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Abstract. Federated learning (FL) is an emerging machine learning
paradigm. With FL, distributed data owners aggregate their model up-
dates to train a shared deep neural network collaboratively, while keeping
the training data locally. However, FL has little control over the local
data and the training process. Therefore, it is susceptible to poisoning
attacks, in which malicious or compromised clients use malicious train-
ing data or local updates as the attack vector to poison the trained
global model. Moreover, the performance of existing detection and de-
fense mechanisms drops significantly in a scaled-up FL system with
non-iid data distributions. In this paper, we propose a defense scheme
named CONTRA to defend against poisoning attacks, e.g., label-flipping
and backdoor attacks, in FL systems. CONTRA implements a cosine-
similarity-based measure to determine the credibility of local model pa-
rameters in each round and a reputation scheme to dynamically promote
or penalize individual clients based on their per-round and historical con-
tributions to the global model. With extensive experiments, we show that
CONTRA significantly reduces the attack success rate while achieving
high accuracy with the global model. Compared with a state-of-the-art
(SOTA) defense, CONTRA reduces the attack success rate by 70% and
reduces the global model performance degradation by 50%.

1 Introduction

As an emerging machine learning paradigm, federated learning (FL) is consid-
ered a promising solution for privacy-preserving distributed learning. In FL,
individual clients first train local models with local training data and a shared
global model, and then send the updates to an aggregation server to update
the global model for the next training iteration [6, 21, 24]. In this way, a shared
model is learned over data from multiple clients without sharing the raw data by
any means. Besides ensuring data privacy, FL also improves the efficiency and
scalability of machine learning tasks by parallelizing the training among multi-
ple clients and reducing communication costs. This new collaborative machine
learning trend is adopted in many applications such as mobile keyboards [6, 25]
and medical imaging [20]. As a result, federated learning becomes a new target
of various adversarial machine learning attacks, such as poisoning attacks [9,29]
and exploratory attacks [3, 15,32].
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In fact, FL is particularly susceptible to poisoning attacks since the clients
can fully control the local data and the local training process. In poisoning
attacks, malicious clients can poison local model updates by injecting poisoned
instances into the training data (i.e., data poisoning attacks [14, 34]) or directly
manipulating model updates (i.e., model poisoning attacks [2, 7, 8, 13, 36]). As a
result, the attacker can tamper with the weights of the global model or inject
a backdoor into it. While data poisoning is considered a special case of model
poisoning [14], the latter is more effective [7] since it can cause the trained model
to produce wrong predictions with only a few malicious clients. In general, the
impact of poisoning attacks is related to two factors, the ratio of malicious clients
among all clients in FL tasks and the amount of poisoned local training data. For
example, 3% poisoned data could cause an 11% reduction in test accuracy [33].
Therefore, it is critical to design solutions to defend against poisoning attacks
in federated learning.

The goal of the poisoning attacks is to cause the global model to produce
attacker-chosen outputs on specific attacker-chosen inputs (i.e., targeted attacks)
or wrong outputs on all the inputs (i.e., untargeted attacks). Since untargeted
attacks attempt to reduce the test accuracy of the main task, they deteriorate
the benign performance of the aggregated model across all classes and thus could
be detected or mitigated by robust aggregation schemes [10,12,37] operated on
the server. However, the robust aggregation techniques may perform poorly or
even fail to work when the number of Byzantine adversaries exceeds certain ex-
plicit bound [14]. On the contrary, the adversary in targeted attacks expects
the poisoned model to output attacker-chosen predictions for specific attacker-
chosen inputs while behaving normally on other inputs. Most of the existing
defenses leverage the difference between benign and malicious model updates
to distinguish between the benign and potentially malicious client groups using
clustering-based [31, 34] or behavior-based [14] model checking schemes. While
these approaches demonstrate their effectiveness in detecting or mitigating tar-
geted poisoning attacks, their performance is often evaluated under simplified,
less practical settings (discussed in Sec. 3.2). Moreover, all these schemes adopt
very specific assumptions about the training data distributions on honest and
malicious clients. For example, [10,31] assumed independent and identically dis-
tributed training data while [14,27] assumed non-i.i.d. distributions, which indi-
cate that the reported effectiveness were achieved only in specific situations [28].

In this paper, we aim to answer two research questions: (i) what is the im-
pact of training data distributions and adversary populations on existing defenses
against targeted poisoning attacks in FL? And (ii) how to design a generic and
reliable solution against targeted poisoning attacks in FL? To answer the first
question, we adopt the Dirichlet distribution [38] to synthesize i.i.d. and non-i.i.d.
data distributions in federated learning and investigate the effectiveness of three
defense schemes, i.e., Krum [10], PCA-based clustering [34], and FoolsGold [14]
under different assumptions about the data distribution and adversarial popula-
tion. Our results show that they either fail to prevent the attacks when specific
assumptions do not hold, become less effective, or cause a reduction in overall
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Fig. 1: An overview of FL architecture and the proposed CONTRA approach.

model accuracy. Next, we propose a generic defense scheme, called CONTRA, to
thwart poisoning attacks in federated learning. Compared with a state-of-the-art
defense, CONTRA reduces the attack success rate by 70% and reduces the global
model performance degradation by 50%.

2 Background and Related Work

2.1 Federated Learning

Federated learning (FL) aims to build a global model G over data distributed
across multiple clients without sending the raw data to any centralized server.
Similar to other modern learning algorithms, FL algorithms rely on stochas-
tic gradient descent (SGD), which minimizes the cost function based on the
stochastic estimates of its gradient. Given a dataset D with n data samples
(xi, yi), where yi ∈ C is the class label, training a DNN model is to find an opti-
mal set of the parameters w = (w1, ..., wp) that minimizes a chosen loss function
L = 1

n

∑n
i=1 L(w;xi, yi). In SGD, D is divided into multiple batches where each

data sample only appears in one batch. In a training round, SGD computes the
gradient gj = 1

b

∑
(xi,yi)∈Bj

∇L(w;xi, yi) for each batch Bj, where ∇L is the
gradient of the loss function and b is the batch size, and updates w = w − gj
iteratively until the DNN model converges.

[24] proposes to combine local SGD on each client with a server that performs
model averaging using the federated averaging (FedAvg) algorithm. As shown in
Figure 1, a FL system consists of K clients and an aggregation server S (called
aggregator). In a training round t ∈ [1, T ], a fraction of clients (denoted by the
reporting fraction C) are randomly selected to train the global model Gt (with
parameters wt). In particular, a client k trains a local model based on Gt and

her local data Dk as: wk,t+1 = wt − η · gk = wt − η · b
∑nk/b
j=1 gj , where η is

a fixed local learning rate, and nk and b denote the size of Dk and the local
mini-batches, respectively. Then, the server S (called aggregator) computes the
weighted average of the local model updates from all K clients to update the
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parameters of the global model Gt+1 as: wt+1 =
∑K
k=1

nk

n wk,t+1. The FedAvg
algorithm also allows a client to iterate the local training process multiple times
(i.e., E training passes in each local epoch) before sending the local update to
the aggregator. Finally, when C = 1, the algorithm degrades to the baseline
federated SGD algorithm.

2.2 Poisoning Attacks on Federated Learning

The FL paradigm enlarges the attack surface of the model training process since
the clients with full control over local data and local training processes can
submit arbitrary updates to change the model. If an attack is to reduce the test
accuracy of the model across all classes, it is an untargeted poisoning attack,
whereas a targeted attack aims to change the model and cause it to misclassify
specific inputs into the target class(es) of the attacker’s choice, while not affecting
the accuracy of the classes unrelated to the attack. In this paper, we mainly focus
on the targeted poisoning attacks, since untargeted attacks can be easily detected
or mitigated by state-of-the-art robust aggregation techniques [10,12,37].

Data poisoning attacks. FL is vulnerable to data poisoning attacks. An at-
tacker (e.g., client 3 in Fig. 1) can modify its local data by directly flipping
the labels of honest training instances of one class (i.e., the source class) to an-
other class (i.e., the target class) while keeping the features of the training data
unchanged. It is known as the label-flipping attack [9, 14, 34], which can cause
substantial drops in global model accuracy and recall even with a small percent-
age of malicious clients [34]. A backdoor poisoning attack was proposed in [17]
to break distributed learning schemes based on synchronized SGD, in which the
attacker injects backdoored inputs into local data to modify individual features
of the training data and embed backdoors into the global model. Recently, Xie
et. al. proposed a distributed backdoor attack that split a global trigger pattern
into separated local patterns and embedded them into local training data of
multiple attackers [36]. Other data poisoning attacks leverage the back-gradient
descent to generate adversarial training examples [26].

Model poisoning attacks. In FL, a malicious client (e.g., client 4 in Figure 1)
can directly manipulate the local model update to influence the global model,
or manipulate the local training algorithm or its parameters to inject poison-
ing neurons into the global model. For example, the attacker can scale up its
poisoning model by a factor of n

η to cancel out the model updates from benign

clients and replace the global model with its backdoored model [2]. In a subse-
quent study, Bhagoji et al. proposed an alternating minimization approach to
make the attack stealthy [8], which first trained the local model using a benign
dataset for the main task and then refined it using a poisoned dataset for the
adversarial task. Formulating model poisoning as an optimization problem, [13]
proposed to craft local models that force the global model to deviate the most
towards the inverse of the direction along which the global model parameter
would change without attacks. This attack was effective with synthetic non-i.i.d.
datasets, however, it performed poorly on i.i.d. and highly imbalanced non-i.i.d.
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datasets, as reported in [30]. Meanwhile, an aggregation-agnostic attack, which
consistently applies small changes (i.e. noise) to many parameters to introduce
backdoors or perturb the model’s convergence, was developed in [5]. It was shown
to be robust against statistics-based defenses in the i.i.d. setting.

2.3 Existing Defenses against Poisoning Attacks

Conventional defenses against poisoning attacks in centralized learning involve
discovering rare features in the training data that influence the model [19] or
small input perturbations that consistently change the outputs [4]. However,
these techniques require access to local training data and thus are not applicable
in FL. Recently, several detection or defense approaches have been proposed to
prevent poisoning attacks in FL, which can be mainly categorised into three di-
rections, Byzantine robust aggregation, clustering-based detection, and behavior-
based defense. All of them adopt a common assumption that the attacker pop-
ulation is less than 50%. We will discuss their effectiveness and limitations in
Section 3.2.

Byzantine robust aggregation. In SGD-based federated learning algorithms,
the aggregator computes the average of the local models to update the weights of
the global model. To eliminate incorrect local updates due to Byzantine errors,
robust aggregation schemes proposed different aggregation rules to replace the
average of the model updates with a robust estimate of the mean, such as median
aggregation [12, 37], trimmed mean aggregation [37], or the Krum aggregation
that minimizes the Euclidean distances between selected local models [10].

Byzantine robust aggregation schemes demonstrate promising results against
untargeted poisoning attacks and targeted model poisoning attacks using boosted
learning rates [2], but they are less effective in preventing adaptive poisoning at-
tacks [13], causing a reduction in test accuracy of the global model. Moreover,
they work poorly or even fail when a large number of Byzantine adversaries exist
in the system [14]. Finally, robust aggregation implicitly assumes the training
data is independent and identically distributed. Our study on Krum shows ex-
tremely high attack success rates (e.g. 70% to 90%) with non-i.i.d. training data.

Clustering-based detection. In targeted poisoning attacks, a common obser-
vation is that the model updates from malicious clients have unique characteris-
tics compared to the ones from honest clients [31,34]. Therefore, we can re-write
the averaging step of FedAvg as:

wt+1 =

K∑
k=1

nk
n

wk,t+1 =
∑
Di⊂DM

|Di|
n

wi,t+1 +
∑

Dj⊂D−DM

|Dj |
n

wj,t+1 (1)

where DM denotes the union of the training data held by all malicious clients.
wi,t+1 and wj,t+1 represent local model updates submitted by malicious and
honest client populations, respectively.

The clustering-based approaches propose to check model updates at the ag-
gregator and then cluster them into two groups, for example, using dimension-
ality reduction techniques such as principal component analysis (PCA) [34],
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k-means [31] or DBSCAN [28] clustering algorithms. Thus, the clusters with less
than n/2 clients are identified as suspicious clusters of malicious clients.

However, these approaches also assume that the training data is independent
and identically distributed. Our study on the PCA-based defense shows that when
the data are non-i.i.d., the clustering-based defense schemes fail to distinguish
between model updates submitted by malicious clients and honest clients. Intu-
itively, this is because the model updates from the honest clients may diverge in
most iterations if they have highly imbalanced non-i.i.d. training data.

Behavior-based defense. As honest and malicious clients act differently in
targeted poisoning attacks, behavior-based approaches measure the behavioral
difference (in terms of local model updates) between the malicious clients and
the majority using the Euclidean distance or cosine similarity. For example,
adaptive federated averaging (AFA) was proposed in [27], which computed the
cosine similarity between the gradients of each local model and the weighted
average of all the local models in each round. Based on a range determined by
the mean, median, and standard deviation of the calculated cosine similarities,
local updates with out-of-range similarities were discarded from the aggregation.
However, AFA suffers from the same problem as previous approaches to penal-
ize honest clients with imbalanced non-i.i.d. training data. Recently, Cao et al.
proposed to measure the cosine similarity between a local model and the server
model trained with a small clean root dataset [11] and assign a trust score to each
client. Then, the average of local model updates weighted by the clients’ trust
scores is used to update the global model. This scheme relies on the root dataset,
which has a non-negligible impact on the final global model. Moreover, honest
clients whose data distributions are different from the root dataset distribution
may be incorrectly penalized.

Another observation about the targeted poisoning attacks is that the groups
of honest and malicious clients have distinct contributions to the global model,
which would drive the global model towards two different objectives. Moreover,
compared with honest clients, malicious clients with the same adversarial objec-
tive will produce model updates that are more similar to each other. As pointed
out in [14], the distance between the local models submitted by any two mali-
cious clients is smaller than the ones between a malicious client and an honest
client. So, FoolsGold [14] proposes to limit contributions of potentially malicious
clients with similar model updates to the global model by reducing their learning
rates. The FoolsGold scheme shows promising results when the training data is
non-i.i.d., since the local models from honest clients may be far from the global
model and far from each other too. However, our study shows that when the
training data is i.i.d., it may incorrectly penalize honest clients with similar data
distributions and therefore result in substantial drops in test accuracy.

Besides, recent “structure-based” defenses such as [35] demonstrated promis-
ing results in detecting “backdoor neurons” that can be triggered only by back-
doored inputs but not clean inputs. However, our work is different from this line
of research, which attempt to mitigate backdoor attacks in FL after the training
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phase. Moreover, as they target the backdoor attacks, they are less effective in
detecting non-backdoor poisoning attacks.

3 The Threat Model and the Problem

3.1 Threat Model and Assumptions

Attacker’s goal. In poisoning attacks, the attackers aim to indirectly manip-
ulate the parameters of the learned model by injecting malicious updates to
the aggregator. In this paper, we focus on the label-flipping and backdoor data
poisoning attacks [2, 17] in federated classification tasks. In a label-flipping at-
tack, the attacker flips the labels of the training samples from one selected class
(i.e., source) to another class (i.e., target), while keeping the features unchanged.
Therefore, the attack is independent of the model characteristics, the loss func-
tion, or the SGD algorithm. A backdoor attack, on the other hand, embeds
special patterns such as patches of pixels or shadows into the original training
samples and relabels them with the attacker-chosen label. The patterns act as
triggers for the target class, which is exploited by the attacker at test time.

Attacker’s capability. We assume that the aggregator is honest while a subset
of FL clients is malicious. The proportion of these Sybil-controlled clients among
all the participants is denoted by m%. We also assume that each malicious client
can manipulate her own training data, but she cannot access or manipulate other
clients’ data or their learning processes, e.g., the loss function computation,
the optimization algorithm, or server’s aggregation process. We further assume
that the honest clients possess training data that represents every class in the
dataset. For an attack to succeed, an attacker must exert more influence on the
target class than the total influence from the honest clients. The attacker may
target any class by recruiting more malicious clients to outweigh the influence of
honest clients. Therefore, we expect a defense to be robust against a significant
proportion of malicious clients.

Training data distribution. FL allows us to train deep models with real-world
data from distributed, heterogeneous sources, where the statistical characteris-
tics of individual data may differ significantly from each other. Therefore, we
assume the training data can be independent and identically distributed or non-
identically distributed.

3.2 Factors Impacting Defense Designs against Poisoning Attacks

Existing defense approaches demonstrated promising results in mitigating the
poisoning attacks in FL. However, they often made specific assumptions about
training data distributions or adopted simplified settings (e.g., small number of
clients and extreme synthesis of non-i.i.d. data distributions) when evaluating
the performance of the proposed schemes. It remains an open question if these
defenses could achieve the same level of effectiveness when some assumptions do
not hold. Therefore, in this section, we investigate the factors and limitations
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Fig. 2: Synthetic data distributions of 30 clients derived from the Dirichlet dis-
tribution with different α, using the MNIST dataset with 10 classes.

that may impact the effectiveness of the defenses. In particular, we implement the
label-flipping attack and three representative defenses of robust aggregation (e.g.,
Krum [10]), clustering-based (e.g., PCA [34]) and behavior-based detection (e.g.,
FoolsGold [14]) and then compare their effectiveness under different settings with
varying malicious client populations and data distributions.

Settings and impacting factors. To obtain a fair understanding of the de-
fenses’ performance under a more realistic setting, we adopt a federated learning
system with 100 clients and the MNIST dataset with 10 classes, 60K training,
and 10K test data samples [23]. We consider four attacker populations to sim-
ulate the scenarios with very a few Sybils (i.e. m = 5% and 10%) to theoretic
upper bound of robust aggregation schemes (i.e. m = 33%) and all defenses (i.e.
m = 50%). In the label-flipping attack, we randomly select a pair of source and
target labels and flip the label of the training samples of the malicious clients
who are randomly chosen from the 100 clients.

To evaluate the effectiveness of the defenses, we use two metrics, model ac-
curacy (MA) and attack success rate (ASR), which assess the final global model
performance on the testing data. Detailed definitions are presented in Section 5.1.
As a baseline, the accuracy of the global model trained with FEDAVG without
and under the label-flipping attack on MNIST is 90% and 76.81%, respectively.

Training and test data distributions. Previous works on FL often assume the
training data is independent and identically distributed across the clients [2,
10, 28, 31, 36]. To synthesize a population with i.i.d. data, they usually subsam-
ple a population of homogeneous clients with an equal number of samples per
class and randomly assign a uniform distribution over all the classes to each
client. However, in practice, FL is exposed to statistical heterogeneity such that
the training data are unbalanced and usually follow non-representative distribu-
tion of the total population. To synthesize a population with non-i.i.d. data, a
widely-used approach is “sort-and-partition” [24], which represents a pathologi-
cally extreme case of non-identicalness [1]. However, partitions cannot represent
complex non-i.i.d. distributions in practical FL scenarios.

In this work, we adopt the Dirichlet distribution to synthesize data distri-
butions [2,18,36]. We assume that every client’s training samples are drawn in-
dependently with class labels following a categorical distribution over N classes
parameterized by a vector q: (qi ≥ 0, i ∈ [1, N ] and ‖q1‖ = 1). Specifically,
to synthesize a population of non-identical clients, we draw q ∼ Dir(αp) from
a Dirichlet distribution, where p characterizes a prior class distribution over N
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Fig. 3: Model accuracy and attack success rate of Krum and CONTRA under the
label-flipping attack with different data distributions and attacker populations.

classes and α > 0 is a concentration parameter controlling the identicality among
clients. With α → ∞, all clients have identical distributions to the prior; with
α→ 0, each client holds samples from only one class chosen at random.

For example, we generate unbalanced populations from the training images
of the MNIST dataset and distribute them to 100 clients. We set the prior
distribution to be uniform across 10 classes. For each client, with a given α, we
sample q and assign the corresponding number of images from 10 classes to her.
To understand the generated distributions, we visualize the sample distributions
drawn from the Dirichlet distribution with different values of the concentration
parameter α in Figure 2. Here, we use 30 clients for neat presentation. We can
see that the distribution is extremely non-i.i.d. with α = 0.05 and i.i.d. with
α = 1000. With an α between 1 and 10, the distributions are typically non-i.i.d.,
but when α is larger than 100, they lean towards i.i.d. Therefore, we believe
the Dirichlet distribution with an α between 1 and 100 can better represent the
real-world data distributions than previous approaches.

The learning process. In each training round, the federated learning schemes
randomly select a group of C clients to train the model. C is known as the
reporting fraction, which is typically set as 0.1 or 0.2 for scalability purpose. In
the local training process, FL applies SGD with a mini-batch size b (e.g., 50-100)
and iterates the local training process through E (e.g., 1-5) training passes in
a local epoch to accelerate the convergence of the global model. Therefore, we
should also consider the impact of these parameters.

Effectiveness and limitations of three defense approaches. Next, we eval-
uate the effectiveness of Krum [10], PCA-based detection [34], and FoolsGold [14]
under the label-flipping attack. We consider settings with different malicious
client populations and synthesized data distributions and compare their perfor-
mance without and under the attack.

Krum. We implement Multi-Krum [24], a variant of Krum. For each local model
update, it computes the total Euclidean distance from the n − f − 2 nearest
neighbors and uses the average of the best k updates to compute the global
model, where n and f denote the number of total and malicious clients, respec-
tively. When k = 1, multi-Krum is the same as Krum, and it reduces to the
basic FedAvg aggregation rule when k = n.
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Fig. 4: Two-dimensional PCA plots demonstrate the clusters of honest and mali-
cious gradients (Left: m = 10%, uniform distribution; Middle: m = 33%, Dirich-
let distribution with α = 1; Right: m = 50%, Dirichlet distribution with α = 1).

As shown in Fig. 3, Krum is not effective in defending against the targeted
poisoning attacks. Moreover, its performance is strongly influenced by the pa-
rameter f and is significantly worse in the non-i.i.d. settings with high malicious
clients ratio. Even with a small number of malicious clients (e.g., m = 10%), the
attack success rate is 38% and 14% in the non-i.i.d. and i.i.d. settings, respec-
tively. The model accuracy is 81% (the average of 10 runs) in the i.i.d. setting,
but it drops to 68% under the the Dirichlet distribution with α = 0.05. With
more malicious clients (e.g., m = 33% and 50%), Krum works very poorly in
both i.i.d. and non-i.i.d. settings.

PCA-based detection. We implement the scheme in [34]. In each training round,
the aggregator computes the difference between a client’s model update and
the global model (i.e. θ∆,i ← θr,i − θr) and extracts the relevant subset of
the parameter space using PCA dimensionality reduction. Fig. 4 visualizes the
gradients of the local models with two components (i.e. dimensions), where the
orange and blue colors denote the gradients of the honest and malicious updates,
respectively. As we can see, the honest and malicious models highly overlap in
the non-i.i.d. settings. As a result, the two groups cannot be distinguished by
any clustering-based detection approach.

FoolsGold. FoolsGold demonstrates a promising result with non-i.i.d. and i.i.d.
training data. However, its evaluation adopts over-simplified settings, such as
a small set of clients (10 honest clients and 5 malicious clients), non-stochastic
SGD (using C = 1), and pathological extreme cases to synthesize the i.i.d. and
non-i.i.d. distributions. So, we set C = 0.1 and evaluate its performance under
the more realistic settings used in this work. The results in Tables 2 and 3 show a
reduction in model accuracy and an increased attack success rate in all settings.

4 The CONTRA Approach

In this section, we present a new defense mechanism against poisoning attacks
in federated learning, called CONTRA. We will first explain the design rationale
of CONTRA and then elaborate its building blocks and the algorithm. Finally,
we will discuss the strengths and limitations of CONTRA.
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4.1 Overview of the CONTRA Design

In federated learning, the local gradients, which are computed to minimize the
local objectives, are expected to align with the direction that approaches the
optimal of the global objective. However, in each training round, the directions
of client i’s local objective and the global objective may not align well due
to the dynamics in local data distributions, where the angle between the two
can be denoted as θi. In a targeted attack, malicious clients have a poisoning
objective to classify data with a specific feature-space pattern into a target class.
Therefore, their local gradients should approach the direction of the poisoning
objective but not the one of the global objective. We denote the angle between
the directions of a malicious client’s gradient and the global objective as δj .
Intuitively, many clustering-based detection schemes distinguish the clusters of
honest and malicious clients, assuming θis are similar to each other but different
from δjs.

However, this assumption may not hold, especially when the data are non-
i.i.d, as shown in our study on the PCA-based detection scheme (in Sec. 3.2).
Motivated by [14], we consider the alignment among the clients’ updates in this
work. In particular, we consider the angle between the directions of the gradients
of two malicious clients (denoted by γ) in each round. Since malicious clients
have the same poisoning objective throughout the training process, γ of any two
malicious clients should always be smaller than the angle between the gradients
of a malicious and an honest clients and the angle between any two honest clients.

Therefore, we propose to measure the alignment level among clients using
pairwise cosine similarity. In each round, a higher alignment level means that
the client’s local objective is closer to the one of another client and thus the
client is more suspicious to be malicious. To eliminate the impact of malicious
clients to the global model, we introduce a reputation system with two penalty
mechanisms based on the alignment level, by reducing the learning rate of a
suspicious client and her chance of being selected into the FL process in the
future training round. CONTRA enables a high model accuracy and a low attack
success rate against targeted poisoning attacks even in cases with a large attacker
population (to be discussed in Sec. 5). Meanwhile, as a server-side defense, it is
running on the aggregator and does not introduce any changes or overhead at
the client.

4.2 The CONTRA Algorithm

Next, we explain the detailed design of CONTRA which consists of three com-
ponents, alignment level measurement, adaptive learning rates, and reputation-
based aggregation. The algorithm of CONTRA is illustrated in Algorithm 1.

Alignment level measurement. CONTRA calculates the cosine similarity be-
tween the normalized gradient vectors of two local updates to measure their
angular distance, which reflects the similarity of the indicative features in the
output layer of the local models [31]. These features are relevant to the cor-
rectness of the model and the success of a targeted attack, because they map
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directly to the output probabilities. In federated learning, as many clients update
the global model collaboratively and iteratively, the gradient of a single client
may change drastically over the training rounds. So, CONTRA maintains local
updates from each client over several consecutive training rounds and computes
the pairwise similarity between the aggregated historical updates (Lines 3-8 in
Algorithm 1). For malicious clients approaching the poisoning objective, the di-
rections of their aggregated historical updates are more likely to align with each
other. Finally, we set the alignment level of a client j as the average of its top-k
pairwise cosine similarity, denoted as τj , where k can be determined based on
the estimated attacker population.

Adaptive learning rate. CONTRA employs dynamic learning rate at each local
model and adaptively adjusts a client’s local learning rate as lrj = 1− τj based
on her alignment level (Line 20). Local learning rates are typically used to adjust
the speed towards global model convergence. So, we reduce the learning rates of
suspicious clients to limit their contributions to the global model in each round.
The learning rates are further normalized by the maximum learning rate in each
round (Lines 23). This is to ensure that if no malicious client exists in the system,
the honest clients will not be penalized by our scheme. To avoid incorrectly
penalizing honest clients, we also implement the pardon function (Lines 18)
proposed in [14] that applies a ratio min(1,

τj
τi

) to each cosine similarity.

Reputation-based aggregation. CONTRA uses a reputation-based aggrega-
tion scheme to reduce the chance that a suspicious client is selected to participate
in the FL process. In FEDAVG [24], given a reporting fraction C ∈ (0, 1], K×C
clients are randomly selected to participate in every training round. Therefore,
each client has an equal probability pi = C to be selected. CONTRA employs a
reputation-based aggregation scheme that dynamically adjusts a client’s prob-
ability as pi = C + λ · ri, where ri is the reputation score of client i. In each
round, we rank the clients by pi and select the top K × C clients to join the
next round. When λ = 0, the scheme reduces to FEDAVG; otherwise, the client
with a higher trust score is more likely to be selected to participate in the next
training round. The initial trust scores of all clients are set to 1, so that each
client has an equal probability of being selected. In a later round, the trust score
of a client j is adjusted by a small ∆ if its alignment level τj is higher than a
preset threshold t (Lines 10-14 in Algorithm 1). The normalized trust scores are
then used to adjust the selection probability of the clients. Empirically, we set
λ = C(1 − C) and use ∆ = 0.1 for the image classification tasks and ∆ = 0.05
for the Loan dataset (discussed in Sec. 5).

4.3 Discussions

We evaluate the performance of CONTRA in Section 5. It can effectively mitigate
targeted poisoning attacks in both i.i.d. and non-i.i.d. settings, with a perfor-
mance better than existing approaches such as Krum and FoolsGold. However,
CONTRA may be less effective or even fail in a special case where there is only
one malicious client in the system. For example, under the label-flipping attack,



CONTRA: Defending against Poisoning Attacks in Federated Learning 13

Algorithm 1 The CONTRA algorithm

Input: Initial model w0 and local updates δ = {δi,j}: δi,j from client j at iteration i
Set reporting fraction C = 0.1; for client j: initial reputation score rj = 1, Gj = δ1,j .
At Server:
1: for iteration i do
2: Si ← select top-J clients with probability pj = C + λ · rj ; J = K × C
3: for every client j ∈ Si do
4: δi,j = ClientUpdate(j, wi)
5: compute historical aggregate: Gj = Gj + δi,j
6: for every client p 6= j do
7: cosine similarity csj,p = dot(Gj/||Gj ||, Gp/||Gp||)
8: end for
9: set τj as the average of the top-k cosine similarity csj,p between client j and

all other clients
10: if τj > t then
11: rj = rj −∆
12: else
13: rj = rj +∆
14: end if
15: end for
16: for all client m do
17: for all client n do
18: csm,n∗ = min(1, τm

τn
) // re-weighing the cosine similarity

19: end for
20: lrm = (1− τm)
21: rm = rm/max(r) //normalize the reputation score to [0, 1]
22: end for
23: lrm = lrm/maxm(lr) //normalize the learning rate to [0, 1]
24: lrm = (log[ lrm

1−lrm ] + 0.5) //logit function to enlarge the divergence

25: wi+1 ← wi +
∑L
l=1 lrl × δi,l

26: end for
At Client: Run ClientUpdate(j,w)
27: B← split local dataset into batches of size |B|
28: for local epoch i from 1 to E do
29: for all b ∈ B do
30: w ← w − η∆l(w; b)
31: δj ← (wi − winit)
32: end for
33: end for
34: return δj

its accuracy drops from 85.22% (with 20 malicious clients) to 81.23% (with 1
malicious client), while the attack success rate increases from 1.9% to 8.43%.
This is because CONTRA relies on similarity (i.e. alignment) among malicious
clients with the same poisoning objective to identify suspicious clients in FL. To
address this single-attack case, we can integrate CONTRA with an existing ro-
bust aggregation scheme such as median aggregation [37] and Krum [10], which
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is powerful in detecting outliers. For example, an integrated scheme with Multi-
Krum can improve CONTRA’s test accuracy to 84.88% and reduce the ASR to
2.7% in the single-attacker case.

Recently, intelligent perturbation-based model poisoning attacks [13] are pro-
posed, which could be extended to defeat CONTRA. For example, malicious
clients can submit carefully-crafted updates in pairs with perturbations that
cancel out in aggregation, i.e., δ′1 = δ1 + ϕ and δ′2 = δ2 − ϕ, where ϕ is drawn
from orthogonal perturbation vectors. Therefore, δ′1 and δ′2 are not similar to
each other, but they achieve the same impact on the aggregated global model
as δ1 and δ2. As pointed out by [14,31], this type of attack is more effective if ϕ
is applied to features that are not important to the model or the attack. There-
fore, Fung et al. suggested filtering for indicative features in the model and use
a weighted scheme based on the feature importance to mitigate the intelligent
attacks [14]. We will explore the solution in this direction in our future work.

5 Experiments

5.1 Datasets, Settings, and Baseline

CONTRA is evaluated on three popular ML datasets: MNIST [23], CIFAR-
10 [22], and Loan [16], as summarized in Table 1. Referring to the convergence
rate reported in the literature [34, 36], we set the training process to 100, 300,
and 200 rounds for the MNIST, CIFAR, and Loan models, respectively.

Data Distribution and Training. For MNIST and CIFAR-10, a Dirichlet
distribution is used to divide training images among 100 clients. The distribution
hyperparameter α varies from 0.05 to 1000. Meanwhile, the 2,223,300 samples in
the Loan dataset are divided into 50 US states, each of whom represents an FL
client. FL prototype is implemented in Python using PyTorch. Each experiment
is repeated five times on different populations under the same configuration (e.g.,
α) and the average results are reported. In the experiments, every party uses
SGD as optimizer and trains for E local epochs with local learning rate lr, and
a batch size of 50. 10% of the participants are randomly selected in each round
to submit locally computed SGD updates for aggregation.

Attack Settings. In the label-flipping attack, a proportion m = 5%, 10%, 20%,
33% and 50% of the clients are malicious. We simulate two types of poisoning
attacks: (1) Label-flipping attacks: the adversaries attempt to flip a randomly
selected source label (S) of the training samples to a target (adversarial) label
(T), while keeping the features unchanged (Section 5.2). And (2) Pixel-pattern
backdoor attacks: the adversaries embed trigger patterns to the selected training
samples before flipping their labels (Section 5.3).

Metrics. We evaluate the model accuracy (MA) and the attack success rate
(ASR) on the testing data. ASR is defined as: ASR = NT /NS , where NS denotes
the number of testing samples with source label S and NT denotes the number
of testing samples mislabeled as T. The attack succeeds if the poisoned model
outputs the desired target label T for a source label S, otherwise the attack fails.
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Table 1: Datasets and performance of unattacked models. Model Accuracy: MA.

#clients #classes train/test feature model used MA lr/E

MNIST 100 10 60K/10K 784 1-layer softmax [14] 90% 0.01/1
CIFAR-10 100 10 50K/10K 1024 lightweight Resnet-18 84% 0.1/2
LOAN 50 3 1,778K/444K 127 3 fc 85% 0.001/1

Table 2: FoolsGold [14] performance with varying client data distributions and
Dirichlet-distributed non-iid data. A-5 attack; 10 honest and 5 malicious clients.

shared data [14] Dirichlet-distributed non-iid data

s=0% s=50% s=100% α=0.05 α=1 α=10 α=100 α=1000

MA (%) 81.9 89.1 87.8 75.4 74.2 79.9 79.0 79.5

ASR (%) 0.0 1.7 6.7 1.7 1.8 2.1 2.8 3.1

Baseline. We employ FoolsGold [14] as the baseline. We first implement the
A-5 label-flipping attack on MNIST with the same settings as [14]. Table 2
demonstrates FoolsGold’s performance with various sharing ratios (s), where
s=0% implies that each client owns a single label of samples, while s=100%
implies that each client’s dataset is uniformly sampled from all classes (iid data).
Meanwhile, we also evaluate FoolsGold with more realistic, Dirichlet-distributed
non-iid data (when α→∞, data distributions are close to iid). As shown in Table
2, the model accuracy drops significantly with Dirichlet-distributed data.

5.2 Defense against Label-flipping Attacks

Label-flipping Attack on Dirichlet-distributed Client Data. We eval-
uate CONTRA and FoolsGold [14] with Dirichlet-distributed non-iid data. We
simulate 100 clients for MNIST and CIFAR, and 50 clients for Loan, which is
more practical than 15 clients in [14]. The results are shown in Table 3. First,
FoolsGold’s model accuracy drops significantly with increased clients, as be-
nign inputs are mistakenly penalized. CONTRA outperforms FoolsGold in all
settings. FoolsGold achieves an overall average accuracy of 76.3% and ASR of
3.2%, while CONTRA increases model accuracy to 80.8% and reduces ASR to
0.9%. In particular, the average model accuracy degradation (compared with
unattacked models) is 9.9% with FoolsGold and 5.5% with CONTRA. We also
compare the performance of CONTRA and Krum under the label-flipping attack
and show the results in Figure 3. The results indicate that CONTRA is robust
and effective, and it outperforms state-of-the-art solutions.

Coordinated Attack. We simulate the scenario that malicious clients coordi-
nate and manipulate their data. Similar to [14], we denote the data sharing rate
among the malicious clients as xs, i.e., xs% of the samples at each malicious
client are uniformly distributed from all classes, while the rest (1−xs)% are at-
tack samples that are exclusive to this client. Data at the honest clients follow
Dirichlet distribution with various α. Results on MNIST data (Table 4) indicate
that both FoolsGold and CONTRA effectively reduce ASR, while CONTRA out-
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Table 3: Performance comparison of CONTRA and FoolsGold [14] under a label-
flipping attack: MA and ASR at model convergence.

MNIST CIFAR-10 LOAN
MA (%) ASR (%) MA (%) ASR (%) MA (%) ASR (%)

m α FG Ours FG Ours FG Ours FG Ours FG Ours FG Ours

0.05 73.35 75.98 0.0 0.0 68.23 72.41 1.3 0.0
1 81.86 84.21 1.2 0.0 73.63 76.88 1.8 0.0

5% 10 84.60 89.52 1.8 0.0 78.81 83.27 1.4 0.0 80.76 83.11 2.1 0.0
100 83.72 88.16 1.9 1.1 81.34 84.41 1.4 0.0
1000 83.69 88.02 2.1 1.0 80.55 83.22 2.8 0.1

0.05 70.18 73.92 1.1 0.0 68.45 71.48 1.4 0.0
1 81.77 83.59 1.3 0.0 74.84 77.95 2.2 1.0

10% 10 81.79 85.93 2.3 0.8 78.04 82.19 1.5 1.3 79.34 82.44 3.1 0.0
100 80.67 85.47 2.6 1.3 78.54 82.14 1.7 0.7
1000 80.75 85.44 2.8 0.0 78.80 83.47 3.8 1.2

0.05 67.98 73.22 4.2 0.0 66.29 71.28 2.9 0.0
1 74.58 82.18 1.6 0.0 72.21 74.66 1.9 0.0

20% 10 79.54 85.65 2.7 1.1 78.04 83.19 1.7 1.3 77.35 83.25 3.5 0.9
100 80.40 85.32 3.0 1.1 77.69 82.34 2.9 0.5
1000 79.64 85.22 4.3 1.9 77.76 82.63 3.8 1.5

0.05 69.32 72.82 5.6 1.4 67.82 70.42 3.1 0.0
1 77.24 80.16 2.2 0.9 70.08 72.97 2.0 0.4

33% 10 79.20 83.63 3.1 1.7 73.63 79.87 2.6 1.7 76.42 81.47 5.4 1.8
100 78.34 83.86 3.5 0.8 73.86 80.43 5.9 1.3
1000 78.55 83.20 3.4 1.7 74.59 81.04 4.8 1.3

0.05 66.57 70.42 3.2 1.5 67.75 70.41 3.3 1.8
1 75.66 81.64 1.4 0.3 69.11 73.70 2.4 0.8

50% 10 75.32 81.44 2.9 1.4 71.47 74.62 2.5 1.8 74.88 81.23 6.1 2.3
100 76.13 81.56 4.1 1.5 72.12 78.41 6.6 1.9
1000 74.55 82.34 4.2 2.2 72.53 77.38 7.8 2.0

Mean 77.41 82.15 2.66 0.87 73.85 78.03 2.94 0.82 77.75 82.30 4.04 1

Table 4: CONTRA performance against coordinated attacks on MNIST.

FoolsGold Ours
α = 0.05 α = 1000 α = 0.05 α = 1000

xs MA (%) ASR (%) MA (%) ASR (%) MA (%) ASR (%) MA (%) ASR (%)

0% 0.6835 0.034 0.8322 0.042 0.7313 0.00 0.8704 0.00
50% 0.6981 0.033 0.81 0.038 0.7287 0.012 0.852 0.011
100% 0.7012 0.00 0.7919 0.056 0.7502 0.00 0.8414 0.021

performs FoolsGold in all settings, as CONTRA’s reputation system increases
the likelihood of honest clients to be recruited for FL training.

Hyperparameters. We evaluate CONTRA on MNIST with local epoch count
E∈{1, 5} and reporting fraction C∈{0.1, 0.2, 0.4}, which corresponds to 10, 20,
and 40 clients participating in each round, respectively. Note that C=0.1 is the
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Table 5: Model accuracy (%) for different parameter settings. Total client pop-
ulation: 100; malicious clients: 33%; C: reporting fraction.

local epoch count E = 1 local epoch count E = 5

C α=1000 α=100 α = 10 α = 1 α=0.05 α=1000 α=100 α = 10 α = 1 α=0.05

0.40 78.48 76.72 84.19 81.32 76.33 87.92 86.59 84.21 84.06 78.73

0.20 76.85 75.43 85.04 82.20 78.40 88.96 87.43 87.65 83.21 79.14

0.10 83.20 83.86 83.63 80.16 75.38 86.70 85.86 85.41 83.90 75.67

Table 6: Performance comparison of CONTRA (ours) and FoolsGold [14] under
backdoor attacks. Malicious clients: 33%; α = 100.

MNIST CIFAR-10 LOAN
MA (%) ASR (%) MA (%) ASR (%) MA (%) ASR (%)

FG Ours FG Ours FG Ours FG Ours FG Ours FG Ours

81.4 87.4 18 2.86 79.6 82 3.85 0.9 81.29 83.2 6.14 1.95

most common setting in the literature, which is used in all previous experiments.
Table 5 shows the classification performance. With the increase of C, for similarly
distributed client data (larger α), more honest clients are likely to be penalized
by the detection scheme resulting in drops in model accuracy. Meanwhile, with
smaller α (non-iid data), honest client updates are diverse and differentiated from
the sybil updates, therefore, increasing C improves model accuracy by involving
more honest clients. Moreover, synchronizing the weights after 5 local epochs
significantly improves the model accuracy, especially for larger α.

Computing and Communication Overhead Last, we evaluate the runtime
overhead introduced by CONTRA. All experiments are performed on a machine
with a 2.6 GHz Intel core i5 processor and 128 GB RAM. The baseline FL
system with 100 honest clients takes 18.43 seconds, on average, to run 100 train-
ing rounds. With 33% of malicious clients and CONTRA deployed, the average
runtime increases to 29.36 seconds. This corresponds to a relative slowdown of
approximately 1.60x compared to the baseline, which is very acceptable. The
size of the messages exchanged is less than 7 MB in both cases.

5.3 Defense against Backdoor Attacks

For MNIST and CIFAR, adversarial images are selected from a random class.
We embed a 4×4 pattern with gray-scale 255 (or 255 in all RGB channels) to
the top left corner of each adversarial image, and assign it with an adversarial
label. For the Loan dataset, six low-importance features from a random label
are chosen. They are replaced with new values that are slightly larger than the
maximum value of the feature. To remain stealthy, each attacker’s batch has 20
backdoored samples mixed with correctly labeled data.

Experimental results are reported in Table 6. For the lightweight Resnet-18
model on CIFAR-10, the ASR is 3.85% for FoolsGold and under 1% for CONTRA.
Meanwhile, with the 1-layer softmax model on MNIST, the ASR is 18% with
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FoolsGold, while CONTRA reduces it to 2.86%. The accuracy on Loan does not
drop much because of the simple fully-connected model architecture. The ASR
is 6.14% and 1.95% with FoolsGold and CONTRA, respectively.

6 Conclusion

Federated learning systems are vulnerable to poisoning attacks, in which adver-
saries manipulate their local data/label/model and contribute maliciously gen-
erated updates to the aggregator, with the intention to degrade the accuracy of
the global model or to inject a backdoor into it. We have observed that existing
defense mechanisms fall short when the experiment configurations are akin to
real world settings, e.g., with larger number of FL clients and non-iid data distri-
butions. In this paper, we present CONTRA, a reputation-based defense against
poisoning attacks in federated learning systems. In particular, we identify the
different optimization objectives of the honest and adversarial FL participants.
In response, we develop a cosine-based similarity measurement for client con-
tributions. We further design a reputation-based approach to dynamically and
adaptively limit the contribution of the potentially malicious clients. Through
extensive experiments with three popular ML datasets, we demonstrate that
CONTRA provides outstanding performance: it reduces the attack success rate
to 1%, and maintains significantly higher model accuracy than state-of-the-art
defense mechanisms.
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Miettinen, M., Mirhoseini, A., Sadeghi, A.R., Schneider, T., et al.: FLGUARD:
Secure and private federated learning. arXiv preprint arXiv:2101.02281 (2021)

29. Shafahi, A., Huang, W.R., Najibi, M., Suciu, O., Studer, C., Dumitras, T., Gold-
stein, T.: Poison frogs! targeted clean-label poisoning attacks on neural networks.
In: 32nd Intl. Conf. on Neural Info. Processing Systems. pp. 6106–6116 (2018)

30. Shejwalkar, V., Houmansadr, A.: Manipulating the byzantine: Optimizing model
poisoning attacks and defenses for federated learning. In: Network and Distributed
Systems Security (NDSS) Symposium, 2021 (2021)

31. Shen, S., Tople, S., Saxena, P.: Auror: defending against poisoning attacks in col-
laborative deep learning systems. In: In Proceedings of the 32nd Annual Confer-
ence on Computer Security Applications, ACSAC 2016, Los Angeles, CA, USA,
December 5-9, 2016. 508–519. (2016)

32. Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks
against machine learning models. In: 2017 IEEE Symposium on Security and Pri-
vacy (SP). pp. 3–18 (2017)

33. Steinhardt, J., Koh, P.W., Liang, P.: Certified defenses for data poisoning attacks.
In: Proceedings of the 31st International Conference on Neural Information Pro-
cessing Systems. p. 3520–3532. NIPS’17 (2017)

34. Tolpegin, V., Truex, S., Gursoy, M.E., Liu, L.: Data poisoning attacks against
federated learning systems. In: European Symposium on Research in Computer
Security. pp. 480–501. Springer (2020)

35. Wu, C., Yang, X., Zhu, S., Mitra, P.: Mitigating backdoor attacks in federated
learning. arXiv preprint arXiv:2011.01767 (2020)

36. Xie, C., Huang, K., Chen, P.Y., Li, B.: Dba: Distributed backdoor attacks against
federated learning. In: Intl. Conf. on Learning Representations (2020)

37. Yin, D., Chen, Y., Kannan, R., Bartlett, P.: Byzantine-robust distributed learning:
Towards optimal statistical rates. In: 35th Intl. Conf. on Machine Learning (2018)

38. Yurochkin, M., Agarwal, M., Ghosh, S., Greenewald, K., Hoang, N., Khazaeni, Y.:
Bayesian nonparametric federated learning of neural networks. In: International
Conference on Machine Learning. pp. 7252–7261. PMLR (2019)


	CONTRA: Defending against Poisoning Attacks in Federated Learning

