiate the entropy of the encryption
key, which is in the range of 1 byte to 16 bytes. Since the encryp-
tion key 𝐾𝐶 is derived from the link key, Mallory cannot compute
the encryption key directly. However, 𝐾𝐶 is not directly used to
encrypt messages. The actual encryption key 𝐾 ′

𝐶
is computed by

reducing the entropy of 𝐾𝐶 to 𝑁 bytes. 𝑁 is the result of the Blue-
tooth encryption key negotiation protocol. Thus, the attacker can
impersonate one device and force the other one to accept 1 byte of
entropy and then attempt to brute force the encryption key 𝐾 ′

𝐶
. It

is easy to exhaust all the possibilities since the key length of 𝐾𝐶 is 8
bits. The attacker can use well-known Bluetooth fields (e.g., L2CAP
headers) as oracles to launch a known-plaintext attack on 𝐾 ′

𝐶
.

Vulnerability #4: Inconsistent Profile Authentication Pro-
cedure (Communication) When a profile change is requested
during communication, Alice is expected to take additional security
validations before connecting to Bob’s new profile and allowing
the new functionality. However, what Alice should do to verify
the profiles is unclear. Bluetooth Specification does not give any
exercisable suggestions about profile authentication. Bob is trusted
to make arbitrary profile changes as long as Alice and Bob have
paired. Even worse, no alert appears on Alice’s screen to warn her
about the profile changes, nor does a confirmation dialog pop up
to request permission from Alice. As such, if Mallory successfully
impersonates Bob and establishes a secure connection with Alice,
Mallory can use new (malicious) profiles that are inconsistent with
those used by Bob. For instance, Mallory can impersonate Bob,
which used to be a headset, and enable a Human Interface Device
Profile (HID)–a profile for keyboard and mouse.

The whole process described above is silent. On Android de-
vices, Alice can only notice the profile and permission changes
if she checks the details of Bluetooth devices in phone settings
[36]. Moreover, Alice is less likely to notice the changes on Apple
devices, since iOS does not always display the device information
(e.g., device type), and hides most of the permissions from the user.
Vulnerability #5: Default Profile ServicesAuthorization (Com-
munication) During communication, the Host accepts arbitrary
profile requests from the Bluetooth device. By default, all the permis-
sions associated with the requested profile are granted, even when
the requested profile is inconsistent with the capabilities of the
actual device. For example, when a headset adds the HID (Human
Interface Device) profile, the victim phone will accept the request
and grant permissions without prompting the user for authoriza-
tion. Therefore, as long as Mallory impersonates Bob and connects
to Alice, Mallory can practically obtain any arbitrary permission
without user consent. We consider this a severe vulnerability that
allows privilege escalation. Even worse, in the Android family of
operating systems, the new profile’s status is shown as “Denied”
in System Settings, while the new profile has indeed obtained the
permissions. In iOS, the profile statuses are invisible.

Blacktooth: Breaking through the Defense of Bluetooth in Silence CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Figure 2: The attack process of the Blacktooth attack.

4 THE BLACKTOOTH ATTACK
In this section, we present the technical details of the Blacktooth
attack, which exploits all five vulnerabilities introduced in Section
3.3. As shown in Figure 2, the attack consists of the following steps:
(1)Mallory (the attacker) impersonates Bob (the Slave) by changing
its Bluetooth address to Bob’s device address (BD_ADDR𝐵). Mallory
further proactively sends a Connection Request to Alice in order to
trigger the connection process over Bluetooth BR/EDR and force
Alice to the Slave role, so that the connection will not be noticed by
the user (Vulnerability #1). (2)Mallory establishes a secure con-
nection with Alice using Legacy Authentication, so that Alice (the
Slave) does not authenticate Mallory (the Master) (Vulnerability
#2). (3)Mallory reduces the entropy of the encryption key to 1 byte.
Without knowing any pre-shared secret including the link key (𝐾𝐿),
Mallory launches a brute force attack to obtain the encryption key
𝐾 ′
𝐶
. (Vulnerability #3). (4) Finally, Mallory connects to Alice’s

sensitive profiles, injects malicious commands (using the HID pro-
file), and retrieves Alice’s sensitive data (using the PBAP profile)
(Vulnerability #4, #5). As a result, Mallory impersonates Bob and
escalates his privileges to obtain full control of Alice. Mallory can
send arbitrary keystrokes, click arbitrary buttons to change settings,
take and retrieve screenshots, read the phone book and messages,
and even power off the smartphone. The whole attack procedure is
totally silent and does not need any user’s operation.

4.1 Identity Forging and Proactive Connection
Request (Vulnerability #1)

The first step for every Bluetooth BR/EDR connection is the inquiry
procedure. Conventionally, Alice (the Master) pages Bob (the Slave)
to get the remote device name and features before establishing a
connection. The device owner can modify the device name, which
means the attacker can change its device name to Bob’s (e.g., Steve’s
Headset). In this way, even if the owner notices that his phone is
connected to a Bluetooth device, he will not observe any anomalies,
since the device name is familiar to him. At the same time, Mallory
has to change its Bluetooth address to Bob’s (BD_ADDR𝐵). Alice
(the smartphone) then takes Mallory as Bob, since Bluetooth de-
vices are identified by Bluetooth addresses. It is trivial for Mallory
to obtain Bob’s device information by eavesdropping on the con-
nection establishment procedure (unencrypted) between Bob and
any device, or exploiting the inquiry procedure.

Next, Mallory expects to trigger the connection process with
Alice. It is the most critical step in the entire attack process where
Mallory needs to stay stealthy and avoid alerting the user. In par-
ticular, previous researches fall short in autonomously and silently
establishing a connection between Alice and Mallory. For instance,
Xu et al. [36] requires a malicious application installed in the victim
phone to send the Connection Request to the malicious Bluetooth
device, while many other attacks neglect this process by assum-
ing a careless user or an already-established connection. None of
the existing attacks that we are aware of can silently establish a
Bluetooth connection with the target device without exploiting a
malicious agent or requiring confirmation from the user.

To make the attack practical in the real world, we take advan-
tage of a flaw in the protocol design of device roles. In particular,
the Bluetooth Specification defines that the device that initiates a
connection is the Master and Master-Slave roles may change after
a piconet has been established. That means the roles of Alice and
Bob are not static, and Bob can initiate a connection proactively as
the Master before switching his role to the Slave. While this mech-
anism is utilized by Bluetooth headsets to automatically reconnect
to the phones they are paired with, it has not caught the attention
of the security community. Mallory can impersonate Bob and send
a Connection Request to Alice in order to trigger the connection
establishment process without any operation by Alice. The con-
nection initiation phase is completely silent without triggering any
notification or confirmation or requiring any manual intervention.
Furthermore, the connection initiation phase cannot be restricted
by Alice unless the user turns off Bluetooth manually, since the
definition of the Master and Slave is the basic concept, and the role
switch procedure is a basic design of Bluetooth BR/EDR.

4.2 Authentication Spoofing (Vulnerability #2)
After sending the Connection Request, connection establishment
moves into the authentication procedure. The Bluetooth Specifica-
tion defines two authentication methods: Legacy Authentication
and Secure Authentication. Note that Secure Authentication is used
only if both devices support Secure Connections, which is first
proposed in Bluetooth 4.1.

The Legacy Authentication process is illustrated in Figure 8. It
works as follows: the verifier generates a random number called

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Mingrui Ai, Kaiping Xue, Bo Luo, Lutong Chen, Nenghai Yu, Qibin Sun, and Feng Wu

Figure 3: Authentication spoofing on Bluetooth Legacy Au-
thentication process. Mallory establishes a connection with
Alice while impersonating Bob. Mallory sends AU_RAND
to Alice and receives SERS from Alice. Since the Bluetooth
Specification does not require mutual authentication, Alice
does not have to verify that Mallory knows 𝐾𝐿 .

AU_RAND and sends it to the claimant. The claimant computes
the response SERS = H (𝐾𝐿 , AU_RAND, BD_ADDR𝐵) and sends
it back to the verifier. Then the verifier computes the SERS’ using
the same hash function and the same parameters to compare with
SERS. The verifier believes the claimant has the same link key 𝐾𝐿
if the value of SERS and SERS’ are equal.

According to Bluetooth Specification, in Legacy Authentication,
the verifier does not have to be the Master and the application de-
fines which device has to be authenticated. In practice, the verifier
is almost always the Master and the claimant is the Slave. Moreover,
the Legacy Authentication procedure only provides unilateral au-
thentication. To achieve mutual authentication, the Master and the
Slave must run the Legacy Authentication procedure respectively.
The Bluetooth Specification does not require mutual authentica-
tion, and in practice, few devices require mutual authentication.
Antonioli et al. [5] confirms that only the Master authenticates the
Slave unilaterally during secure connection establishment. There-
fore, Mallory can establish a secure connection with Alice without
being authenticated by Alice if Mallory keeps its role as the Master.

The authentication spoofing process for Legacy Authentication
is illustrated in Figure 3. Alice accepts the Connection Request from
Mallory and treats it as Bob. Mallory then sends AU_RAND to Alice,
and Alice computes SERS using the tuple AU_RAND, BD_ADDR𝐴
and the link key 𝐾𝐿 and sends the result to Mallory. In this way,
Mallory can perform the rest of the authentication steps (e.g., key
negotiation and secure link activation) as Bob without having to
prove to Alice that it knows 𝐾𝐿 .

Secure Authentication is only used to provide mutual authen-
tication in Secure Connections. The vulnerability that the Mas-
ter unilaterally authenticates the Slave no longer exists in Secure
Authentication. However, we can manage to downgrade Secure
Authentication to Legacy Authentication to launch the spoofing
attack. The Bluetooth Specification does not require two devices
that were paired using Secure Connections to keep using Secure
Authentication subsequently. That is, Alice and Bob can use Legacy

Figure 4: Authentication spoofing on Bluetooth Secure Au-
thentication process. During feature exchange, Mallory (im-
personating Bob) declares that Secure Connections is not
supported, and Alice declares that Secure Connections is
supported. Secure Authentication is downgraded to Legacy
Authentication. Mallory sends AU_RAND to Alice and re-
ceives SERS from Alice. Mallory establishes a connection
with Alice without knowing the link key.

Authentication for connection establishment even though they
were paired using Secure Connections. Mallory can take advantage
of this vulnerability to downgrade Secure Authentication.

Assuming that Alice and Bob have previously paired using Secure
Authentication, the new spoofing attack process is shown in Figure
4. Mallory needs to declare to Alice that it does not support Secure
Connections in order to downgrade the authentication procedure
to Legacy Authentication. As a result, Mallory acts as the Master
and “authenticates” Alice using unilateral Legacy Authentication,
while Alice does not authenticate Mallory.

4.3 Encryption Key Negotiation and Brute Force
(Vulnerability #3)

Once the authentication is successful, the encryption procedure
starts. The Bluetooth Specification defines two key generationmeth-
ods for Bluetooth BR/EDR, for Secure Connections and approaches
prior to Secure Connections, respectively. Since Secure Connec-
tions has already been downgraded in the authentication phase,
our attack never uses the encryption key generation method for
Secure Connections. We focus on the encryption key generation
method for prior to Secure Connections in the rest of this section.

In encryption, a key 𝐾𝐶 is generated from tuple EN_RAND,
AU_RAND, BD_ADDR𝐴 and 𝐾𝐿 . 𝐾𝐿 is the link key shared between
Alice and Bob, and the other parameters are known to the public.
The entropy of 𝐾𝐶 is always 16 bytes if the key generator is im-
plemented according to the Bluetooth Specification. Note that 𝐾𝐶

Blacktooth: Breaking through the Defense of Bluetooth in Silence CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

cannot be used to encrypt messages directly. A key shortening func-
tion is used to compute the actual encryption key 𝐾 ′

𝐶
by reducing

the entropy of 𝐾𝐶 to 𝑁 bytes, where 𝑁 ∈ [1, 16] is negotiated by
the two devices. The entropy of the encryption key is irrelevant to
the Bluetooth security level–the entropy could be 1 byte even if the
connection is at the highest security level.

The key negotiation process is implemented in the Bluetooth
Controller, and it is transparent to the Bluetooth Host and Bluetooth
applications. Therefore, Mallory (the attacker) can persuade Alice
to accept 1 byte of entropy for the encryption key 𝐾 ′

𝐶
without

being noticed by the victim. In the following, we describe how
Mallory and Alice negotiate 𝑁 equal to 1 in detail (as shown in
Figure 5). The Bluetooth Specification defines two parameters 𝐿𝑚𝑎𝑥

and 𝐿𝑚𝑖𝑛 , where 1 ≤ 𝐿𝑚𝑖𝑛 ≤ 𝐿𝑚𝑎𝑥 ≤ 16, to declare the range of the
allowed key length. After the two devices agree to initiate Bluetooth
link layer encryption, the Master (now still Mallory) will send a
suggested value, 𝐿𝑠𝑢𝑔 , to the Slave (now Alice). 𝐿𝑠𝑢𝑔 is supposed
to equal to 𝐿𝑚𝑎𝑥 initially. Hence, if Mallory wants to negotiate 𝑁
equal to 1, it has to set 𝐿𝑚𝑎𝑥 = 𝐿𝑚𝑖𝑛 = 1. Then Alice will compare
𝐿𝑠𝑢𝑔 and its own 𝐿𝑚𝑖𝑛 . If 𝐿𝑚𝑖𝑛 ≤ 𝐿𝑠𝑢𝑔 , which means Alice supports
the length, Alice will take the value as the length of the encryption
key 𝐾 ′

𝐶
and the negotiation is successful.

The success of the negotiation process described above relies on
Alice’s 𝐿𝑚𝑖𝑛 = 1. There is a theoretical possibility that Alice sets
𝐿𝑚𝑖𝑛 larger than 1 and does not accept Mallory’s suggestion, which
means Mallory cannot convince Alice to accept the entropy of the
encryption key as low as 1 byte. Indeed, if Alice sets the value of
𝐿𝑚𝑖𝑛 properly, it could prevent the attack. However, Antonioli et
al. [4] found that 𝐿𝑚𝑖𝑛 and 𝐿𝑚𝑎𝑥 are stored in the firmware of the
Bluetooth Controller (chip) and are fixed generally. The Bluetooth
Host and the Bluetooth application cannot check and set the value
of 𝐿𝑚𝑖𝑛 and 𝐿𝑚𝑎𝑥 nor decide whether to accept the suggestion.
Even worse, Antonioli et al. [4] found that most devices on the
market can accept 1-byte entropy keys. That is, it is unavoidable
for Alice to accept the entropy of 1 byte in practice.

Since Alice and Mallory have already negotiated the entropy
equal to 1 byte, it is easy for Mallory to enumerate all 256 possible
𝐾 ′
𝐶
and brute force it. It is convenient for Mallory to utilize some

well-known Bluetooth packet fields (e.g., L2CAP headers) as oracles.

𝐾 ′
𝐶 (𝑥) = 𝑔

(𝑁)
2 (𝑥) (𝐾𝐶 (𝑥) 𝑚𝑜𝑑 𝑔 (𝑁)

1 (𝑥)) (EQ 1)

𝐾 ′
𝐶
is computed based on the 𝐸0 cipher using Equation (EQ 1),

where N, an integer in the range of 1 to 16, is the negotiated en-
cryption key length. 𝑔 (𝑁)

1 (𝑥) is an 8𝑁 -degree polynomial used
to reduce the entropy of 𝐾𝐶 to 𝑁 bytes. The reduction output is
encoded with a block code 𝑔 (𝑁)

2 (𝑥), which is a polynomial of de-
gree less or equal to 128 − 8𝑁 . The polynomials depend on 𝑁 ,
and they are defined in [10, p. 969]. When 𝑁 = 1, 𝑔 (1)1 (𝑥) equals
to 0x0000000000000000000000000000011d and 𝑔 (1)2 (𝑥) equals to
0x00e275a0abd218d4cf928b9bbf6cb08f.

After learning the actual encryption key, Mallory can utilize 𝐾 ′
𝐶

to send messages to Alice and decrypt packets from Alice.

4.4 Profile Change (Vulnerabilities #4, #5)
As of now, Mallory has successfully convinced Alice that it is Bob
and established a secure connection. Mallory can take advantage

Figure 5: Mallory and Alice encryption key length negotia-
tion. The attacker persuades Alice to accept 1 byte of entropy
for the encryption key 𝐾 ′

𝐶
. Mallory does not need to know

the link key or observe SSP between Alice and Bob. After
negotiation, Mallory brute forces 𝐾 ′

𝐶
using some well-known

Bluetooth packet fields as oracles.

Table 1: Blacktooth attack involved profiles

Profile name Description Usage
HID Human Interface Device Mouse, Keyboard
PBAP Phone Book Access Smartwatch
MAP Message Access Smartwatch
HFP Hands-Free Wireless Headset
A2DP Advanced Audio Distribution Wireless Headset
AVRCP Audio/Video Remote Control Wireless Headset
OPP Object Push File Transfer

of Alice’s trust to perform the next step of the Blacktooth attack:
privilege escalation through profile change. In practice, Mallory
does not change Bob’s profiles. Instead, it adds new profiles that
it wants to utilize using SDP and asks Alice to accept them. As we
have mentioned in vulnerabilities #4 and #5 in Section 3.3, Alice
automatically accepts Mallory’s requests to establish connections to
these profiles and give corresponding permissions. Since the Blue-
tooth Specification is ambiguous on profile authorization, mobile
operating systems do not properly implement this function–all the
Android and iOS devices we have tested authorize the new profiles
without asking for the user’s confirmation for most profiles. The
victim will not notice the service changes of the Bluetooth device
unless he examines the Bluetooth settings. Table 1 shows some
profiles in [1] that can be utilized to launch the Blacktooth attack.

Mallory can get permission to input by spoofing as a keyboard
and/or a mouse and connecting the HID profile [9]. Mallory then
controls Alice just like a real user using a keyboard and a mouse.
For example, Mallory can open the camera to take photos (clicking

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Mingrui Ai, Kaiping Xue, Bo Luo, Lutong Chen, Nenghai Yu, Qibin Sun, and Feng Wu

Figure 6: Stages of the MITM Blacktooth attack.

the Camera button), take a screenshot (sending a keystroke named
KEY_SYSQR), text arbitrary messages (sending regular keystrokes),
copy (KEY_CTRL+KEY_C), paste (KEY_CTRL+KEY_V), grant per-
missions (clicking the Setting button and opening permissions),
and take any other operations using a keyboard and a mouse. After
launching the attack, Mallory can delete all the messages, photos,
and screenshots to destroy the evidence. Moreover, Mallory can
steal sensitive information using PBAP and MAP profiles. PBAP
is a profile used to access the contacts, and Mallory can use it to
download the names and corresponding phone numbers stored in
Alice. MAP is a profile used to access the message, and Mallory can
take advantage of it to download messages. Mallory may be able to
obtain the SMS verification code to log in to the victim’s account.

Fortunately, the profile that grants permission to read arbitrary
files from phone storage will require a manual confirmation from
the user, as we have discovered in our experiments. Hence, Mallory
cannot simply download files from the phone using the compro-
mised Bluetooth connection. However, Mallory can still exploit the
HID profile to control the apps on the phone and send out arbitrary
files or images using SMS, email, or cloud storage.

Even if Mallory does not escalate its permissions, it can still cause
serious damage. Assuming Bob is a headset, the most common
Bluetooth BR/EDR device. Alice has to grant Phone audio and
Media audio permissions to use the headset function. Since Mallory
impersonates Bob, it obtains these permissions, so that it can make
phone calls and record them, or inject voice commands to Alice
using the HFP and A2DP profiles.

Finally, we would like to emphasize that the Blacktooth attack
does not require any pre-installed (normal or malicious) agent or
any user interaction. Mallory only exploits the vulnerabilities in
Bluetooth Specification and the built-in functions of Alice’s OS.
More importantly, all of Mallory’s operations are perfectly allowed
by Bluetooth Specification. Therefore, regular security software is
unlikely to identify or prevent this attack.

4.5 The MITM Blacktooth Attack
Though our Blacktooth attack itself is completely silent, the victim
still has a chance to notice he is under attack. For example, if an
attacker launches the Blacktooth attack when the victim wants to
use his Bluetooth headset, the victim will find he cannot connect
to his headset and have a chance to discover the attack.

In order to make the attack more concealed, we can modify the
Blacktooth attack to a MITM version. The MITM Blacktooth attack
is more harmful than the original Blacktooth attack. The MITM
Blacktooth attack can be regarded as a combination of two basic
Blacktooth attacks with some extra message forwarding. TheMITM
Blacktooth attack stages are shown in Figure 6.

In particular, Mallory consists of two Bluetooth devices. The first
device impersonates Bob, just like the original Mallory in the Black-
tooth attack, and the second device impersonates Alice. These two
devices communicate via the Internet. The first device implements
Bob’s functions (e.g., A2DP sink) as well as the attack profiles (e.g.,
HID and PBAP), and the second device implements Alice’s function
(e.g., A2DP gateway). Assuming Alice and Bob are not connect-
ing with each other, the two parts of Mallory impersonate Alice
and Bob respectively and try to establish secure connections with
them. When Alice authenticates Bob, the first device forwards the
challenge to the second device via the Internet and the second one
sends the challenge to Bob, then Mallory forwards Bob’s response
to Alice. In this way, the first device of Mallory successfully passes
Alice’s authentication and impersonates Bob. Mallory can also pass
Bob’s authentication and impersonate Alice in the same way. For
the encryption key, Mallory can take advantage of the KNOB at-
tack [4] to make Alice and Bob negotiate an encryption key with
1 byte of entropy and try to brute force it. Therefore, Mallory can
eavesdrop and forward all messages between Alice and Bob. When
the victim is not using Alice and Bob, Mallory can launch the Black-
tooth attack to inject commands or steal data. If the victim happens

Blacktooth: Breaking through the Defense of Bluetooth in Silence CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

USB

OnePlus Bullets
Wireless 2 OnePlus 7 Pro

ThinkPad X1 Carbon 5th CYW920819EVB-02

Mallory (attacker)

Bob Alice
Bonded

Blacktooth
Attack

Figure 7: Blacktooth attack scenario. Alice is a OnePlus 7
Pro smartphone, Bob is a OnePlus Bullets Wireless 2 headset
and Mallory (attacker) is a CYW920819EVB-02 development
board connected via USB to a ThinkPad X1 Carbon laptop.
Alice and Bob have paired in the absence of Mallory.

to use the device, e.g., to listen to music, Mallory can forward data
between Alice and Bob to ensure normal operations.

In summary, the new MITM Blacktooth attack improves the
stealthiness of the original Blacktooth attack by allowing the victim
device (Alice) to perform its regular operations with the imperson-
ated device (Bob). More importantly, Mallory can further eavesdrop
on the communication between Alice and Bob, which may lead to
more security and privacy concerns, e.g., when the user is making a
phone call using the compromised Bluetooth headset (Bob), Mallory
eavesdrops on the content of the call.

5 IMPLEMENTATION AND EVALUATION
In this section, we present our in-lab implementation of the Black-
tooth attack. We then evaluate the attack on a wide range of com-
modity devices and demonstrate the effectiveness of the attack.

5.1 The Blacktooth Attack Scenario
Our attack scenario (Figure 7) includes a victim device–a OnePlus 7
Pro smartphone (Alice, Master in legitimate secure connections), an
impersonated device, and a OnePlus BulletsWireless 2 headset (Bob,
Slave in legitimate secure connections). Mallory is a 5th-generation
ThinkPad X1 Carbon laptop together with a CYW920819EVB-02
evaluation board. The ThinkPad X1 laptop is also used to brute
force the encryption key 𝐾 ′

𝐶
. We present the relevant technical

specifications of Alice and Bob in Table 2. As we mentioned in
Section 4, Alice has already paired with Bob, and they are sharing
a link key 𝐾𝐿 which is unknown to Mallory.

5.2 The Blacktooth Attack Device
Mallory uses a CYW920819EVB-02 evaluation board [13] as the
Bluetooth Controller connected to a ThinkPad X1 laptop running
a Linux 4.14.111-based OS. Note that we have to modify both the
Bluetooth Controller and Bluetooth Host according to our needs
before we can use them to launch the attack.

We use several open-source tools to modify the Bluetooth Con-
troller to patch the Bluetooth chip firmware to obtain the function

Table 2: Relevant Bluetooth attributes for Alice and Bob
Alice Bob

Bluetooth Name OnePlus 7 Pro OnePlus Bullets Wireless 2
Operating System H2OS 9.5.9 (Android 9.0) -
Chipset Snapdragon 855 QCC3034
Chip vendor Qualcomm Qualcomm
LMP Version 5.0 5.0
LMP Subversion 702 13942
Class of Device 0x0c025a 0x180424
Feature page 0 0xfffe8ffed83f5b87 0xfffe8ffedbff5b87
Feature page 1 0x0700000000000000 0x0300000000000000
Feature page 2 0x5503000000000000 0x0f03000000000000
AuthReq 0x03 0x02
IO capability Display YesNo (0x01) NoInputOnOutput (0x03)
Secure Connections True False

Table 3: Free tools used to implement the Blacktooth attack

Tool Usage
InternalBlue Patch CYW920819EVB-02 firmware in real-time
BIAS Spoof link key authentication
KNOB Downgrade encryption key to 1 byte of entropy
Wireshark Monitor LMP and HCI
hcidump Monitor HCI
hciconfig Configure HCI interface
hcitool Scan and enumerate Bluetooth devices
bluetoothctl Manage and connect devices

we demand. For example, we use InternalBlue [27] to patch the
CYW920819 SoC in real-time and read the RAM and the ROM
of the firmware at runtime. We also use the BIAS toolkit [5] re-
leased by Antonioli et al. for impersonating purposes. To modify
the Bluetooth Host [2], we amend the Linux kernel source code
and recompile it to obtain the function we demand. For example,
we modify hci_h4.c and some other files in the kernel to parse the
H4 message from the Bluetooth Controller.

Our attack also uses free tools to facilitate information gath-
ering and analysis. Table 3 lists all the relevant tools used in our
implementation. The hardware/software cost of the attack is low.

5.3 Blacktooth Attack Implementation
The Blacktooth attack, described in Section 4, consists of the fol-
lowing steps: information gathering, identity forging and proactive
connection request, authentication spoofing, encryption key nego-
tiation and brute force, and profile change. Note that the MITM
Blacktooth attack is an integration of two Blacktooth attacks tar-
geting Alice and Bob, respectively. The attack against Bob has no
essential difference from the attack against Alice. Without loss of
generality, we present the implementation of our attack targeting
Alice. In this subsection, we present the implementation based on
our attack device and attack scenario described in Section 5.1.
Information gathering. To impersonate Bob, the first step for
Mallory is to gather information about Bob, including Bluetooth
address (BD_ADDR), device name, class of device (CoD), and other
necessary atttributes. We use the CYW920819EVB-02 development
board connected to a Linux-based laptop and start hcidump from the
laptop. With this function, we are able to capture all Bluetooth HCI
packets in a BTSnoop file, which contains all needed information.
Then we use Wireshark to analyze those packets and select the
packets that contain certain information.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Mingrui Ai, Kaiping Xue, Bo Luo, Lutong Chen, Nenghai Yu, Qibin Sun, and Feng Wu

Specifically, assuming we are around Alice at first, we use the
CYW920819 board to scan and discover all Bluetooth devices nearby
and identify Alice’s Bluetooth address (BD_ADDR𝐴) according to
its device name. Then we change the Bluetooth address of the board
to BD_ADDR𝐴 and get close to Bob. Assuming Bob is powered on,
we use the board to send a Connection Request to Bob or receive a
Connection Request from Bob. Note that it is important to change
the Bluetooth address to BD_ADDR𝐴 to make the information
gathering process universal and stealthy.

There exists a type of Bluetooth device that does not respond to
new inquiry packets after it is paired with a device (e.g., a phone),
even if the paired device is not in the discoverable range. That
means, if Bob belongs to this type, it cannot be discovered, and
we are not able to gather information by sending a Connection
Request to it using bluetoothctl. However, in order to establish a
secure connection with the paired device, Bob has to intermittently
send a Connection Request to the paired Bluetooth addresses. Since
we have changed our Bluetooth address to BD_ADDR𝐴 , we are able
to receive the Connection Request from Bob and gather information
from the packets in the feature exchange procedure.

In terms of attack stealthiness, since we only changed the Blue-
tooth address but did not have the link key, Mallory cannot get
authenticated by Bob to establish a secure connection. That means
we do not destroy the original bonding relationship between Alice
and Bob. However, if we do not modify Mallory’s Bluetooth address,
there is a chance that it successfully establishes a secure connection
with Bob, and Bob stores the bonding record, which may overwrite
the original bonding relationship with Alice. The victim may notice
that her smartphone fails to connect to Bob automatically, and may
be aware of an attack.

The other method to gather information is to sniff the Bluetooth
BR/EDR packets during the secure connection establishment phase.
However, this method is less practical since Bluetooth BR/EDR
sniffers are either extremely expensive (e.g., an Ellisys Bluetooth
Explorer is priced at $17,500 [24]) or capacity-constrained (e.g.,
Ubertooth cannot capture all Bluetooth BR/EDR packets). Finally,
it is possible to purchase a Bluetooth device that is identical to Bob,
where Mallory can collect the Bluetooth attributes, so that it only
needs to sniff Bob’s Bluetooth device address and name.
Identity forging and proactive connection request. After gath-
ering Bob’s identity information, we modify the CYW920819 board
firmware with the information to impersonate Bob. Here we use
the BIAS toolkit to accomplish this task. We create the Impersonate
File (IF) containing Bob’s Bluetooth device information and gen-
erate the attack script. Finally, we use InternalBlue and the attack
script to patch the board firmware, so that the CYW920819 board
is transformed into the impersonated device Mallory.

Now we physically get close to the victim, scan for Alice, and
send a Connection Request proactively using bluetoothctl. In this
process, Mallory impersonates Bob and tries to reconnect to Alice
like a benign Bluetooth device (headset). Since Alice has already
bonded with Bob, no dialog box will pop up to ask for permission,
and no notification will appear in the notification bar. The victim is
totally unaware of the attack. Note that it is Mallory who triggered
the connection; therefore, the victim’s manual interaction is not
needed in the connection. Mallory, rather than Alice, took the
Master role, since Mallory initiated the Connection Request.

Authentication spoofing.After accepting the Connection Request
from Mallory, Alice moves into the authentication procedure. From
Alice’s feature page 1 (see Table 2), we know that Alice (OnePlus 7
Pro) supports Secure Connections. That is to say that Mallory has
to downgrade Secure Authentication to Legacy Authentication by
informing Alice that Secure Connections are not supported during
the connection establishment. Mallory also has to keep its role as
the Master to avoid being authenticated by Alice.

To implement these capabilities on Mallory, we use the BIAS
toolkit with InternalBlue. Since we have already configured Mallory
to impersonate all Bob’s attributes with the IF (as in the identity
forging paragraph), we now employ the toolkit to downgrade Secure
Connections and configure unilateral authentication for Mallory
via the Attack File (AF). The Attack File contains the information
about the attack devices, for example, the ROM and RAM addresses
to be patched in the firmware of the Bluetooth chip. Related flags
in the Bluetooth firmware should be modified to downgrade Secure
Connections. For unilateral authentication, the Bluetooth firmware
is modified to skip the process for Mallory to verify Alice’s response.
Encryption key negotiation and brute force. After the authen-
tication procedure, the next step is to start encryption. This process
is completely handled between two Bluetooth Controllers, which
means we have to patch the Bluetooth firmware to infect the en-
cryption key negotiation procedure. Since we do not have the link
key shared between Alice and Bob, we cannot compute the actual
encryption key 𝐾 ′

𝐶
using encryption key generate functions. To

get 𝐾 ′
𝐶
, Mallory has to convince Alice to accept the entropy of the

encryption key to be 1 byte, which facilitates the 𝐾 ′
𝐶
brute force

(see Section 4.4). Then we can take L2CAP headers from Alice as
the oracle to brute force 𝐾 ′

𝐶
among all 256 candidates.

In the attack, we modify the CYW920819EVB-02 board firmware
and set 𝐿𝑚𝑎𝑥 = 1 and 𝐿𝑚𝑖𝑛 = 1. In this way, Mallory always asks
Alice to accept the encryption key of 1 byte. After the encryption
key length negotiation is completed, Mallory has to compute all 256
possible 𝐾 ′

𝐶
and select the right one according to the oracles. Then

Mallory has the ability to encrypt and decrypt messages by writing
the 𝐾 ′

𝐶
to the place used to store the key in the RAM. It is realizable

since Mallory can locate the address of the RAM used to store𝐾 ′
𝐶
by

reverse engineering. Taking advantage of the InternalBlue, Mallory
can patch the RAM at runtime to write in the selected 𝐾 ′

𝐶
.

Profile change. After the previous attack phase, Mallory has the
ability to impersonate Bob and establish a secure connection with
Alice without the link key𝐾𝐿 . In a normal connection establishment
procedure, only the device that has the link key𝐾𝐿 is able to pass the
authentication procedure and establish a secure connection with
Alice. In other words, if Mallory can successfully establish a secure
connection with Alice, Alice thinks Mallory has the link key 𝐾𝐿 .
Since the bonding procedure is to store the link key created while
pairing for use in subsequent secure connections, Alice and Bob
store the link key 𝐾𝐿 after the pairing procedure. From the aspect
of Alice, if a device has the link key𝐾𝐿 corresponded to Bob’s, Alice
will regard the device as Bob because 𝐾𝐿 should only be shared
between Alice and Bob. It is equivalent toMallory “inheriting” Bob’s
binding relationship with Alice or, in other words, Mallory bonding
with Alice. Therefore, it is reasonable to make Mallory has a real
bonding relationship with Alice.

Blacktooth: Breaking through the Defense of Bluetooth in Silence CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Table 4: Blacktooth attack evaluation result

Manufacturer Device Model Operating System Chip Model Producer Bluetooth
Version

Blacktooth
Attack

MITM
Attack

Apple iPhone 12 iOS 15.4.1 339S00761 USI 5.0 ✓ ✓

Apple iPhone 12 iOS 15.0.1 339S00761 USI 5.0 ✓ ✓

Apple iPad Air 3 iPadOS 15.2 39S00551 USI 5.0 ✓ ✓

Apple Macbook Pro 2018 macOS Monterey 12.3.1 BCM4364B0 Broadcom 5.0 ✓ ✓

Google Pixel 5 Android 12.0 Snapdragon 765G Qualcomm 5.0 ✓ ✓

HONOR V30 Pro Harmony 2.0.0 Hi1103 HiSilicon 5.1 ✓ ✓

HONOR V20 Harmony 2.0.0 Hi1103 HiSilicon 5.0 ✓ ✓

HONOR V8 EMUI 8.0.0 (Android 8.0) Kirin 955 HiSilicon 4.2 ✓ ✓

HUAWEI Mate 30 Harmony 2.0.0 Hi1103 HiSilicon 5.1 ✓ ✓

HUAWEI Mate 9 EMUI 9.1.0 (Android 9.0) BCM43455XKUBG Broadcom 4.2 ✓ ✓

HUAWEI P10 EMUI 9.1.0 (Android 9.0) BCM43455XKUBG Broadcom 4.2 ✓ ✓

OnePlus 9R ColorOS 11.2 (Android 11.0) Snapdragon 870 Qualcomm 5.1 ✓ ✓

OnePlus 7 Pro Hydrogen OS 9.5.9 (Android 9.0) WCN3998 Qualcomm 5.0 ✓ ✓

OPPO Find X2 Pro ColorOS 12.1 (Android 12.0) Snapdragon 865 Qualcomm 5.1 ✓ ✓

OPPO A72n 5G ColorOS 7.2 (Android 10.0) MT6853V MediaTek 5.1 ✓ ✓

realme X50 5G realme UI 2.0 (Android 11.0) WCN3998 Qualcomm 5.0 ✓ ✓

Redmi K30 Pro MIUI 12.5.4 (Android 11.0) WCN3998 Qualcomm 5.1 ✓ ✓

Samsung Galaxy S10 One UI 3.1 (Android 11.0) KM8D03042 Murata 5.0 ✓ ✓

Xiaomi Mi 10 Pro MIUI 12.5.12 (Android 11.0) QCA6391 Qualcomm 5.1 ✓ ✓

Xiaomi Mi 10 MIUI 13.0.4 (Android 12.0) QCA6391 Qualcomm 5.1 ✓ ✓

Lenovo ThinkPad X1 Carbon (5th) Windows 10 Pro 1909 8265 Intel 4.1 ★ ★

Lenovo ThinkPad X1 Carbon (5th) Linux 4.14.111 8265 Intel 4.1 ★ ★
✓ Confirmed to be vulnerable to the Blacktooth attack.
★ Cannot complete a secure connection establishment after changing profiles

In order to implement this attack phase, we use Mallory’s bond-
ing record to take the place of Bob’s once. We add A2DP and HFP
records to Mallory’s SDP record list with open-source code to im-
plement the headset functions. With the features set in the previous
steps, Mallory is almost a clone of Bob. When Mallory pairs Alice
for the first time, it broadcasts its A2DP and HFP services using
SDP as Bob. Then Alice stores the service records of Phone calls
and Media audio, which is the same as Bob’s service records.

For the arbitrary-command-injection attack, we utilize open-
source code to implement the HID application as a keyboard and
a mouse and add the HID record to the SDP service list. Then
we run the application in the Host, the Linux-based laptop, and
proactively send a connection request to Alice. Since Alice has
already paired with Mallory, it will accept the request and establish
a secure connection with Mallory (as described above). Due to
vulnerabilities #4 and #5, Alice accepts the HID connection request
and grants the input permission to Mallory. In this way, Mallory can
operate Alice using a keyboard and mouse, for example, opening
applications, sending messages, making calls, or turning off Alice.

For information-stealing attacks, we implement the PBAP appli-
cation and add the PBAP record to the SDP service list. Then we
run this application and connect with Alice. Since Alice has already
granted Bob permission to access the phone book, Mallory can get
all the contact information stored in Alice’s phone book.

It is worth emphasizing that all injection and stealing attacks do
not need any pre-installed (benign/malicious) applications or user
interaction. Only the vulnerabilities in Bluetooth Specification are
utilized by Mallory. The whole attack process is completely silent.
Attack efficiency. The Blacktooth attack described above can be
completed in a few seconds. The time to collect device information

is approximately 3 seconds and this process can be finished ahead of
the actual attack process. It takes less than 1 second to crack the en-
cryption. Except for those two processes, the rest of the Blacktooth
attack uses the same time as the normal connection establishment.
Overall, the attack is very efficient and highly practical.

5.4 Blacktooth Attack Evaluation Setup
With our Blacktooth attack implementation (presented in Section
5.3), we are able to conduct the Blacktooth attack against different
Bluetooth devices. We consider an attack scenario with two victims,
Alice and Bob, and an attackerMallory. Alice is any Bluetooth device
at our disposal, Bob is a OnePlus BulletsWireless 2 headset (Table 2),
and Mallory is a CYW920819EVB-02 development board connected
to a Linux-OS-based ThinkPad X1 Carbon laptop. Alice is paired
with Bob, and the link key 𝐾𝐿 is unknown to Mallory. No additional
(benign or malicious) application needs to be installed in Alice or
Bob. Mallory impersonates Bob and tries to gain access to control
Alice. Bob should be present when Mallory gathers the information
of Bob but is not required to be present when Mallory launches the
Blacktooth attack against Alice. For the MITM Blacktooth attack,
Mallory impersonates Alice and Bob simultaneously and tries to
establish secure connections with both Alice and Bob.

5.5 Blacktooth Attack Evaluation Result
Our evaluation results are shown in Table 4. Overall, we evaluate
our Blacktooth attack on 21 different devices (ThinkPad X1 Carbon
5th is evaluated with Windows and Linux respectively). The first
6 columns indicate the device manufacturer, device model, OS,
chip model, chip producer, and the supported Bluetooth version.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Mingrui Ai, Kaiping Xue, Bo Luo, Lutong Chen, Nenghai Yu, Qibin Sun, and Feng Wu

The last 2 columns evaluate the Blacktooth attack and the MITM
Blacktooth attack. A checkmark (✓) indicates a successful attack
(silently connected, changed profile, retrieved data, and operated
the device), while a star (★) indicates that a device cannot complete
a secure connection establishment after changing profiles.

In Table 4, we demonstrate that all the devices with different
Android (from Android 8.0 to the latest Android 12.0), iOS, iPadOS,
macOS, or HarmonyOS operating systems are victims of the original
and MITM Blacktooth attacks. In Windows and Linux, Mallory
cannot complete the connection procedure after it changes the
profiles. However, all the devices are vulnerable to the Blacktooth
attack if Mallory uses Bob’s original profiles to launch the attack
(e.g., Bob is a headset and Mallory can inject voice commands).

It is also demonstrated in Table 4 that the original and MITM
Blacktooth attacks are effective against different device models,
operating systems, Bluetooth chip models, and Bluetooth versions.
The experiments confirm that our Blacktooth attacks are entirely
silent, non-interactive, standard-compliant, and practical. With the
original Blacktooth attack, Mallory can successfully escalate its
privileges through profile change on all Android and iOS devices.
With theMITMBlacktooth attack,Mallory can further eavesdrop on
all the real-time communications between the Android/iOS device
and the Bluetooth peripheral/wearable device. We discover that the
firmware of the Bluetooth chips used by the commodity devices on
the market are not easy to patch for compatibility considerations.
The experiment results confirm that the proposed Blacktooth attack
is a serious threat to billions of Bluetooth BR/EDR device users.

6 DISCUSSION
In this section, we discuss several practical issues with the Black-
tooth attack: the discoverable and connectable state assumptions,
the failed profile changes in Linux andWindows, and the security of
the 𝐸0 stream cipher. Finally, we discuss potential countermeasures
to defend the original and MITM Blacktooth attacks.

6.1 The Discoverable and Connectable State
Asmentioned in Section 4.1, Mallory can proactively send a Connec-
tion Request to Alice to trigger a stealthy connection establishment
process and claim the Master role by utilizing Vulnerability #1.
The precondition that Mallory can discover and send a Connec-
tion Request to Alice is that Alice must be in the discoverable and
connectable state. Theoretically, the Bluetooth Specification does
not require a device to be in a discoverable state when Bluetooth is
turned on. However, we find that none of the mainstream operating
systems (Android, iOS, Windows, and macOS) provide the users
with an option to make their devices discoverable/undiscoverable,
which means that the victim devices (Alice) are always in the discov-
erable and connectable state when Bluetooth is turned on.Moreover,
we observe that the majority of the users, especially those who use
Bluetooth headsets, rarely turn off Bluetooth. Hence, their smart-
phones (Alice) are always in the discoverable/connectable state,
and they are vulnerable to the Blacktooth attack.

6.2 Profile Change in Linux and Windows
As shown in Table 4, the Blacktooth attack fails to change profiles
for privilege escalation on Linux and Windows operating systems.

In the experiments, the connections are dropped once the attacker
attempt to switch profiles. For Linux, we examine its source code
and find that the connection is blocked because the request to
connect to a new profile triggers an L2CAP_CR_SEC_BLOCK flag.
Consequently, the Linux system sends a “Security Block” packet to
reject the new profile connection. However, the profile change can
be completed if the connection is established by Alice, who takes
the Master role in connection initialization. We consider that such
a mechanism is also vulnerable since the Linux system does not
inform the user of the profile changes. In Windows, a “PSM not
supported” packet is sent to reject the profile change, when Mallory
attempts to switch to a new profile. Unlike the Linux system, the
profile change is not permitted even if Alice takes the Master role
to initiate the connection with Mallory. Since Windows is not open
source, we do not know its internal mechanism.

6.3 𝐸0 Stream Cipher Security
Bluetooth devices use the 𝐸0 stream cipher to encrypt data if Secure
Connections are not supported. However, 𝐸0 is considered a weak
stream cipher in cryptography and many published attacks [15,
16, 25, 26, 37, 38] can significantly decrease the security of this
cipher. Zhang et al. [38] proposed a practical attack against the 𝐸0
stream cipher with complexity under 225, and this attack only takes
a few seconds to restore the original encryption key. All previous
research indicates that the 𝐸0 cipher is not practically secure even
using encryption keys with larger entropy.

6.4 Defense against Blacktooth
The Blacktooth attack evaluated in Section 5 is enabled by five
vulnerabilities in the Bluetooth Specification (introduced in Section
3.3). The combination of those vulnerabilities allows an attacker to
silently connect to and escalate privileges on the victim device to
inject arbitrary commands and steal data. We now briefly discuss a
list of countermeasures to patch those vulnerabilities.
Enforcing confirmation dialog (Vulnerability #1). The stealthi-
ness of the Blacktooth attack largely relies on the fact that the mali-
cious Bluetooth device can trigger secure connection establishment
and complete the whole process without the victim’s confirmation.
This ensures the complete stealthiness of the Blacktooth. To fix this
vulnerability, a Bluetooth device should ask the user for confirma-
tion on connection requests even if the requester is bonded. This
defense may be deployed at a cost of usability since it forces users
to confirm each connection manually. However, we believe it is
necessary for the security of Bluetooth devices. We would expect
more research efforts on this issue to balance usability and security,
e.g., to evaluate the risk of each connection and only require user
intervention for risky connections. This countermeasure can be
implemented in the Bluetooth Host (OS).
Enforcing mutual authentication (Vulnerability #2). The uni-
lateral Legacy Authentication enables the malicious Bluetooth de-
vice to bypass the victim’s Bluetooth device’s authentication. To
mitigate this vulnerability, if the peer device does not support Se-
cure Authentication, a Bluetooth device should mandate mutual
authentication using Legacy Authentication. In case the peripheral
device and the user’s device have already paired with Secure Con-
nections, the user’s device should enforce Secure Authentication

Blacktooth: Breaking through the Defense of Bluetooth in Silence CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

for all subsequent connections, or notify the user in case Secure
Authentication is rejected. This countermeasure can be easily im-
plemented in the Bluetooth Host (OS).
Enforcing long encryption key (Vulnerability #3). The low
entropy of the encryption key makes it vulnerable to brute-force
attacks. To patch this vulnerability, a Bluetooth device should al-
ways use a large entropy, e.g., 16 bytes. To achieve the desired
level of security and protect itself, the Master device may enforce
1 << 𝐿𝑚𝑖𝑛 ≤ 16. The implementation of this countermeasure
requires the modification of the Bluetooth Controller (firmware).
Enforcing profile authentication and authorization (Vulner-
ability #4, #5). The excessive flexibility to profile connection and
excessive trust on paired devices facilitate an attacker to add sensi-
tive profiles and get the privilege to control the victim’s Bluetooth
device without getting the user’s confirmation. To fix these vul-
nerabilities, the master device (e.g., smartphone) should monitor
the profile lists, turn off the permissions to newly added profiles
by default, and notify the user in case of a profile list modification.
With a prompt from the mobile OS, the user should decide whether
to accept or reject the profile change. This countermeasure can be
implemented in the Bluetooth Host (OS).

We disclosed the Blacktooth attack with the Bluetooth SIG and
the manufacturers of all the tested devices. As of the submission
of this paper, we received positive responses from several vendors.
We discussed the defense mechanisms with them and agreed that
some vulnerabilities could be promptly patched at the OS level.

7 RELATEDWORK
A recent guide from NIST to Bluetooth security was provided in
2017 [28]. The guide presents some Bluetooth vulnerabilities asso-
ciated with different versions that can be utilized to launch attacks,
some of which are utilized in our Blacktooth attack. The guide men-
tions that “discoverable and/or connectable devices are prone to
attack”, but it doesn’t explain specifically how the vulnerability may
be taken advantage of. Previous surveys even did not consider the
potential threat of connectable devices [14, 19]. In fact, prior works
neglect the vulnerability of unfixed roles and arbitrary connection
requesters, which is significant to launching a practical attack.

Some attacks focus on a specific aspect of Bluetooth BR/EDR.
For instance, the KNOB attack [4] utilizes Vulnerability #3 to force
two unaware victims to negotiate a 1-byte entropy encryption key,
while aMITM attacker can decrypt all traffic between them by brute-
forcing the encryption key. However, the KNOB attack is a passive
attack, which makes it hard to inject arbitrary commands to take
control of the victim devices. The BadBluetooth attack [36] utilizes
Vulnerability #4 in Android devices to make profile changes and to
escalate the privileges. However, the BadBluetooth attack requires
a pre-installed malicious application in the Android smartphone
to initiate the connection establishment, which is a strong and
impractical assumption in the real world. We also confirm that
Vulnerability #4 does not only exist in the latest Android but also in
iOS, macOS, iPadOS, and HarmonyOS. The BlueMirror attack [12]
implements reflection attacks on the Bluetooth pairing protocol.
However, according to [12], the reflection attackers must take the
Slave role during the paring process, which means the attacker
cannot launch an attack proactively, therefore, its effect is limited.

Some attacks are implemented to take control of smartphones
and laptops via Bluetooth BR/EDR without user interactions. For
example, the BlueBorne attack [7] exploits some flaws onWindows,
iOS, Linux, and Android to invade target devices while the vic-
tims are unconscious. The Bluebugging attack [18] allows issuing
AT commands to the vulnerable devices without prompting the
owner to download SMS messages and make phone calls. However,
the vulnerabilities these prior attacks utilized are all fixed in the
new version of the OSes, and they are not effective anymore. Our
Blacktooth attack is effective for the devices with the newest OSes.

We also notice some attacks on Bluetooth Low Energy (BLE)
devices. Zhang et al. [39] discovered that a device in SCO mode
might suffer a downgrade attack due to the inappropriate handling
of error codes. Jasek [20] provides new tools to launch attacks
via GATT of BLE. Note that Bluetooth BR/EDR and BLE are two
separate protocol stacks, which means the vulnerabilities may not
exist in both. Moreover, the roles of BLE devices are fixed, which
means an attacker is not able to establish a connection proactively.

In order to efficiently identify vulnerabilities in the implemen-
tation of Bluetooth, researchers create various automatic fuzzing
tools to uncover flaws both in firmware [29] and applications [40].
It is obvious that these automatic tools facilitate vulnerability dis-
covery. There is still a way to go to transform the vulnerabilities
into practical attacks in real scenarios. Our Blacktooth attack is a
practical attack that can cause severe consequences for security.

Last, attempts are made to migrate the impacts of arbitrary pro-
file change [35, 36]. Unfortunately, the vulnerabilities still exist in
various latest versions of OSes. As for now, no effective counter-
measure has been adopted to prevent our Blacktooth attack.

8 CONCLUSION
We present the Blacktooth attack against Bluetooth BR/EDR. Our
attack exploits a series of vulnerabilities of the Bluetooth Specifi-
cation to impersonate a Bluetooth peripheral device, establish a
connection with the victim device (e.g., a smartphone), and escalate
privileges by changing profiles. As a result, the attacker can inject
arbitrary commands and steal sensitive data from the victim de-
vice, without alerting or interacting with the user during the entire
process, without any pre-installed malicious agent on the victim
device, and without having to know or authenticate the link key.

The Blacktooth attack is practical since it removes the main
obstacle in the initial stage of Bluetooth connection establishment,
where user interaction is needed for the Master to connect to the
malicious peripheral device. Moreover, through successful attacks
against 21 different Bluetooth devices from various manufacturers
and different configurations, we demonstrate that the Blacktooth
attack is practical, stealthy, and powerful.

ACKNOWLEDGMENTS
We thank all anonymous reviewers and our shepherd for their
valuable comments and suggestions. This work is supported in part
by the National Natural Science Foundation of China under Grant
No. 61972371 and No. U19B2023, and Youth Innovation Promotion
Association of the Chinese Academy of Sciences (CAS) under Grant
No. Y202093.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Mingrui Ai, Kaiping Xue, Bo Luo, Lutong Chen, Nenghai Yu, Qibin Sun, and Feng Wu

REFERENCES
[1] 2021. AOSP Bluetooth Services. https://source.android.com/devices/bluetooth/

services. (2021). accessed: Oct., 2021.
[2] 2021. Bluez - Official Linux Bluetooth Protocol Stack. http://www.bluez.org.

(2021). accessed: Oct, 2021.
[3] Albazrqaoe, Wahhab and Huang, Jun and Xing, Guoliang. 2016. Practical blue-

tooth traffic sniffing: Systems and privacy implications. In Proceedings of the 14th
Annual International Conference on Mobile Systems, Applications, and Services
(MobiSys). 333–345.

[4] Antonioli, Daniele and Tippenhauer, Nils Ole and Rasmussen, Kasper. 2019. The
KNOB is Broken: Exploiting Low Entropy in the Encryption Key Negotiation Of
Bluetooth BR/EDR. In USENIX Security. USENIX Association, 1047–1061.

[5] Antonioli, Daniele and Tippenhauer, Nils Ole and Rasmussen, Kasper. 2020. BIAS:
bluetooth impersonation attacks. In IEEE Symposium on Security and Privacy.

[6] Antonioli, Daniele and Tippenhauer, Nils Ole and Rasmussen, Kasper. 2020. Key
negotiation downgrade attacks on bluetooth and bluetooth low energy. ACM
Transactions on Privacy and Security (TOPS) 23, 3 (2020), 1–28.

[7] Armis. 2017. The Attack Vector BlueBorne Exposes Almost Every Connected
Device. https://armis.com/research/blueborne/. (2017). accessed: Oct., 2021.

[8] Biham, Eli and Neumann, Lior. 2019. Breaking the bluetooth pairing–the fixed
coordinate invalid curve attack. In Proceedings of International Conference on
Selected Areas in Cryptography (SAC). Springer, 250–273.

[9] Bluetooth SIG. 2015. Human Interface Device Profile 1.1.1. https://www.bluetooth.
org/docman/handlers/downloaddoc.ashx?doc_id=309012. (2015). accessed: Oct.,
2021.

[10] Bluetooth SIG. 2019. Bluetooth Core Specification v5.2. https://www.bluetooth.
org/docman/handlers/downloaddoc.ashx?doc_id=478726. (2019). accessed: Oct.,
2021.

[11] Bluetooth SIG. 2021. 2021 Bluetooth Market Update. https://www.bluetooth.
com/wp-content/uploads/2021/01/2021-Bluetooth_Market_Update.pdf. (2021).
accessed: Oct., 2021.

[12] Tristan Claverie and José Lopes Esteves. 2021. Bluemirror: reflections on blue-
tooth pairing and provisioning protocols. In Proceedings of 2021 IEEE Security
and Privacy Workshops (SPW 2021). IEEE, 339–351.

[13] Cypress. 2021. CYW920819EVB-02 Evaluation Kit. https://www.cypress.com/
documentation/development-kitsboards/cyw920819evb-02-evaluation-kit.
(2021). accessed: Oct., 2021.

[14] Dunning, John. 2010. Taming the blue beast: A survey of bluetooth based threats.
IEEE Security & Privacy 8, 2 (2010), 20–27.

[15] Scott Fluhrer and Stefan Lucks. 2001. Analysis of the E0 encryption system.
In Proceedings of the 8th Annual International Workshop on Selected Areas in
Cryptography (SAC 2001). Springer, 38–48.

[16] Jovan Dj Golić, Vittorio Bagini, and Guglielmo Morgari. 2002. Linear cryptanal-
ysis of Bluetooth stream cipher. In Proceedings of the 21st Annual International
Conference on the Theory and Applications of Cryptographic Techniques (EURO-
CRYPT 2002). Springer, 238–255.

[17] Haataja, Keijo and Toivanen, Pekka. 2008. Practical man-in-the-middle attacks
against bluetooth secure simple pairing. In Proceedings of the 4th International Con-
ference on Wireless Communications, Networking and Mobile Computing (WiCOM).
IEEE, 1–5.

[18] Herfurt, Martin. 2004. Bluebugging. https://trifinite.org/trifinite_stuff_bluebug.
html. (2004). accessed: Oct., 2021.

[19] Jakobsson, Markus and Wetzel, Susanne. 2001. Security weaknesses in Bluetooth.
In Proceedings of the 2001 Cryptographers’ Track at the RSA Conference. Springer,
176–191.

[20] Jasek, Sławomir. 2016. Gattacking Bluetooth smart devices. In Proceedings of the
Black Hat USA Conference.

[21] Levi, Albert and Çetintaú, Erhan and Aydos, Murat. 2004. Relay Attacks on
Bluetooth Authentication and Solutions. In Proceedings of the 19th International
Symposium on Computer and Information Sciences (ISCIS), Vol. 19. Springer, 278–
288.

[22] Lindell, Andrew Y. 2008. Attacks on the pairing protocol of bluetooth v2. 1. Black
Hat USA, Las Vegas, Nevada (2008).

[23] Lonzetta, Angela M and Cope, Peter and Campbell, Joseph and Mohd, Bassam J
and Hayajneh, Thaier. 2018. Security vulnerabilities in Bluetooth technology as
used in IoT. Journal of Sensor and Actuator Networks 7, 3 (2018), 28.

[24] Loveless, Mark. 2017. BLUETOOTH HACKING TOOLS COMPARISON. https:
//trifinite.org/trifinite_stuff_bluebug.html. (2017). accessed: Oct., 2021.

[25] Yi Lu, Willi Meier, and Serge Vaudenay. 2005. The conditional correlation attack:
A practical attack on bluetooth encryption. In Proceedings of the 25th Annual
International Cryptology Conference (CRYPTO 2005). Springer, 97–117.

[26] Yi Lu and Serge Vaudenay. 2004. Cryptanalysis of Bluetooth keystream generator
two-level E0. In Proceedings of the 10th International Conference on the Theory and
Application of Cryptology and Information Security (ASIACRYPT 2004). Springer,
483–499.

[27] Mantz, Dennis and Classen, Jiska and Schulz, Matthias and Hollick, Matthias.
2019. InternalBlue-Bluetooth binary patching and experimentation framework.

In Proceedings of the 17th Annual International Conference on Mobile Systems,
Applications, and Services (MobiSys). ACM, 79–90.

[28] Padgette, John. 2017. Guide to Bluetooth Security. NIST Special Publication
800:121 (2017).

[29] Ruge, Jan and Classen, Jiska and Gringoli, Francesco and Hollick, Matthias. 2020.
Frankenstein: Advanced wireless fuzzing to exploit new bluetooth escalation
targets. In USENIX Security. 19–36.

[30] Shaked, Yaniv andWool, Avishai. 2005. Cracking the bluetooth pin. In Proceedings
of the 3rd international conference on Mobile systems, applications, and services
(MobiSys). 39–50.

[31] Spill, Dominic and Bittau, Andrea. 2007. BlueSniff: Eve Meets Alice and Bluetooth.
USENIX Workshop on Offensive Technologies 7 (2007), 1–10.

[32] Sun, Da-Zhi and Mu, Yi and Susilo, Willy. 2018. Man-in-the-middle attacks
on Secure Simple Pairing in Bluetooth standard V5. 0 and its countermeasure.
Personal and Ubiquitous Computing 22, 1 (2018), 55–67.

[33] von Tschirschnitz, Maximilian and Peuckert, Ludwig and Franzen, Fabian and
Grossklags, Jens. 2021. Method confusion attack on bluetooth pairing. In Proceed-
ings of the 2021 IEEE Symposium on Security and Privacy (SP). IEEE, 1332–1347.

[34] Wong, Ford-Long and Stajano, Frank and Clulow, Jolyon. 2005. Repairing the
bluetooth pairing protocol. In Proceedings of the 13th International Conference on
Security Protocols. 31–45.

[35] Wu, Jianliang and Wu, Ruoyu and Antonioli, Daniele and Payer, Mathias and
Tippenhauer, Nils Ole and Xu, Dongyan and Tian, Dave Jing and Bianchi, Antonio.
2021. LIGHTBLUE: Automatic Profile-Aware Debloating of Bluetooth Stacks. In
USENIX Security 21. 339–356.

[36] Xu, Fenghao andDiao,Wenrui and Li, Zhou andChen, Jiongyi and Zhang, Kehuan.
2019. BadBluetooth: Breaking Android Security Mechanisms via Malicious
Bluetooth Peripherals. In Proceedings of the 2019 Network and Distributed System
Security Symposium (NDSS). NDSS Symposium.

[37] Bin Zhang, Chao Xu, and Dengguo Feng. 2013. Real time cryptanalysis of
Bluetooth encryption with condition masking. In Proceedings of the 33rd Annual
Cryptology Conference (CRYPTO 2013). Springer, 165–182.

[38] Bin Zhang, Chao Xu, and Dengguo Feng. 2018. Practical cryptanalysis of Blue-
tooth encryption with condition masking. Journal of Cryptology 31, 2 (2018),
394–433.

[39] Zhang, Yue and Weng, Jian and Dey, Rajib and Jin, Yier and Lin, Zhiqiang and Fu,
Xinwen. 2020. Breaking secure pairing of bluetooth low energy using downgrade
attacks. In Proceedings of the 29th USENIX Security Symposium (USENIX Security).
USENIX Association, 37–54.

[40] Zuo, Chaoshun and Wen, Haohuang and Lin, Zhiqiang and Zhang, Yinqian. 2019.
Automatic fingerprinting of vulnerable ble iot devices with static uuids from
mobile apps. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security (CCS). ACM, 1469–1483.

A LEGACY AUTHENTICATION
Figure 8 describes the Legacy Authentication process.

Figure 8: LegacyAuthentication process. The legacyAuthenti-
cation process authenticates devices unilaterally. To achieve
mutual authentication, the authentication process should be
completed by Alice and Bob respectively.

https://source.android.com/devices/bluetooth/services
https://source.android.com/devices/bluetooth/services
http://www.bluez.org
https://armis.com/research/blueborne/
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=309012
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=309012
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=478726
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=478726
https://www.bluetooth.com/wp-content/uploads/2021/01/2021-Bluetooth_Market_Update.pdf
https://www.bluetooth.com/wp-content/uploads/2021/01/2021-Bluetooth_Market_Update.pdf
https://www.cypress.com/documentation/development-kitsboards/cyw920819evb-02-evaluation-kit
https://www.cypress.com/documentation/development-kitsboards/cyw920819evb-02-evaluation-kit
https://trifinite.org/trifinite_stuff_bluebug.html
https://trifinite.org/trifinite_stuff_bluebug.html
https://trifinite.org/trifinite_stuff_bluebug.html
https://trifinite.org/trifinite_stuff_bluebug.html

	Abstract
	1 Introduction
	2 Background
	2.1 Bluetooth BR/EDR Overview
	2.2 Bluetooth Connection and Pairing
	2.3 The Bluetooth Profile

	3 Security Analysis of Bluetooth BR/EDR
	3.1 The System Model
	3.2 Attacker Model
	3.3 Security Vulnerabilities in Bluetooth BR/EDR

	4 The Blacktooth Attack
	4.1 Identity Forging and Proactive Connection Request (Vulnerability #1)
	4.2 Authentication Spoofing (Vulnerability #2)
	4.3 Encryption Key Negotiation and Brute Force (Vulnerability #3)
	4.4 Profile Change (Vulnerabilities #4, #5)
	4.5 The MITM Blacktooth Attack

	5 Implementation and Evaluation
	5.1 The Blacktooth Attack Scenario
	5.2 The Blacktooth Attack Device
	5.3 Blacktooth Attack Implementation
	5.4 Blacktooth Attack Evaluation Setup
	5.5 Blacktooth Attack Evaluation Result

	6 Discussion
	6.1 The Discoverable and Connectable State
	6.2 Profile Change in Linux and Windows
	6.3 E0 Stream Cipher Security
	6.4 Defense against Blacktooth

	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Legacy Authentication

