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Abstract—Millions of Android applications are now deployed
on billions of smartphones and tablet devices. An enormous
amount of users’ private data are being collected and made
accessible to such apps. Extensive research efforts have been
devoted to smartphone app security. In particular, the current
practice of the app markets and app security scanners is to
ensure that the requested permissions are consistent with the
used permissions. On the other hand, mobile apps need to seek
consent from users to approve various permissions to access
user information. However, users often blindly accept permission
requests and apps start to abuse this mechanism. For example,
a flashlight app may obtain users’ locations and send them out
to the server. As long as a permission is requested by the app
developer and approved by the users, the state-of-art detection
mechanisms will treat it as benign.

In this paper, we ask the question “are the permission requests
really necessary?” The question is difficult to answer because it
is hard to autonomously “comprehend” whether a permission is
needed for the functionality of the app. We take the first attempt
to tackle this challenge by comparing an app’s permission
requests with its peer apps, i.e., apps with similar functionalities.
An app that requests/uses significantly more permissions than its
peers is considered potentially malicious that will require further
investigation. With this idea, we design a statistical approach to
identify potentially excessive permission requests and evaluate it
with apps from Play Store. Experiment results and case studies
show that the proposed mechanism could effectively identify
highly suspicious apps, which request many permissions that are
not relevant to their functionalities.

I. INTRODUCTION

With the rapid growth of smartphones, tablets, watches,
and other smart devices, mobile applications (mobile apps)
have been widely adopted. For instance, 2.9 million apps were
available on the Google Play Store as of December 2020 [1].
On average, 100,000+ new Android apps are released to the
market on a monthly basis. The number of downloads for
mobile apps is also steadily increasing [1]. With the advanced
capacities in communication, computing, sensing, and user
interactions, smartphones and apps have been adopted to assist
and affect almost every aspect of our daily life.

The extreme popularity of smartphone apps has also led
to increased security concerns, as these apps need to collect,
access, and control a significant amount of user information
to offer more sophisticated functionalities. In current practice,
permission management in the Android ecosystem primarily
relies on two mechanisms: (1) permission verification and (2)

user consent. Considerable technical efforts have been devoted
to the first mechanism, which aims to ensure that all the
permissions invoked in the app are indeed declared/requested
(in the app manifest), e.g., [2]. Towards this goal, various
techniques have been proposed to scan apps’ source code
and/or monitor their run time status. For example, when an
inconsistency is identified in the verification, i.e., an app uses
a permission that it fails to request, the app will be denied by
the Play Store. However, in this case, the most straightforward
fix is to simply add the permission request into the manifest.
Meanwhile, when the permission requests are presented to
the end-users during installation, users often grant permis-
sions just in order to access the functions. Previous studies
show that users are unaware of what extent of data is being
shared through the mobile app ecosystems, or they may be
uncomfortable with it but do not have any effective mitigation
[3] [4]. For example, when a specific flashlight app requests
to access device and app history, retrieve running apps, read
Home settings and shortcuts, access call information, etc, the
app will be approved by Play Store as long as it has included
all the permission requests in the manifest. Meanwhile, the
end-users simply accept all the permissions so that they can
install and use the app (the app has been installed 100,000+
times and received an average review score of 4.3).

In this paper, we would like to ask a question that has
yet to attract due attention in the research community: “Are
the permission requests really necessary?” That is, for each
permission requested by an Android app, we ask whether the
permission is really essential in fulfilling certain functionalities
of the app. Answering this question is difficult since it is
non-trivial to retrieve app functions from the descriptions and
associate the functions with permissions. In this paper, we
take an alternative approach. We assume that the function-
permission relationship is relatively stable and consistent so
that apps with similar functionalities are expected to require
similar permissions. Moreover, if an app requires significantly
more permissions than many of its peers, i.e., similar apps,
then the app is highly suspicious that warrants further (man-
ual) inspection. To this end, we have developed a statistical
approach for excessive permission identification in Android
apps. We first design a pair-wise evaluation mechanism for
app permissions, and then aggregate all pair-wise assessments



of the seed app to generate an app permission risk score. The
new approach does not require any code scanning or static/run-
time analysis, rather, it is purely based on app similarities and
permission requests. We demonstrate the performance of the
proposed solution through experiments with 10,000+ apps. We
also provide insightful analysis with detailed case studies.

The rest of the paper is organized as follows: We briefly
review the literature in Section II, followed by a formal
problem statement in Section III. We present the technical
details of the proposed solution in Section IV, followed by
experiment results and case studies in Sections V and VI.
We discuss the advantages and weaknesses of the approach in
Section VII, and finally, conclude the paper in Section VIII.

II. RELATED WORK AND BACKGROUND

There is a wide spectrum of research efforts on mobile
app privacy and security, including vulnerability scanning,
application-level code analysis, run-time data flow analysis,
and employing machine learning techniques on finding ma-
licious apps. Comprehensive surveys of smartphone/Android
security could be found at [5]–[7].

Static flow and code analysis. Code analysis was among
the initial approaches to detect permission misuses and find
data leaks in mobile apps’ information flow. Several tools
have been designed to utilize static taint analysis on Android
app, such as Android leak [8], DroidBench, and FlowDriod
[9]. Taint analysis is also experimented with IoT applications,
e.g., SAINT is designed to analyze information flow from
sensitive sources to external sinks [10]. There are works to
detect third-party libraries and validate if they are safe to
be used in the apps, e.g., LIBPECKER [11] is a tool that
detects reliable libraries in android apps. Semantics-driven
code analysis has been applied [12] to find clues to private
data usage in mobile apps through semantic dependencies in
the app code. Many mobile apps use the cloud as the back end
for data storage. There are also research approaches that focus
on finding privacy leaks related to cloud-based mobile apps,
[13], [14]. In particular, Leakscope was proposed to detect data
leaks due to various causes, such as mistakes in authentication
or key management, or mis-configurations [13]. Last, there
are research efforts that analyze app developer commits and
updates to check who is adding/modifying permissions to the
apps. [15]

Dynamic analysis. Dynamic analysis approaches aim to find
data leaks through run-time information flow analysis. Along
this thrust, several tools have been proposed to detect privacy
leaks in mobile apps. For example, DrioidTrace is a dynamic
analysis system that could identify malicious payloads be-
haviors [16]. [17] combines static and dynamic analysis to
identify permissions employed in an app, and compares them
with permissions requested in the manifest. LeakDoctor also
integrates dynamic analysis and static taint analysis to examine
privacy leaks, and determines if a data disclosure is necessary
for an app function [18].

Permission analysis and permission-description mapping.
State of art machine learning approaches have been used to
“understand” permission usage in mobile apps and identify
malicious apps [19]. This thrust of research also attempts to
associate app permissions with its descriptions or function-
alities. Natural Language Processing (NLP) techniques have
been employed to analyze privacy policies, identify privacy
practices declared in the policies, and detect any inconsisten-
cies with code analysis, e.g., [20]. [21] maps app permissions
with keywords from the app descriptions, to validate if the
app is consistent in disclosing user information access. [22]
employs NLP methods to parse app descriptions, maps them
with app permissions, and identifies any inconsistencies. Last,
there is work to provide the user with a personal assistant to
manage the permissions of mobile apps on their devices [23].

In this paper, we present a novel approach that identifies per-
mission misuse from a unique angle. We identify potentially
malicious apps based on permission statistics and functional
similarities among mobile apps.

III. MOTIVATION AND PROBLEM STATEMENT

In the current research and practice of mobile app security,
a significant amount of effort is devoted on ensuring the con-
sistency between the requested permissions and the actually
used permissions [2], [24], [25]. That is, when an app employs
sensitive resources or information, they must be requested in
the manifest and approved by the user. However, this approach
falls short in eliminating the potentially malicious permission
usage. A malicious app may employ a large amount of
unnecessary/excessive permissions while still passing through
all the validations as long as it properly “requests” such
permissions in the manifest. During the app stores’ review
process, if an app is found to use unclaimed permissions, it
will be rejected. However, a simple fix is to add the permission
request to the manifest and the app will be approved, while
nobody is interested in any further investigation on how/why
such permission is used or whether the permission is truly
needed. Meanwhile, the end-users often blindly accept all
the permission requests without questioning their legitimacy.
As a result, one can easily identify a significant amount of
seemingly legitimate apps, which employ permissions that
cannot be tied to any of their functionalities, e.g., a flashlight
app that uses Bluetooth, device identities, or USB storage.

To tackle this challenge, we argue that app permission
usage needs to be validated against their functions, while
permission requests that are not endorsed by valid functions
warrant further investigation. It is practically very challenging
to automatically parse app descriptions, accurately extract a list
of functions, and match the functions with permission requests
for each app. In this project, we take a different route which
evaluates each app against its peers, i.e., apps with similar
functionalities. Intuitively, if an app uses significantly more
permissions or accesses significantly more private information
than the majority of its peers, the app appears to be highly sus-
picious. To detect excessive permission requests based on this
observation, we need to develop quantitative measurements



TABLE I
TERMINOLOGIES USED IN THIS PAPER.

Term Notation Meaning

Seed app S
The target application to be
evaluated

Seed permission PS={ps}
A set of permissions re-
quested by S

Peer app P
An app with similar func-
tions as the seed app

Peer app group AS={Pi}
The set of all peer apps of
seed app S

Peer permission PPi

A set of permissions re-
quested by peer app Pi

Common permis-
sions PC=PS ∩PPi

A set of permissions re-
quested by both the seed app
S and the peer app Pi

Seed-exclusive
permissions PS∗=PS−PC

A set of permissions that are
only used by the seed app S
but not the peer app Pi

Peer-exclusive
permissions PP∗

i
=PPi

−PC

A set of permissions that are
only used by the peer app Pi

but not the seed app S

Seed Exclusive-
ness Ratio (SER) |PS∗ |/|PS|

The proportion of seed-
exclusive permissions out of
all seed permissions

Seed to Peer Ex-
clusiveness Ratio
(SPER)

|PS∗ |
|P∗

S
|+PP∗

i
|

The proportion of seed-
exclusive permissions out
of all seed-exclusive and
peer-exclusive permissions

for three components: (1) app similarity assessment based
on app functions; (2) pair-wise evaluation of app permission
requests; and (3) aggregation of all pair-wise evaluations. In
this paper, we primarily focus on (2) and (3), while we rely on
Play Store’s app similarity measurement for (1). Formally, the
objective of this paper is to develop a quantitative evaluation
mechanism to detect potentially excessive app permission
requests based on a statistical analysis of the permission
requests.

In this paper, we denote the target app to be evaluated as
the seed app. We denote the apps with similar functions as
the seed app as the peer apps. The terminologies used in this
paper are summarized in Table I.

IV. EXCESSIVE PERMISSION IDENTIFICATION

In this section, we present the technical details of the
proposed app permission analysis and excessive permission
detection mechanism.

A. Data Collection and Statistics

We have developed a simple crawler to collect app infor-
mation from Google Play Store. We crawl at a very low rate
so that we do not impact the operation of the Play Store. In a
6-month time span (from September 2020 to February 2021),
we have collected information of 11,338 mobile apps, which
will be used in the experiments. The crawled apps are from 48
different categories. Table II demonstrates the top categories.
This data set includes 5,107 paid apps and 6231 free apps.

Information for the seed apps is crawled from each app’s
Google Play Store page. Peer apps are collected through Play
Stores’ “similar apps” link. All the similar apps recommended

TABLE II
SEED APP COUNT IN THE TOP CATEGORIES.

Category Count Category Count
Education 1585 Tools 750

Books & Reference 702 Business 573
Finance 573 Personalization 516

Productivity 486 Puzzle 441
Travel & Local 416 Entertainment 393

by the Play Store are crawled and considered as the peer group
(AS) of the seed app. The size of AS , i.e., the number of peer
apps, varies for each seed. On average there are approximately
30 peer apps per group. The largest peer group, which contains
196 peer apps, belongs to the seed application “Smash Hit”.

The highest number of permissions requested by a seed is
143 for app “MultiSpace for FreeFire”. Whereas the lowest
number of permissions is 0, which means the seed app does
not request any special permission at all. In this project,
all the seeds without any permission requests are considered
not potentially malicious. There are 10 applications with no
permissions requested.

B. Pair-wise Permission Evaluation

In this project, we adopt a two-phase process for app
permission analysis, as introduced in Section III. In the first
phase, we evaluate the permission requests of the seed app
against each of its peer apps. Intuitively, if the seed employs
a significant portion of permissions that are not requested by
its peer, the seed could be considered somewhat suspicious
in comparison with this peer. In practice, we denote the set
of permissions requested/used by the seed app as the seed
permissions (PS), the set of permissions requested by the
peer app Pi as peer permissions (PPi

). The permissions
shared by both the seed and peer apps correspond to the
intersection of these two sets, i.e., the common permissions:
PC = PS ∩ PPi

. Moreover, the permissions that are only
used by the seed app are denoted as the seed-exclusive
permissions PS∗=PS−PC, and correspondingly we also have
the peer-exclusive permissions PP∗

i
=PPi

−PC. In comparing
PS and PPi

, the relationship between S and Pi could be
roughly categorized into four cases: (1) in the ideal scenario,
two functionally similar apps shall employ a similar set of
permissions, i.e., |PC| >> |PS∗ | ≈ |PP∗

i
|, where |P| denotes

the size of set P. (2) When PS and PPi
appear to be disjoint

(PS ∩PPi
≈ ∅), S and Pi are likely to be two less relevant

apps. (3) When S employs a significant amount of permissions
that are not used by Pi, i.e., |PS∗ | >> |PC| and |PP∗

i
| is

small, S appears to be suspicious in comparing with Pi. And
finally (4) When Pi uses significantly more permissions than
S, Pi appears to be suspicious.

Since this analysis targets the seed app, we are concerned
when the seed is potentially malicious out of these four cases.
That is, we design a quantitative measure that distinguishes
case (3) from above. In particular, we define the Seed Ex-



TABLE III
RISK CATEGORIZATION FOR PAIR-WISE SERS.

Risk Category Definition Range Risk Level
R0 [0, s̄−σ] [0, 0.102] Very Low
R1 [s̄−σ, s̄] [0.102, 0.354] Low
R2 [s̄, s̄+σ] [0.354, 0.605] Medium
R3 [s̄+σ, s̄+2σ] [0.605, 0.857] High
R4 [s̄+2σ, 1] [0.857, 1] Very High

clusiveness Ratio (SER) as the proportion of seed-exclusive
permissions out of all seed permissions in comparing with Pi:

SER(S, Pi) =
|PS∗ |
|PS|

(1)

SER∈[0, 1] measures how the seed permissions are (not) used
by a peer app with similar functions. A higher SER indicates
a higher likelihood that S has requested unnecessary/excessive
permissions in the context of Pi.

Next, we evaluate all the pair-wise SERs for each seed app
against each peer app and show the distribution of the SERs
in Figure 1. As shown in the figure, the pair-wise SERs in
our dataset roughly follow a power-law distribution, with a
mean (s̄) of 0.354, and a standard deviation (σ) of 0.251. The
results show that, on average, 35.4% of the seed permissions
are not used in a peer app. This could be explained by the
fact that the seed and peer apps still demonstrate differences
in their functionalities, while the “similar app” designation in
Play Store does not indicate perfect matching.

Finally, we categorize the SER values into five risk cate-
gories (RCs) based on four threshold values: s̄− σ, s̄, s̄+ σ,
s̄+ 2σ. The risk categories, R0, ..., R4, and their implied risk
levels are shown in Table III. In this way, each peer app
“designates” a risk category label to the seed app. Please note
that the categories are designed to be asymmetric. That is,
we use three categories for SER>s, and two categories for
SER<s, since we pay more attention to the high-risk cases.

C. Aggregate Permission Analysis and App Risk Scoring

For a seed app, each individual SER(S, Pi) value or the
corresponding risk category Ri only provides a partial view
of the relative risk of the seed in the context of peer Pi. When
we evaluate a seed app with all the apps in its peer group
AS, we have the following observations: (1) when SER(S, Pi)
is significantly larger than s̄, S demonstrates higher risk in
comparing with Pi; and (2) when S demonstrates higher risk
than a significant portion of apps in AS, S appears to be
highly suspicious that warrants further manual examination.

In practice, we design a “voting” mechanism for aggregate
permission analysis. For each app, we evaluate the pair-wise
SER against each peer app in AS, and then aggregate the
risk categorizations for each SER to generate the integrated
permission risk score rs for the seed app.

rs =

∑4
i=0 i× |Ri|
|As|

(2)

Fig. 1. Distribution of Seed Exclusive Ratio (SER)

where |Ri| denotes the number of peer apps that indicate risk
category Ri for the seed, and |As| denotes the total number
of peer apps.

Finally, rs ∈ [0, 4] indicates the peer-voted permission risk
score of seed S. Using this approach, potentially malicious
apps are identified based on being more aggressive on per-
mission requests compared with its peer group. For better
comprehension of the risk scores, we can further place the seed
app into risk categories based on rs, i.e., the app demonstrates
very low risk when rs ∈ [0, 1], while the app demonstrates
high risk when rs ∈ [3, 4].

D. Evaluation of Seed-to-Peer Differences

The app risk score rs rely on the accurate identification of
“similar apps”. In case S and Pi are significantly different,
PS and PPi

will be disjoint while SER(S, Pi) will be large,
which pushes the seed app towards “high risk”. To partially
mitigate this issue, we introduce another metric, the Seed-
to-Peer Exclusiveness Ratio (SPER), which is the proportion
of seed-exclusive permissions over seed- and peer-exclusive
permissions:

SPER(S, PPi) =
|PS∗ |

|P∗
S|+ PP∗

i
|

(3)

SPER∈[0, 1] measures how the seed app permissions different
from peer app permissions. A higher SPER indicates that the
seed app uses significantly more exclusive permissions than
the peer app, i.e., the seed app may be risky. We further employ
the same approach in Section IV-C to obtain the distribution
of SPER, and then apply the same voting mechanism on
SPER to calculate the second risk score, rsp, which serves
as a complement of rs. With rsp, we have the following
assessments: (1) The range of rsp for all the seed apps is
in [0, 3]. (2) rsp is low if most of the peer permissions are
different from the seed. (3) rsp is high if the seed uses
(significantly) more exclusive permissions than most of its
peers, i.e., the seed appears to be risky.
rsp serves as a complement of rs. An app with high rs

and high rsp is considered a candidate for permission abuse,
which should be further examined. Meanwhile, an app with
high rs but low rsp most likely indicate that the “similar apps”
function performed poorly for the seed.



TABLE IV
CATEGORIZATION OF APP PERMISSION RISKS

rs range 0 (0.0, 1.0] (1.0, 2.0] (2.0, 3.0] (3.0, 4.0]
app count 597 2608 5902 2117 92

Fig. 2. Seed Application Distribution Based on Risk Score rs.

V. EXPERIMENT RESULTS

The experiments are conducted with all 11,338 seed apps.
We perform pair-wise permission evaluation for each seed
app against each peer app to calculate the SERs (Eq. 1). We
further aggregate the SERs for each seed to generate rs (Eq.
2). There are several special cases: (1) There are 10 seed
applications that do not use any special permission (PS = ∅),
hence, they are considered not malicious (rs = 0). (2) The
permission requests of 12 apps are completely disjoint with
all their peers (PS ∩ PPi

= ∅). They are primarily caused
by inaccurate similarity assessments by Play Store. We have
generated rs for all the remaining apps, and present the score
distributions in Figure 2 and Table IV. As shown in the figure,
the permission risk scores for all the apps roughly follow a
normal distribution. rs for the majority of the apps lie in the
range of [1.0, 3.0], while there is a small portion of apps that
demonstrate high risk. We also like to point out that 597 apps
do not use any seed-exclusive permission compared with all
the peers, i.e., PS = PC ⊆ PPi

,∀i. That is, all the seed
permissions are used by every peer app. In this case, all the
SERs are 0 and the eventual risk scores are also 0. To further
evaluate the validity of the app permission scoring mechanism,
we employed Amazon Mechanical Turk (MTurk) for a user
study, and also manually examined the high-risk apps.

User study using MTurk. To further validate the effective-
ness of the proposed app permission risk score, we perform a
small-scale user study. We randomly pick 12 apps and posted
them to Amazon Mechanical Turk (MTurk). For each app, we
displayed its app description and requested permissions, and
asked the Turker to rate the permission requests as “excessive”,
“not sure”, or “reasonable”. Each MTurk task consists of 4
apps, with a compensation of $0.40. Each app is rated by 50
Turkers. We calculate a weighted sum of all the user inputs
for each app, and denote it as the MTurk score. The scatter
plot for rs and the MTurk score is presented in Figure 3. The

TABLE V
MOST USED EXCESSIVE PERMISSIONS.

Permission Seed count
Read the contents of your USB storage 39
Modify or delete the contents of your USB storage 37
Prevent device from sleeping 34
Receive data from Internet 29
View Wi-Fi connections 28
Control vibration 27
Full network access 26
Read phone status and identity 24
Run at startup 24
Google Play license check 24
Precise location (GPS and network-based) 23
Record audio 22
Take pictures and videos 22
View network connections 22
Approximate location (network-based) 20

Fig. 3. Correlation between the app risk score rs and MTurk user annotated
score.

Pearson correlation coefficient is 0.664, indicating a strong
correlation. The experiment result shows that the proposed rs
scores are highly consistent with users’ perceptions.

Manual examination of seed-exclusive permissions. As we
have shown, 92 applications are categorized as potentially
high-risk applications with rs ∈ (3.0, 4.4]. We further man-
ually examine all the apps in this category to validate the
correctness of the risk assessment and to further investigate
what/how excessive permissions are used. We read the func-
tion descriptions of these high-risk apps, and found that at least
30% of their total requested permissions cannot be explicitly or
implicitly associated with any published functions. Moreover,
the most popular seed-exclusive permissions are shown in
Table V. For instance, permission “read the contents of your
USB storage” appeared very frequently in the PS∗ of 39 seed
apps, where it is rarely used by their peer apps.

VI. CASE STUDIES

In this section, we present four case studies, in which we
manually examine randomly selected apps, including three
apps from the “high risk” category and one from the “low
risk” category. We present the app permission risk score of
each app, qualitatively compare each app with several peer
apps, and discuss the validity of the permission risk scoring.



TABLE VI
COMPARING EASY FLASHLIGHT WITH PEER APPLICATIONS.

EF: Easy Flashlight (com.jjapp.easyflash);
FP: Flashlight Pro: No Permissions (com.humberto.flashlightpro);
IT: Icon Torch - Flashlight (ru.irk.ang.balsan.shortcutled);
F: Flashlight (com.binghuo.torchlight.flashlight);
FL: Flash light-Bright LED (coocent.app.tools.light.flashlight);
.

Permission EF FP IT F FL
Control flashlight
Device and app history
Device ID and call informa-
tion
Disable your screen lock
Draw over other apps
Expand/collapse status bar
Full network access
Install shortcut
Precise location (GPS and
network-based)
Prevent device from sleeping
Read the contents of your
USB storage
Modify or delete the contents
of your USB storage
Read phone status and iden-
tity
Read Home settings and
shortcuts
Read sensitive log data
Retrieve running apps
Run at startup
Take pictures and videos
View network connections
View Wi-Fi connections
Uninstall shortcuts

A. Easy Flashlight

There are currently hundreds of flashlight apps in the
Google Play Store. These apps offer simple interfaces and
limited functions–controlling the flashlight LEDs on smart
phones. In our experiments, the Easy Flashlight - Super Bright
LED Flashlight app (com.jjapp.easyflash) has received an rs
score of 3.1 and an rsp score of 2.9, which indicates highly
malicious in terms of permission usage.

Table VI shows the comparison between the seed (Easy
Flashlight) and some of its peer apps to highlight excessive
permissions accessed. As per the functional requirements of
the flashlight apps, it is reasonable to access flashlight-related
settings. It still appears to be reasonable to access network-
related settings, as is requested in most other flashlight apps.
Further examination shows that network access is used for in-
app advertisements. Whereas, Easy Flashlight has requested
permissions that are dramatically more than its peer appli-
cations, while most of such permission requests cannot be
explained by any of the published functionalities of the app,
such as “accessing GPS” and “read sensitive log data”, etc. In
particular, this app requests 21 permissions in total, most of

TABLE VII
COMPARING BATTERY CHARGE SOUND ALERT WITH PEERS.

BC: Battery Charge Sound Alert - Yellow (ddolcatmas-
ter.batterychargealertmanagement);
BA: Battery Alarm (simple.batttery.alarm);
FB: Full Battery Charge Alarm (pps.syrupy.fullbatterychargealarm);
B: Battery (com.macropinch.pearl);
BAP: Battery Alarm PRO(simple.battery.alarm);

Permission BC BA FB B BAP
Access Bluetooth setting
Change network connectivity
Connect and disconnect from
Wi-Fi
Control vibration
Full network access
Modify and delete the con-
tents of your USB storage
Modify system settings
Pair with Bluetooth devices
Prevent device from sleeping
Read the contents of your
USB storage
Read Home settings and
shortcuts
Read sync settings
Receive data from Internet
Run at startup
Toggle sync on and off
View network connections
View Wi-Fi connections

which are not used in any of its peer app. Hence, we confirm
Easy Flashlight as potentially malicious based on the excessive
request for permissions that are unexplained. Last, we also
noticed that a negative Play Store review that is rated as “most
helpful” also pointed out the excessive permission requests:
“Spy app? I could not understand, why does it need almost
all permission? Is it a spy app?”.

B. Battery Charge Sound Alert

We examine the Battery Charge Sound Alert - Yellow
(ddolcatmaster.batterychargealertmanagement) on Google Play
Store for functionality details. Based on the description, this
app enables the user to set a reminder song, which is played
once the battery is fully charged. This app receives an rs
score of 3, and an rsp score of 3, which indicates potentially
malicious. A comparison of this app and some peers are shown
in Table VII. In a manual evaluation, we found that most of
the seed-exclusive permission requests cannot be explained
by the app functions, e.g., permissions related to USB storage
modification, Bluetooth settings, etc.

C. Fast Electric Pro

The Fast Electric Pro: electrical calculator (No Ads)
(com.androny.egy.fast electricPro) is a paid app that provides
basic functions of a scientific calculator. It receives an rs score
of 3.38, which indicates highly risky. Meanwhile, its rsp score
is 2.1, which indicates that some of its peers may be less



TABLE VIII
COMPARING FAST ELECTRIC PRO WITH PEER APPS.

FEP: Fast Electric Pro (com.androny.egy.fast electricPro);
EP: ElectriCalc Pro Calculator (com.calculated.carmencita);
ECP: Electrician Calculator Pro (com.rfxlabs.electriciancalculator);
EC: Electrical Calc Elite Electric (cyberprodigy.electrical.calc.elite);
IE: InstElectric Pro - Electricity(com.xlingenieria.instelectric.pro);

Permissions FEP EP ECP EC IE
Approximate location
(network-based)
Control vibration
Full network access
Google Play license check
Pair with Bluetooth devices
Precise location (GPS and
network-based)
Prevent device from sleeping
Receive data from Internet
Run at startup
View network connections
View Wi-Fi connections

relevant to the seed. A comparison between Fast Electric Pro
and its peer apps is shown in Table VIII. We further manually
examined the functions and permission requests of this app and
found that some permissions that are exclusively requested by
the seed cannot be explained with a published function, e.g.,
precise location (GPS) and Bluetooth.

D. WhatsApp Messenger

Most of the instant messaging and social networking apps
need relatively more permissions to access user data and
hardware, such as GPS, camera, storage. Latest messenger
apps also added features such as video calling, broadcasting
messages, video sharing, etc. Among the messaging apps,
WhatsApp Messenger (com.whatsapp) received an app per-
mission risk score of 2.2, which implies average risk.

Comparing with its peer applications, WhatsApp Messenger
accesses a similar amount of user information, including con-
tacts and SMS. However, the messaging and social networking
apps are highly diversified, where each app implements a dif-
ferent set of features/functions and hence employs a different
set of permissions. This is very different from the flashlight or
calculator apps, where most of the peer apps share very similar
functions. The WhatsApp Messenger app uses a total of 53
permissions, while its peer apps mostly use similar numbers
of permissions. However, each peer app uses a different set of
permissions that partially overlaps with WhatsApp Messenger.
As a result, WhatsApp Messenger is rated as moderately risky
in comparison with its peers, which we think is reasonable.

VII. DISCUSSIONS

In this section, we compare the proposed app permission
risk assessment mechanism with code analysis approaches and
further discuss the limitations of our current design.
Compare with code analysis approaches. Code analysis is
the most popular method in mobile/Android security research.

Existing solutions have shown to be very effective in detecting
malicious behaviors, such as permission abuse and private
information leakage [5]. In this paper, we take a different
perspective, in which we focus on the legitimacy and necessity
of the permission requests. That is, the fact that a permission
is explicitly requested by the developer and consented by the
user does not make the request appropriate. As we have shown
in Sections V and VI, many permission requests cannot be
explained by the legitimate functionalities of the app.

We further compare our experimental results with code
analysis tools. MobSF is an automated code analysis (static
and dynamic analysis) and security assessment tool for An-
droid apps [26]. To demonstrate the differences between code
analysis and our approach, we employ MobSF to examine the
four apps we used in case studies (Section VI). MobSF reports
Whatsapp Messenger as high risk, Easy Flashlight, Battery
Charge Sound Alert as medium risk, and Fast Electric Pro
as not risky. In particular, MobSF reports the permission of
displaying system-level alerts as dangerous because it may
be exploited by malicious users. It also considers camera
access as risky. However, from our perspective, it is reasonable
for the Messenger app to access the camera for video calls
or to invoke system-level alerts for incoming calls. These
permissions are also employed by its peer apps, i.e., other
instant messaging and video conferencing apps. On the other
hand, while the other three apps do not request or use high-
risk permissions such as cameras, most of their requested
permissions are not used by their peer apps, and they cannot
be justified by their published functions.

False positives. The proposed app permission risk scoring
mechanism may rate legitimate permission requests as unnec-
essary/excessive, which implies false positives. False positives
are mostly caused by three circumstances: (1) the seed app
supports significantly more functions than many of its peer
apps and hence requires more permissions, (2) the “similar
app” function by Play Store mistakenly place less relevant
apps as similar, (3) the same functions may be implemented in
slightly different ways and thus requires different permissions.
In practice, case (3) is rare since SER (Eq. 1) could tolerate
a small number of inconsistent permissions, while the risk
scoring mechanism (Eq 2) could also tolerate a few outlier
peers. Meanwhile, cases (1) and (2) appear to be the root
causes of most of the false positives generated in our approach.
For example, when a health tracking app (seed app) that tracks
all user health information is considered similar to a large
number of pedometer apps (peer apps), all these pedometer
apps will generate relatively high SERs for the seed app
since the pedometer apps are significantly simpler so that they
require fewer permissions.

To tackle this issue, we have designed the SPER and rsp
measurements to partially mitigate the problem of irrelevant
apps in the peer group, i.e., to handle case (2). Meanwhile, we
have planned to further examine app functions instead of re-
lying on Play Store’s assessment. We will design fine-grained
app similarity measurements based on the public information



that we can collect, e.g., app descriptions, reviews, privacy
policies, etc. As we add the app similarity measurements to
Play Store’s similarity assessment, we will also introduce a
weighting mechanism in app risk scoring (Eq. 2). That is,
SERs generated from highly similar peers will carry higher
weights than less similar peers.

Risk level of permissions. As shown in [26], different permis-
sions may imply different levels of risk, e.g., if an app employs
an unnecessary permission of camera access, it implies a
higher risk than an unnecessary permission of disable screen
lock. While we currently treat all the unnecessary permission
requests as equally risky, it is our future plan to add permission
risk levels to our app risk scoring.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we propose a unique approach to identify
potentially excessive permission usage by Android apps based
on comparison with their peer applications. This approach runs
on the assumption that permissions are used to support app
functions so that apps with similar functionalities are expected
to request/use similar sets of permissions. A statistical analysis
approach is designed to examine the shared and exclusive
permissions between pairs of apps. All seed applications that
do not stand with their peer applications are considered to
be potentially malicious. With experiments using more than
11,000 apps, we assess the app permission risk score rs and
demonstrate the effectiveness of the risk scores. The current
approach can be improved with a more accurate measurement
of application similarities. We also plan to further enhance
the expressiveness of the proposed mechanism by adding
permission risk level and improve the scoring mechanism.
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