
POSTER: A Hardware Fingerprint Using GPU Core
Frequency Variations

Fengjun Li
Department of EECS
University of Kansas

fli@ku.edu

Xin Fu
Department of ECE

University of Houston
xfu8@central.uh.edu

Bo Luo
Department of EECS
University of Kansas

bluo@ku.edu

ABSTRACT
Hardware primitives provide significant promises to support
cryptographic primitives and security mechanisms against
various forms of compromises. In this work, we study the in-
trinsic hardware characteristics of modern graphics process-
ing units (GPUs) due to random manufacturing variations,
and exploits the inherent randomness to generate device-
specific signatures. In particular, we present a novel GPU-
based hardware fingerprint scheme to generate a unique, sta-
ble, physically unclonable, unpredictable, and random bit
string from the inherent hardware features of a general pur-
pose GPU (GPGPU). The generated fingerprint can be used
to implement a physically unclonable function (PUF), and
thus to create a trusted computing environment with GPUs
as the trust anchor.

1. INTRODUCTION
Billions of electronic devices have been deployed at all

scales throughout our everyday life. When the mobile and
embedded devices become ubiquitous, the high inter-connectivity
makes them more accessible to adversaries and thus more
exposed to many attacks including invasive attacks, side-
channel attacks, and physical attacks. Classic cryptographic
primitives such as device identification and authentication
are one of the fundamental enabling technologies for protec-
tion. A widely adopted approach is to associate secure oper-
ations with a device-specific secret and store the secret key
in non-volatile memory such as EEPROM to enable cryp-
tographic primitives such as encryption or digital signature.
Obviously the security of this type of approaches relies heav-
ily on the secrecy of the cryptographic key, which unfortu-
nately is difficult to uphold when facing various attacks. For
instance, the leakage of secret keys from the remote HTTPS
web servers is the main cause of the Heartbleed incident
which was reported in April 2014. This problem leads to the
development of hardware primitives as a promising mecha-
nism to support secure operations.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the Owner/Author(s). Copyright is held by the
owner/author(s).
CCS’15, October 12–16, 2015, Denver, Colorado, USA.
ACM 978-1-4503-3832-5/15/10.
DOI: http://dx.doi.org/10.1145/2810103.2810105.

As an innovative hardware primitive, a physically unclon-
able function (PUFs) derives a secret from physical charac-
teristics of a hardware and implements a function F to map
any external stimuli or challenge C to a response R. The se-
cret is volatile such that it is only available when the device
is running and using the secret, and thus is impossible for an
adversary to obtain or duplicate. Pappu et al. introduced
the concept of PUF and presented an optical PUF design
based on illumination key pairs to generate authentication
tokens [5]. After that, various designs have been proposed
in many applications including device identification and au-
thentication, IP protection and anti-counterfeiting, secrete
key generation, distribution and storage, etc.

In this project,we present a design based on a hardware
fingerprint of commodity graphics processing units (GPUs).
Such PUFs supporting only a small subset of challenges
(or one in our case) are known as Physically Obfuscation
Keys (POKs). We study the intrinsic hardware character-
istics, i.e., the core frequency variations of modern GPUs,
and generate a unique, GPU-specific signature from the in-
herent randomness introduced by manufacturing variations.
The hardware fingerprint is directly derived from and imple-
mented inseparably on the GPU of physical devices, which
is unique, uncloneable, and difficult to read out by invasive
attacks. Since GPUs are recently widely used in many de-
vices such as workstations and personal computers, mobile
phones, embedded systems, game consoles, etc., the GPU-
enabled solution does not introduce additional hardware and
implementation costs, comparing with other common exam-
ples such as SRAM-PUF, Butterfly PUF and Coating PUF.

2. BACKGROUND
GPU Architecture. The key component of a typical GPU
is the in-order streaming multiprocessor (SMX). Each SMX
includes 192 single-precision CUDA cores, 64 double-precision
units (DP Unit), 32 special function units (SFU), and 32
load/store units (LD/ST). All these execution units will
be evenly distributed into four execution clusters. In this
project, we study the NVIDIA GPU Kepler Architecture
which includes 15 SMX and applies CUDA programming
model. In CUDA, the GPU executes highly-parallel kernel
functions. The kernel is composed of a grid of light-weighted
threads; a grid is divided into a set of blocks; each block is
composed of hundreds of threads. Threads are distributed
to SMXs at the granularity of blocks.

Threads in the SMX execute on the single instruction mul-
tiple data (SIMD) model. A number of individual threads
(i.e. 32 threads in Nvidia GPU) from the same block are

1650



grouped together, called warp. In the pipeline, threads
within a warp execute the same instruction but with dif-
ferent data values. Each SMX interleaves multiple warps
at cycle-by-cycle basis. At every cycle, an instruction warp
that is ready for execution is selected and issued by a warp
scheduler, and all threads belonging to that warp start the
execution in an execution cluster simultaneously. The execu-
tion of a branch instruction in the warp may cause warp di-
vergence when some threads jump while others fall through
at the branch. Threads in a diverged warp have to exe-
cute in serial fashion which causes multiple lanes to be idle
in the SIMD pipeline. Each warp has its own stack in the
branch unit recording the reconvergence PC (RPC) and ac-
tive mask (used to describe the active threads in the warp)
to handle the warp divergence. The load/store instruction
may cause the off-chip memory access that can last hundreds
of cycles, and a long latency memory transaction from one
thread would stall all threads within a warp.

Process Variations. Process variations (PV) are a com-
bination of random effects (e.g. due to random dopant fluc-
tuations) and systematic effects (e.g. due to lithographic
lens aberrations) that occur during transistor manufactur-
ing. Random variations refer to random fluctuations in pa-
rameters from die to die and device to device. Systematic
variations refer to layout-dependent variations which cause
nearby devices to share similar parameters. Among the de-
sign parameters, effective channel length (Leff ) and thresh-
old voltage (Vth) are two key parameters subject to large
variations [9]. As process technology keeps scaling down,
the increasing process variations (PV) have become a grow-
ing threat to processor design and fabrication [6]. PV is the
divergence of device parameters from their nominal values,
which is caused by the challenging manufacture process at
very small feature technologies. PV induces delay variations
among circuit paths, and this impact is further exacerbated
in GPUs which contain tremendous amount of parallel crit-
ical paths [7, 4].

Generally, the random and systematic components have
equal variances for both Vth and Leff [1, 3]. GPU contains
tremendous amount of parallel paths to deliver high com-
puting throughput, and is quite sensitive to process varia-
tions. In order to afford a greater number of threads execut-
ing simultaneously in the SMX, the number of CUDA cores
continuously increases in recent GPU product generations.
For example, there are total 2880 CUDA cores in Nvidia’s
GPU Kepler architecture, therefore, they exhibit substan-
tial frequency variations. In our preliminary experiments,
we observe that the ratio of frequencies between the fastest
and the slowest core in a GPU chip can reach as high as 2.2.

3. GPU FINGERPRINTING
We present a hardware fingerprint from the physical fea-

tures of a GPU. This fingerprint is a binary string of N
bits (in our initial design, N = 256), with the following fea-
tures: (1) unique and stable for each GPU, (2) physically
unclonable from hardware manufacturing perspective, (3)
unpredictable so that it could be used as a secret, (4) ran-
dom to provide maximum entropy. The entire fingerprint
generation process, including core selection, frequency mea-
surement and digitalization, and fingerprint assembling, is
completely performed within GPU using auxiliary circuits.
The area and power overhead of adding such auxiliary cir-

cuits is negligible to the entire GPU chip. In this section, we
introduce the design of a workable GPU fingerprint: we first
present the on-chip frequency measurement for each GPU
CUDA core, and then further convert it to binary digits, to
be used as the fingerprint.

GPU Core Frequency Measurement. As the first step
of this project, we perform the online GPU core frequency
measurement. Recently, time-to-digital converters (TDC)
has been widely used to for precise measurement of time in-
tervals or precise conversion of time interval to digital data
[2, 9, 10]. It can be integrated into each GPU CUDA core
during the chip fabrication to measure the core clock cycle
time, thus, the frequency at run time. There are various
methodologies to measure the time intervals in TDC de-
pending on the requirements on the measurement resolution.
For example, the coarse counter method [2] works well at the
nanosecond resolution level, while the“fine”measurement [9,
10] provides much better resolution but smaller measuring
range. Generally, the GPU CUDA core runs at GHz level,
and the frequency measurement should have the strong ca-
pability to recognize the core frequency variations across the
GPU chip which will largely affect the robustness of our key
generation. We thus choose the “fine” measurement method
whose resolution can achieve as high as 1 picosecond [9, 10].
Note that the TDC is usually composed of inverters, which
is quite simple to be implemented in the integrated circuit
technology, and has negligible area and power overhead to
the GPU chip.

Fingerprint Generation. The next step is to convert the
measured frequency of each GPU core into binary digits.
The goal is to ensure that each bit (bi) has an equal proba-
bility of 0 or 1: P (bi = 0) == P (bi = 1) == 0.5. Ultimately,
this leads to a completely random binary fingerprint, which
provides maximum entropy – providing lower collision prob-
ability with the same fingerprint length. Empirically, due to
process variations, the actual frequency of the CUDA core
is considered to follow normal distribution:

f(x) =
1

σ
√

2π
e
− (x−µ)2

2σ2 (1)

where µ is the designated operation frequency of the GPU
Core, e.g. for a 3GHz GPU, µ = 3G. The standard de-
viation σ is determined by the processing technology, i.e.,
whether the chip is fabricated under 32nm or 11nm tech-
nology. The cumulative distribution function (CDF) of a
normal distributions is represented as:

F (x) =
1

2
(1 + erf(

x− µ√
2σ

)) (2)

where erf() is the Gauss error function. The inverse of the
cumulative distribution function (CDF) is the quantile func-
tion, denoted as x = F−1(p) = µ+

√
2σ ·erf−1(2p−1). That

is, given a probability p, F−1(p) returns the corresponding
threshold x so that Pr(X ≤ x) = p.

To generate an n-bit code from each GPU core, 2n − 1
thresholds is needed to separate the core frequency spectrum
into 2n brackets. The thresholds are denoted as {T1, ..., T2n−1},
so that a frequency bracket (Bi) is the interval [Ti−1, Ti].
Note that we have two special thresholds T0 = −∞ and
T2n =∞. To ensure a uniform distribution of the code (or,
0.5 probability of 1 and 0 at each bit), the integral of the

1651



probability distribution function over each interval should
be identical, that is:∫ Ti

Ti−1

f(x)dx = F (Ti)− F (Ti−1) =
1

2n
(3)

With the quantile function, we have: Ti = F−1(i/2n).
Unfortunately, the quantile function of a normal distribu-
tion cannot be expressed in closed form in elementary func-
tions. That says, we cannot directly compute Ti = F−1(p)
for a given p. There are several different numerical ap-
proximations for the normal distribution CDF or the quan-
tile function. Tools/tables are available to compute/check
percentiles for standard normal distribution (Φ−1(p)). For
a general normal distribution, F−1(p) could be calculated
with: F−1(p) = µ+ σΦ−1(p). For instance, we want to en-
code 2 bits from each CUDA core, four intervals are used:
[−∞, µ−0.674σ], [µ−0.674σ, µ], [µ, µ+0.674σ], [µ+0.674σ,∞].
With the 4 brackets defined as above, encoding is straight
forward. For instance, when the measured frequency Fqcorei ∈
[−∞, µ−0.674σ], the 2-bit fingerprint segment generated by
Core i is “00”. Similarly, [µ− 0.674σ, µ] corresponds to “01”,
[µ, µ+0.674σ] corresponds to “10”, and so on. We also XOR
the n-bit string from each core with the last n bits of the core
ID. This will not change the “good” properties of the finger-
print (e.g., randomness), however, it mitigates the possible
derandomization effect caused by frequency degradation.

In a GPU chip, we extract n bits from each CUDA core.
To obtain an N -bit fingerprint, we select m = N

n
CUDA

cores for fingerprint generation. Initially, we set N = 256
(AES key length), n = 2, and m = 128. At each CUDA core,
circuits sre designed to compare measured frequencies with
pre-set thresholds, and emit n fingerprint bits. Output from
the measurement and encoding mechanism for each core is
assembled (concatenated) to generate the fingerprint. The
design of the digital circuits for encoding and fingerprint as-
sembly is straightforward, hence, we omit the technical de-
tails here. It is worth pointing out that, as we have claimed
before, the area and power overhead of adding such auxiliary
circuits is negligible to the entire GPU chip.

Core Selection. As we have discussed, m (e.g., 128) out of
2880 CUDA cores are selected to each emit an n-bit finger-
print segment, so that an N -bit fingerprint is generated from
each GPU. The selection of the m CUDA cores is a nontriv-
ial problem. In particular, process variations also contain
the systematic effects. It implies that the nearby cores have
high possibility to exhibit similar frequency. When one core
is used for the key generation, its nearby cores should not
be further chosen to maintain the randomness of the selec-
tion. In the initial design, we evenly distribute the m cores
into each GPU SMX. Inside the SMX, we further evenly dis-
tribute the number of cores into each execution cluster. In
other words, two cores (when m is set as 128) are randomly
selected from each execution cluster to produce the finger-
print in our investigated NVIDIA GPU Kepler Architecture.
In order to keep a record of the cores used for the key gener-
ation, we attach an SRAM-based buffer to each GPU SMX,
which contains 192 bit with each bit describing the selection
of its corresponding CUDA core.

4. CONCLUSION AND FUTURE WORK
In this poster, we introduce a hardware signature based on

GPU core frequency variation. We present a mechanism to

extract bits from inherent hardware features of GPU cores.
We further generate a unique, physically unclonable, unpre-
dictable and random bitstring from the extracted bits. The
bitstring is then used as a hardware fingerprint of the GPS.

The extracted fingerprint cannot be used directly for au-
thentication – although fingerprint is inherently uncloneable,
anyone who has access to the fingerprint can fabricate a de-
vice that contains a same fingerprint in memory to imper-
sonate the original device. For authentication purpose, we
will further extend the proposed POK to generate multi-
ple challenge response pairs (CRPs) similar to [5, 8], where
each response is unique to an external challenge. Meanwhile,
GPU cores are suffering the wear-out effects during runtime
execution, which could cause frequency degradation and af-
fect the key stability. Another future work is to efficiently
avoid the frequency degradation of the selected cores, and
to develop a protocol to handle fingerprint update.

5. ACKNOWLEDGEMENTS
Fengjun Li was supported in part by NSF EPS-0903806,

University of Kansas GRF-2301075, and KU RIC Strate-
gic Initiative Grant INS-0073037. Xin Fu was supported in
part by NSF CCF-1320730, NSF CCF-1351054. Bo Luo was
supported in part by NSF CNS-1422206, NSF IIS-1513324,
NSF OIA-1308762, and KU GRF-2301876.

6. REFERENCES
[1] A. Agrawal, A. Ansari, and J. Torrellas. Mosaic:

Exploiting the spatial locality of process variation to
reduce refresh energy in on-chip edram modules. In
HPCA, 2014.

[2] J. Kalisz. Review of methods for time interval
measurements with picosecond resolution. Metrologia,
41(1):17, 2004.

[3] U. R. Karpuzcu, K. B. Kolluru, N. S. Kim, and
J. Torrellas. Varius-ntv: A microarchitectural model
to capture the increased sensitivity of manycores to
process variations at near-threshold voltages. In DSN,
pages 1–11, 2012.

[4] J. Lee, P. Ajgaonkar, and N. S. Kim. Analyzing
throughput of gpgpus exploiting within-die
core-to-core frequency variation. In IEEE ISPASS,
pages 237–246, April 2011.

[5] R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld.
Physical one-way functions. Science, 297(5589), 2002.

[6] S. Sarangi, B. Greskamp, A. Tiwari, and J. Torrellas.
Eval: Utilizing processors with variation-induced
timing errors. In MICRO, pages 423–434. IEEE, 2008.

[7] S. Seo, R. G. Dreslinski, M. Woh, Y. Park,
C. Charkrabari, S. Mahlke, D. Blaauw, and T. Mudge.
Process variation in near-threshold wide simd
architectures. In DAC, pages 980–987, 2012.

[8] G. Suh and S. Devadas. Physical unclonable functions
for device authentication and secret key generation. In
ACM/IEEE DAC, June 2007.

[9] Z. Xu, M. Miyahara, and A. Matsuzawa. A 1
ps-resolution integrator-based time-to-digital converter
using a sar-adc in 90nm cmos. In NEWCAS, 2013.

[10] Z. Xu, M. Miyahara, and A. Matsuzawa. Picosecond
resolution time-to-digital converter using gm − c
integrator and sar-adc. Nuclear Science, IEEE
Transactions on, 61(2):852–859, 2014.

1652




