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ABSTRACT

Content-based image search on the Internet is a challenging
problem, mostly due to the semantic gap between low-level
visual features and high-level content, as well as the exces-
sive computation brought by huge amount of images and
high dimensional features. In this paper, we present iLike,
a new approach to truly combine textual features from web
pages, and visual features from image content for better im-
age search in a vertical search engine. We tackle the first
problem by trying to capture the meaning of each text term
in the visual feature space, and re-weight visual features
according to their significance to the query content. Our
experimental results in product search for apparels and ac-
cessories demonstrate the effectiveness of iLike and its capa-
bility of bridging semantic gaps between visual features and
abstract concepts.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Retrieval models

General Terms
Algorithms, Design

1. INTRODUCTION

With the Internet explosion, tremendous amounts of mul-
timedia information, such as images, videos, and flashes, be-
come available on the Web. Unlike the great success of text-
based web search, the research community is still struggling
with content-based indexing and searching of multimedia in-
formation over the Internet. Image search engines still rely
on text-based methods, i.e. retrieve and rank images based
on surrounding text or human-submitted annotations. On
the other hand, most existing content-based image retrieval
(CBIR) prototypes still use offline image databases that are
not comparable with the scale of the Web. Besides various
research efforts that aim to directly employ visual content
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based retrieval for Web images, some recent approaches have
proposed alternative routes, e.g. [24, 15, 35, 6]. In this pa-
per, we take a different approach, which focuses on truly
integrating textual and visual features for vertical search
engines.

A vertical search engine, a.k.a. niche search engine, is a
domain-specific search engine that works on a smaller sub-
graph of the Web. Examples of vertical search include sci-
entific publications search (e.g. Google Scholar, CiteSeer),
product search (e.g. Google Product, Yahoo! Shopping),
Blog search, source code search, local search, etc. Vertical
search engines have shown better performance than general
Web search engines (e.g. precision, ranking), because they
are more focused and optimized with domain knowledge [19].

In the scenario of vertical search, we have a better chance
to truly integrate visual features from images and textual
features from text contents. First, text contexts are better
organized, hence focused crawlers/parsers are able to gener-
ate data patterns and structured data, instead of free text.
Second, we are able to associate text content with images
with high confidence. In general Internet image retrieval,
one problem is that texts surrounding images may not neces-
sarily describe the image content. However, in some vertical
search engines, the focused crawlers are able to connect text
contents with corresponding image(s), e.g. product images
and product descriptions, paintings and introductions, etc.
Third, with the knowledge of the focused domain, we are
able to select image features and similarity measures that
are more effective for the domain. Finally, computation is-
sues become less critical for a smaller data set.

In this paper, our goal is to explore the possibilities
of integrating visual and textual features to improve
search performance in the scenario of vertical search.
Particularly, we focus on the domain of product search for
apparels and accessories. In this domain, we propose to uti-
lize both textual features (from product description) and
visual features (from product images) for items, and try
to understand and mimic human perception of “similarity”.
More specifically, we try to understand the inherent connec-
tions between text (keywords) and visual features, to build a
bridge over the semantic gap. We start from predicting user
intention, which is implicitly carried with search terms. For
instance, the query “blue shirt” indicates that the user con-
cerns more on color than any other aspect. However, such
clearly expressible intention is not available for all the terms,
and such human perception is yet to be mapped to low-level
feature spaces. We further assess the perception/intention
behind each keyword in the visual feature space, and use



them for searching as well as re-weighting visual features
according to their significance to the query. These novel
ideas allow us to integrate textual and visual features in
accordance with user perception, and develop a similarity
measure and ranking method that better fits user intention.

Our major contributions are three-fold: (1) we demon-
strate that truly integrating textual and visual features could
significantly improve ranking in vertical search, especially
in the domains where visual contents are equally significant
to text contents. It also improves overall recall by yield-
ing items that would otherwise be missed by searching with
either type of the features. (2) We are able to infer users’
(visual) intention behind search terms, and apply such inten-
tion to improve relevance assessment and ranking through
textual-feature-guided visual feature selection and weight-
ing. (3) Our approach also assesses representations of key-
words in the visual feature space, and computes the seman-
tic relationships of the terms. In this way, we are able to
automatically generate a thesaurus based on the “visual se-
mantics” of words.

The rest of the paper is organized as follows: in Section
2, we review the related literature. In Section 3, we give
an overview of our approach: iLike. We present the detailed
algorithm of integrating textual and visual features in Sec-
tion 4. We then present our visual thesaurus in Section 5.
Next, we demonstrate our experimental results and further
discuss the strength and weakness of different approaches in
Section 6. Finally, we conclude the paper and discuss future
works.

2. RELATED-WORK AND BACKGROUND

2.1 Content-based image retrieval

In early information retrieval systems, images were man-
ually annotated with meta-data, and retrieved using text-
based methods (e.g. library of congress catalog records for
prints and photographs). However, it is too expensive, if not
impossible, to create meta-data for a huge image databases.
Meanwhile, not all image contents could be accurately and
indisputably described by keywords. Discrepancies may also
exist between query keywords and tag keywords (e.g. query
“car” would not yield images annotated with “automobile”).
Therefore, content based image retrieval (CBIR) was pro-
posed to tackle such problems. It retrieves images with vi-
sual features such as color, texture, and shape. Comprehen-
sive surveys on CBIR could be found at [30, 21, §].

The primary goal, as well as the major challenge of content-
based image retrieval research, is to bridge the semantic gap,
which is the gap between high level image content and low
level visual features. On the other hand, we are also ex-
pecting a major breakthrough to the computational issue,
especially high dimensional indexing. Such challenges have
prevented CBIR from being widely adopted in web search.

2.2 Image search on the web

At present, commercially available general-purpose search
engines on the web still mostly depend on text methods for
image search. Such text-based image search engines include
Google Image Search (http://images.google.com/), Yahoo
image search (http://images.search.yahoo.com/), etc. They
take keyword queries, and match them against metadata
(e.g. file name, URL, link text, etc) and surrounding text
extracted from the webpages which contain the images. On

the other hand, user-generated labels are employed to im-
prove search quality, e.g. [23, 34], Google Image Labeler
(http://images.google.com/imagelabeler/), Flickr image tags
(http://www.flickr.com/photos/tags/), etc. Some approaches
use more aggressive text methods on surrounding texts to
better associate semantics to images, e.g. [1, 29]. On the
other hand, link analysis has also been employed to improve
search performance [20, 2].

Meanwhile, there has been prototypes of content-based
image search for the web, e.g. [17, 12, 27, 28, 3]. Pure visual
content based image search engines suffer from two major
disadvantages inherited from CBIR: semantic gap and com-
putation. To tackle such problems, alternative approaches
have been proposed. In the web search scenario, both im-
ages and text contents are available, which provide oppor-
tunities to bridge the semantic gap and better indexing by
integrating features from both sides. A two stage hybrid
approach has been introduced in [24]. They first use text-
based search to generate an intermediate answer set with
high recall and low precision, and then apply CBIR meth-
ods to cluster or re-rank the results. Although their ap-
proach suffers from over simplified image features and clus-
tering methods, the idea of applying CBIR after text search
appears to be viable. More complicate re-ranking algo-
rithms have been proposed for better search performance
and user experience [15, 35]. Most recently, Bing image
search (http://www.bing.com/images/) have started to em-
ploy CBIR methods to re-rank search results, when users
click on “show similar images” [6, 5]. Meanwhile, other
types of text-image interaction have been proposed, e.g.:
[14, 22, 32, 40] use visual information to help annotating
images. Our approach is significantly different from existing
approaches in the way that we integrate textual and visual
features.

Content-based image retrieval over the general web is a
hard problem. On the other hand, some researchers have
proposed to apply CBIR in vertical search. Vertical search
engines work on specific (sub)domains of the Internet. They
use focused crawlers to crawl constrained subsets of the gen-
eral web, and evaluate user queries against such domain-
specific collections of documents. Besides the benefits of
working on much smaller datasets, they are also able to
incorporate domain knowledge to help with relevance as-
sessment and results ranking. Examples of vertical image
search includes: photo album search [38], product search
(http://www.like.com/, http://www.riya.com/), airplane im-
age search (http://www.airliners.net/), etc. On the other
hand, there are also off-line image retrieval systems that
work on domain-specific collections of images, such as per-
sonal album search [39, 7], leaf images search [36, 10], fine
arts image search [37], etc. These approaches utilize do-
main knowledge in image pre-processing, feature selection
and similarity assessment. For instance, leaf image retrieval
puts emphasis on shape and texture features, while personal
album search usually employs face recognition methods.

3. SYSTEM OVERVIEW

3.1 System architecture

Since our goal is to integrate textual and visual features in
vertical search, it is of our interest to select a domain where
text content is directly associated with image content. On-
line shopping, especially clothing shopping, is a good exam-



ple of such domains. In shopping websites, text descriptions
are always available with item images, and are usually faith-
ful descriptions of the image contents. Moreover, we believe
that both text descriptions and product images are equally
important since: (1) from users’ perspectives, they can only
issue keyword queries for product search; on the other hand,
while browsing the results, users focus more on visual pre-
sentations than the text specifications. (2) Due to differ-
ent personal tastes, the descriptions of fashionable items are
very subjective, hence traditional text-based search on such
descriptions may not yield satisfactory results. Especially,
the recall can be very low when there is a discrepancy be-
tween user’s and narrator’s tastes or vocabularies. (3) In
many cases, two items may have similar style in human per-
ception, but we see huge difference in the visual features.
Hence, pure content-based image search will not yield high
recall either. Note that our arguments are based on fashion
shopping, but they are also true in many other shopping cat-
egories. Therefore, our system could be migrated to other
categories with minimum modification.
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Figure 1: system architecture of iLike.

The system of iLike is comprised of three major compo-
nents: the Crawler, the (Pre-)Processor, and the Search
and UI component. As shown in Figure 1: (1) the Crawler
fetches web pages from retailer websites, where structured
text descriptions and item images are both available. (2)
The text parser preprocesses pages using a customized parser,
and fits item information (e.g. title, description) into a pre-
defined universal schema. Using classic text retrieval meth-
ods, text processor generates term dictionary and text index.
(3) Simultaneously, the image processor segments product
images and calculates low level visual features. (4) Next, we
integrate textual and visual features by calculating a “cen-
troid” and a weight vector in the visual feature space for each
text term. Such vectors are further utilized in item ranking.
(5) Finally, the User Interface provides query interface, as
well as browsing views of search results.

In iLike , a user starts with a traditional text query (since
query-by-example is not really practical in this scenario),
and the system returns a ranked list of relevant items (namely
the initial result set) using classic text retrieval methods
(TF/IDF) [26]. For each result in the initial result set, we
construct a new query by integrating textual and visual fea-
tures from item images. Each expanded query is evaluated
to find more “similar” items. More importantly, a weight vec-
tor which represents the “visual perception” behind the text
query is enforced during evaluation of the expanded queries.
For instance, with a query “silky blouse”, the weight factor

will increase the significance of some texture features, and
fade out irrelevant features, hence correctly interpret the vi-
sual meaning behind search term “silky”. The philosophy of
our approach is to infer user intentions from a text query
and enhance the corresponding visual features that are im-
plicitly favored in the intentions (e.g. query term “yellow”
implicitly favors color features).

3.2 Crawling and feature extraction

Data Acquisition. In the prototype, we have initially
crawled a total of 20788 product items from six online retail-
ers: Banana Republic, Old Navy, Gap, Athleta, Piperlime
and Macy’s. They all provide mid-sized hi-quality images
and well structured textual description. We use focused
crawlers to harvest both text and images. Please note that
the system is easily expandable by implementing more cus-
tomized crawlers and parsers.

For each product, we record the name, category, class, on-

line product ID, local path of the main image, original URL,
detailed textual description, color tags, and size information,
if available. We use an unique id for each product item, to
identify both the database record and the image file. Text
information is stored in a MySQL database (Version 5.0),
and all the customized software (e.g. focused crawlers) are
written in C# programming language.
Visual Features. In order to make a sufficient coverage of
an image’s semantic meaning, we attempt to diversify the
part of feature selection. In our experiment, a set of 263
commonly used texture, shape, intensity and color features
are extracted to represent the low-level visual features of
images.

We use gray level co-occurrence matrix (GLCM)[13] to
capture the basic texture information: contrast, correlation,
energy, and homogeneity of the grayscale images are cal-
culated, each of which generating a 4-scale feature vector.
Image coarseness and direction are obtained by calculating
3 dimensions of Tamura texture features [31]. To extract
the shape information, we represent the contour of an image
in terms of 7 geometric invariant moments[11], which are
invariant under rotation, scale, translation and reflection of
images. To capture texture patterns in frequency domain,
we apply Gabor wavelet filters in 8 directions and 5 scales,
acquiring a vector of 40 texture features. Besides, fourier de-
scriptors[33] are also employed, contributing 9-dimensional
feature vector to our feature set. As part of shape features,
the edge orientation is represented by phase congruency fea-
tures(PC) [18] and moments of characteristic function: A
three-level Daubechies wavelet decomposition of the test im-
age is first carried out. At each level, the first four moments
of phases, which are generated by Sobel edge detector, are
obtained, together with the first three moments of the char-
acteristic function, yielding a 28-dimensional feature vector.
We demonstrate the image intensity using 48 statistics of 4
by 4 block histograms, with 16 dimensions in each of the R,
G, B components. The color features are generated by color
quantization approach. We map the original image into the
HSV color space, and implement color quantization using
72 colors(8 levels for H channel, 3 levels for S channel and 3
levels for V channel).

The chosen features have been proved to work well for
image classification in literature [25]. On the other hand,

"http:/ /www.mysql.com/



we do not want our search performance to be overwhelmed
by very complicate and computationally intensive visual fea-
tures. Meanwhile, a comparative study [9] has shown that
the effectiveness of visual features is dependent on the par-
ticular task. However, such a specifically optimized sys-
tem cannot be easily migrated to other domains, due to the
labor-intensive manual feature selection process. Instead, in
iLike features are automatically weighted based on their sig-
nificance to the user intent (implicitly carried by the query).
Less important features are faded out, while more impor-
tant features are enhanced. Therefore, unlike other CBIR
approaches, the “quality” of low-level visual features is not
the key factor in our system. As a side effect, our method is
robust: the ranking quality is less sensitive to the selection
of low-level image features.

Segmentation. Our database contains images of products
in all shapes and sizes. Various retailers have different spec-
ifications of their product demo, some of which have intro-
duced non-ignorable errors to feature extraction. For in-
stance, the presence of a lingerie model could significantly
influence the feature distribution. To simplify and clean the
representation of product images and minimize the error
of features, we perform an “YCbCr Skin-color Model”[16]-
based image segmentation to remove the skin area and high-
light product items.

Normalization. Our system uses diverse types of image
features. However, features from different categories are not
comparable with each other, since they take values from dif-
ferent domains. Without any normalization, search results
will be dominated by those features taking larger values. To
reduce the interferences brought by different feature types
and scopes, we map the range of each feature & to (0,1):

x; — min(&)
max(Z) — min(Z)

(1)

Yi =

in which ¢ indicates the i-th item.
After normalizing, all the features are mapped into i with
the same scale, and become comparable.

4. THE METHOD

If we consider the vast source of web data being dis-
tributed in a metadata space, to a certain extent, the role
of semantic subspaces and visual subspaces are complemen-
tary. It is well known that textual information can better
represent the semantic meaning while visual knowledge plays
a dominant role at the physical level. In this subsection, we
will discuss a native approach to bridge the “semantic gap”,
which allows easy transformation from one subspace to an-
other.

4.1 Representing keywords

To some extent, textual description is a projection of hu-
man perception. Unlike visual features, where there’s al-
ways a semantic gap, text directly represents the narrater’s
perception. However, there are difficulties using only text
features for our goal: (1) perception is a subjective matter;
(2) the same impression could be described through differ-
ent words; and (3) calculating text similarity (or distance)
is difficult - distance measurements (such as cosine distance
in TF/IDF space) do NOT perfectly represent the distances
in human perception. For instance, from a customer’s per-
spective, ‘relaxed-cut’ is similar to ‘regular-cut’ and quite

Figure 2: some items that has the keyword “floral”
in their descriptions.

different from ‘slim-cut’. However, they are equally differ-
ent in terms of textual representation (e.g. in vector space
model).

To make up for the deficiency of pure text search, we
try to map keywords into visual subspace. Since the text
description represents the narrator’s perception of the visual
features, we assume that: items share the same keyword(s)
may also share some consistency in selected visual features.
Moreover, if the consistency is observed over a significant
number of items described by the same keyword, such a set
of features and their values may represent the human “visual”
perception of the keyword.

For instance, let’s look at the items with the keyword
“floral” (some examples are shown in Figure 2). Although
they come from different categories and different venders,
they all share very unique texture features. On the other
hand, they all differ a lot in other features, such as color and
shape. It indicates that the term “floral” is particularly used
to describe certain texture features. When a user searches
with this term, her intension is to find such texture features,
not about color or shape. In this way, many terms could be
connected with such a “visual meaning”. Now let us discover
such “visual meanings” automatically.

Base representation. Suppose there are N items sharing
the same keyword, and each item is represented by a M-
dimensional visual feature vector: Xj = (Thy s Thgy - -y Thpy )Ly
where k € [1, N]. The mean vector of the N feature vectors
could be utilized as a base representation of the keyword in
the visual feature space:

1 & X | X
o T
o= (—N ,;:1 Thy s i kgﬂ Thoy - s w ng Thyps)

In the above equation, if IV is large enough, i will pre-
serve the common dimensions of the feature matrix and
smooth over the various sections. In such a manner, the
mean vector is rendered as a good representation of the key-
word. However, those N feature vectors only share consis-
tency over selected features, hence, not all dimensions of the
mean vector makes sense. As shown in the “floral” example,
those items are only similar in some texture features, while
they differ a lot in color and shape features. Such consis-
tancy/inconsistancy on the feature is a better indicator of
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Figure 3: Examples of feature distributions.

the significance of the feature towards human perception of
the keyword. Therefore, a more important task is to quan-
tify such consistency or inconsistency.

4.2 Weighting visual features

As shown in the “floral” example, features coherent with
the human perception of the keyword tends to have consis-
tent values; while other features are more likely to be diverse.
To put it another way, suppose that we have two groups of
samples: (a) positive: Ni items that have the keyword in
their descriptions, and (b) negative: N items that do not
contain the keyword. In this way, if the meaning of a key-
word is coherent with a visual feature, its N1 values in the
positive group should demonstrate a different distribution
than the Ny values in the negative group. Moreover, the
feature values in the positive group tends to demonstrate a
small variance, while values in the negative group are diver-
sified.

Figure 3 demonstrates the value distribution of eight dif-
ferent features for the keyword “floral”. In the figure, blue
line represents distribution of the positive samples, while red
represents negative samples. Note that both sample sets are
fitted to normal distributions for better presentation in the
figure. However, when we quantitatively compare both dis-
tributions, we do not make such assumption. For the first
four texture features, distributions of the positive samples
are significantly different from negative samples (e.g. items
described by the keyword is statistically different from other
items in these features). On the contrary, the two distribu-
tions are indistinguishable for the other four features (se-
lected from color and shape).

Please note that we still have overlaps between the dis-
tributions of positive and negative samples. This indicates
that there are items visually similar to the positive items on
those “good” features, but they do not have the particular
keyword (e.g. “floral”) in their descriptions. In the experi-
mental results in Section 6, we will show that iLike is able to
yield back such items without getting false hits (e.g. items
with similar colors to the positive samples, but not the “flo-
ral” texture).

The difference between two distributions could be quanti-
tatively captured by running Kolmogorov-Smirnov test (K-S
test) [4] across each dimension of feature vectors. The two
sample K-S test is commonly used for comparing two data
sets because it is nonparametric and does not make any as-
sumption on the distribution. The null hypothesis for this
test is that the two samples are drawn from the same dis-

tribution. For n i.i.d samples X1, X3, ...X,, with unknown
distribution, an empirical distribution function can be de-
fined as follows:

0, if$<X(1>,
%, ifX(k)S.’L'<X(k+1>7 fork=1,2,---,n—1
1, lf.Z‘ZX(n),

Sn(z) =

where X(1y, X(2),--- X(n) are ascending values. The K-S
statistic for a given function S(z) is

D, = max [Sn(x) — S(x)|

The cumulative distribution function of Kolmogorov dis-
tribution is

Kz)=1-2 ] i—le—2i2x2 _ 2m e—(2i—1)27r2/(8x2).
(z) ;( ) - ;1
It can be proved that /nD, = /nmax, |S,(z) — S(z)]
will converge to the Kolmogorov distribution [4]. Therefore
if vnD, > Ko = Pr(K < Ko) = 1 — a, the null hypothesis
for the K-S test will be rejected at confidence level .
Similarly, to determine whether the distributions of two
data sets differ significantly, the K-S statistic is

Dy, = max |Sp(z) — Sm(z)|

and the null hypothesis will be rejected at level « if

nm

Dy > Ka (2)
n-+m

The P-value from the K-S test is used to measure the con-
fidence of the comparison results against the null hypothe-
sis. Back to our scenario, for each keyword, a P-value is
calculated at each dimension of the feature vector. Features
with lower P-values demonstrate statistically significant dif-
ference between positive and negative groups. For instance,
the P-values for the features shown in Figure 3 row 1 are:
1.532 x 10719, 1.524 x 10719, 1.899 x 1078, 1.761 x 10~ '°;
and for Figure 3 row 2 are: 2.518 x 107!, 3.770 x 1073,
4.350 x 1071, 5.839 x 1072, As we can see, items described
by the keywords have significantly different values in those
features, compared with items that are not described by the
keyword. Therefore, such features are more likely to be co-
herent with visual meaning of the keyword, and hence more
important to the human perception of the keyword. On
the contrary, items with and without the keyword have sta-
tistically indistinguishable values on other visual features,
showing that such features are irrelevant with the keyword.

In this way, we can use the inverted P-value of the K-S
test as the weight of each visual feature for each keyword.
Note that P-values are usually extremely small, so it is nec-
essary to map the value to a normal scale before using it
as weight. Ideally, the mapping function should satisfy the
following requirements: (1) it should be a monotone decreas-
ing function: lower P-values should give higher weight; (2)
when the variable decreases under a threshold (conceptually,
small enough to be determined as “statistically significant”),
the function value decreases slower. Therefore, we apply
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Figure 4: Weight vectors for terms “floral” and
“shades”.

two steps of normalization. First, we designed a mapping
function:

arctan(—log(z) — C) + arctan(C)

s

fl2) =

where C' = (maz(xz) — min(z))/2. It is then followed by a
linear scaling to map the data range from to (0, 1), rendering
itself as the weight vector of the keyword.

By re-weighting visual features for each keyword, we am-
plified the features that are significant for the keyword, while
faded out the others. As an example, Figure 4 shows the
normalized weight vectors computed from keywords “floral”
and “shades”, respectively. In the figure, the X axis repre-
sents visual features (as introduced in Section 3): (1-26) are
texture features: contrast, correlation, homogeneity, coarse-
ness, direction, moment invariant etc.; (27-115) are texture
features from the frequency domain: Gabor texture, Fourier
descriptors, etc; (116-143) are shape features: phase congru-
ency, edge; (144-191) are intensity features: block histogram
statistics; and(192-263) are color features. In the figure, a
large value (higher weight, lower P-value) are generated by
statistically different positive and negative samples, indicat-
ing that the feature is more likely to have some kind of as-
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Figure 5: Weight vectors for terms “cute’.

sociation with the human perception of the term. From the
figures, we can see that some texture features show more
significance in representing the keyword “floral”; while the
visual features of keyword “shades” is primarily captured by
color features. In this way, when user queries with term
“floral”, we can infer that she is more interested in texture
features, while local color and shape features are of less im-
portance. Most importantly, we can further retrieve items
with similar visual presentation in such features, but do not
have the particular keyword in their descriptions.

On the other hand, it is difficult to imagine or describe the
human visual perception for some keywords. Fortunately,
our approach is still capable of assessing such perceptions.
For instance, Figure 5 shows the weight vectors for term
“cute”. It is not easy for a user to summarize the character-
istics of “cute” items. However, when we look at the figure,
the visual meaning is obvious. “Cute” items share some dis-
tinctive distributions in the color and local textual features,
while they are diversified in intensity and high frequency
textual features.

As a conclusion, we have established a connection between
terms and visual features: we have learned a representation
of each term in the visual feature space from a large training
sample set, and identified the feature components that have
significance towards the visual perception of the term.

4.3 Feature quality

In CBIR, the entropy of low-level visual features is widely
used for feature selection and image annotation. Effective as
they are claimed, however, such algorithms share one com-
mon limitation: the semantic gap. In iLike, we reemploy this
problem by utilizing the entropy of feature weights across all
keywords.

In Section 4.2, we have generated a weight vector for each
keyword, measuring the significance of each image feature
dimension towards the keyword. Intuitively, a visual fea-
ture that is significant for a number of keywords is a “good”
feature, while a visual feature that is in-significant for all
keywords is a “bad” feature. Practically, we do not find any
feature that is significant for (almost) all keywords. If such
a feature existed, it would not be a good feature since it
would not represent any distinctive visual meaning.
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Figure 6: Feature Quality

In this way, for each feature, we collect weight values
across all keywords (i.e. the ith component of all weight
vectors). The entropy of each collection of weights is used as
a quality assessment of the particular feature. The feature-
quality curve is shown as Figure 6 (left).

Figure 6(b) and (c) demonstrates the weight histogram for
two difference features. As we can see, the feature shown
in Fig 6(b) has higher weights for some terms, while the
feature in Fig 6(c) has low weights for all terms. That is to
say, the first feature is able to distinguish the positive and
negative sets for some terms, while the other feature does
not work well for any term. The first feature is certainly
better than the other one. Figure 6 also shows that our
selected features demonstrate good quality, except for a few
color features (e.g. those with much lower entropy in Figure
6 (left)). This is consistent with the CBIR literature.

4.4 Query expansion and search

As we have introduced, in iLike, we first employ clas-
sic text-based search to obtain an initial set (since users
could only provide text queries). For each keyword in the
user query, the system loads its corresponding weight vec-
tor, which is generated off-line. Weight vectors from query
terms are combined to construct the query weight vector &g,
which represents user intention in the visual feature space.
For each item in the initial set, we use its visual features
to construct a base query ¢;. We also obtain an expanded
weight vector g from its textual description. Therefore,
given a query q, the new query corresponding to the i-th
item in the initial set is:

q_7(Item¢, Query) = ¢. X (- dg + B+ Br) 3)

where .x indicates component-wise multiplication. Practi-
cally, 8 is set to a much smaller value than «, to highlight
the intension from users. In the new query, features that
are insignificant to the search terms carry very small val-
ues. Hence the new query could be used to search the item
database on the basis of their Euclidean distances, without
further enforcing the weights.

S. VISUAL THESAURUS

As a bye-product of our approach, we are able to build a
“visual thesaurus” based on the statistical similarities of the
visual representations of the terms.

In our approach, two words are similar in terms of “visual
semantics” if they are used to describe items that are visually
similar. Since each term is used to describe many items,
the similarity is assessed statistically. In our approach, the
visual representation (mean vector) and weight vector for
two terms t1 and t> are denoted as M-dimensional vectors:
Aty Htg, WBt1, Wiy, respectively. The similarity between t;
and t2 is calculated as:

eri1(/“1,i X wtl»i) X (thi X th,i)
M M
(D it Mitr i X wiy,i) X (D250 Htg,i X Wig,i)

Sim(t1, tz) =

To make it simple, the above formula returns the cosine
similarity of two weighted vectors fi;, and fis,. Each vector
is weighted by its own weight vector through an element-
by-element multiplication, i.e. a weight (significance indica-
tor) is enforced on each feature for each keyword. On the
other hand, we also observed that some terms are so popular
that they demonstrate moderate similarity with many other
terms. We eliminated the high frequency terms through
post-processing. On the other hand, we are also able to
compute antonyms: words with similar weight vectors, but
very different mean vectors.

As a conclusion, we are able to compute the semantic sim-
ilarities between text terms, and such semantic similarities
are coherent with human visual perception in this particu-
lar application domain. Further more, we have constructed
a domain-specific “visual thesaurus” or a “visual WordNet”,
as shown in Table 1. This thesaurus could be used for query
expansion for existing text-based product search engines in
similar domains.

6. SYSTEM EVALUATION
6.1 Settings

We have implemented our iLike prototype on a database
crawled from six selected fashion shopping sites. We ob-
tained a 263-dimensional visual feature vector from the main
product image for each item. Both the visual and textual
feature pre-processing are carried out on a off-line basis. For
each user query, we calculate the initial result set based on
text-based retrieval, and display in the title row of output.
For each item in the initial set, we expand the user query
with the textual and visual features from the item, and en-
force the weight vector which infers user intension. The
query expansion parameters «, B are set to 0.9, 0.1, re-
spectively. The search results using expanded and weighted
query is displayed in columns, with the original item (from
initial result set) in the title row.

6.2 Results and comparison

Examples of our search results are shown in Figure 7(a).
To evaluate iLike, we use traditional Content-Based Image
Retrieval approach as a baseline. The baseline approach
employs the same visual features and database as iLike does,
with the single difference that it skips query expansion and
feature weighting. With original image features, the baseline



Table 1: visual thesaurus

Words First Few Words in Visual Thesaurus

\feminine  bandeau, hipster, breezy, pregnancy, hem, lifestyle, braid, comfy, femininity.
\flirty flirt, bikini, vibrant, effortlessly, pointelle, dressy, edgy, splashy, swimsuit
\gingham subtle, sparkly, floral, gauze, glamour, sassy, surplice, beautifully, pajama
\trendy adorn, striking, playful, supersoft, shiny, nancy, ladylike, cuddly, closure
\pinstripe smock, sporty, khaki, pleat, oxford, geometric, gauzy, ruffle, chic, thong
\embroider suede, crochet, versatility, ultra, corduroy, spectrum, softness, faux, crease
\twill complement, plaid, contour, logo, decorative, buckle, classically, tagless

Ta

ble 2: name of similar items

\Girls Floral Applique Dresses

\Women’s Floral Watercolor Scarves

\Floral pleated dress

Girls Slub-Knit Jersey Sundresses

Women’s Abstract Floral-Print Scarves

Gingham crinkle dress

Girls Gauzy Ruffle-Tiered Dresses

Women'’s Lightweight Applique Scarves

Crawler dress

Girls Surplice Babydoll Dresses

Women’s Embroidered-Eyelet Scarves

Pleated pear dress

Girls Metallic-Embroidered Tiered Dresses

Women'’s Lightweight Tonal Scarves

Chevron striped jumper dress

Girls Smocked Metallic-Stripe Dresses

Women’s Striped Linen-Blend Scarves

Drop-waist bubble dress

Girls Striped Jersey Tube Dresses

Women'’s Polka-Dot Silk-Blend Scarves

Pintucked eyelet dress

algorithm uses Euclidean distance between two vectors from
the visual space. The results are shown in Figure 7(b).

In the demonstration, we present the search results for
query “floral” across the entire database. As is shown in
Section 3, the term “floral” preserves significant importance
in local texture features, especially in the domain of fre-
quency. Therefore query with “floral” should put emphasis
on the local texture features, while decrease the weight of
other features such as color, shape and intensity features.
Figure 7(a) turn out to be a convincing illustration of our
assumption. Compare the first column of (a) and (b), we can
see that the first seven items retrieved by ilLike share high
frequency local texture features, while items in the Base-
line result set deviate their emphasis onto the local color
and shape features. Moreover, without semantic restriction
in the visual space, the second column of the baseline sys-
tem are dominated by color features, which can explain the
first four Cambridge blue images. The last two columns are
essentially similar to the condition of the first group, with
one simple difference: iLike successfully filters out the back-
ground noises, and hence it gives a higher recall.

To further evaluate our system, we first conduct TBIR
with random keywords. Then we manually judge the quality
of the top 30 similar items across 50 items in the initial result
set (as first row of the interface), and mark each item with
a boolean value, based on its relevance to the query. After
that, we calculate the system precision and recall. In the
same way, we can also obtain the quantitative evaluation of
the Baseline approach. Precision-Recall Curve is shown as
Figure 8.

In comparison with traditional text-based search, iLike has
a clear advantage over search recall. Particularly, iLike is
able to retrieve items that do not contain query terms in
their description. To compare, we gather the text informa-
tion of all the items returned by iLike. Table 2 shows three
group of items retrieved by keyword “floral”. Except for the
initial results set, there is only one item that contains the
query term (in both title and description fields).

To sum up, most of the results demonstrate patterns that
fits our perception of the query terms. Especially, (1) not
all the returned items have the term in the descriptions;
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Figure 8: Precision-Recall Curve of iLike and Base-
line approach.

they are retrieved by visual features. (2) if we only use the
visual features from initial result set (row 1) as the query,
the results will drift away from user intension. Many other
items has higher overall visual similarity with the items in
the initial set. Thanks to the weighting approach, we are
able to infer the implicit user intension behind the query
term, pick up a smaller subset of visual features that are
significant to such intension, and yield better results.

7. CONCLUSION AND DISCUSSIONS

In this paper, we present iLike, a vertical search engine for
apparel shopping. We aim to integrate textual and visual
features for better search performance. We have represented
text terms in the visual feature space, and developed a text-
guided weighting scheme for visual features. Such weighting
scheme infers user intension from query terms, and enhances
the visual features that are significant towards such inten-
sion. Experimental results show that iLike is effective and
capable of bridging the semantic gap.

In our experiments, the current version of iLike has demon-
strated outstanding performance for a large number of de-
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Figure 7: (a) iLike search results for keyword “floral”; (b) Baseline search results for keyword “floral”;

scriptive terms. However, it does not work well for some
keywords (mostly non-adjectives). Many of such words are
very unlikely to be included in user queries (e.g. zip, logo).
Meanwhile, we are still working on improving the perfor-
mance of iLike. First, we will enlarge our database by im-
plementing more focused crawlers and parsers. With more a
larger database, we will be able to better assess visual mean-
ings of text terms. Second, more advanced statistical learn-
ing approaches will be employed to manipulate the large
number of samples. And finally, we plan to employ more
visual features for product images. Due to the effectiveness
of text-guided visual feature discrimination (weighting), we
are able to simply add all kinds of visual features, and let
iLike pick “good” ones.
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