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Abstract. The Controller Area Network (CAN) has been widely adopted
as the de facto standard to support the communication between the
ECUs and other computing components in automotive and industrial
control systems. In its initial design, CAN only provided very limited
security features, which is seriously behind today’s standards for secure
communication. The newly proposed security add-ons are still insufficient
to defend against the majority of known breaches in the literature. In
this paper, we first present a new stealthy denial of service (DoS) attack
against targeted ECUs on CAN. The attack is hardly detectable since
the actions are perfectly legitimate to the bus. To defend against this
new DoS attack and other denial and spoofing attacks in the literature,
we propose a CAN firewall, namely CANSentry, that prevents malicious
nodes’ misbehaviors such as injecting unauthorized commands or dis-
abling targeted services. We implement CANSentry on a cost-effective
and open-source device, to be deployed between any potentially mali-
cious CAN node and the bus, without needing to modify CAN or ex-
isting ECUs. We evaluate CANSentry on a testing platform built with
parts from a modern car. The results show that CANSentry successfully
prevents attacks that have shown to lead to safety-critical implications.

1 Introduction

The Controller Area Network (CAN ), also referred to as the CAN bus, has been
widely adopted as the communication backbone of small and large vehicles, ships,
planes, and industrial control systems. When CAN was originally developed, its
nodes were not technically ready to be connected to the external world and thus
assumed to be isolated and trusted. As a result, CAN was designed without ba-
sic security features such as encryption, authentication that are now considered
essential to communication networks [14, 19]. The protocol’s broadcast nature
also increases the likelihood of attacks exploiting these security vulnerabilities.
Therefore, a malicious message injected by a compromised electronic control
unit (ECU) on the bus, if it conforms to CAN specifications, will be treated
the same as a legitimate message from a benign ECU and broadcasted over the
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bus. Moreover, wireless communication capabilities have been added to CAN
nodes for expanded functionality (e.g., TPMS, navigation, entertainment sys-
tems) without carefully examining the potential security impacts [46, 43, 21, 20].
This enlarges the attack vector for remote attacks by allowing some previously
physically isolated units to connect to external entities through wireless connec-
tions. Various attacks have been reported in recent years, ranging from simple
bus denial attacks [12, 36] and spoofing attacks [27, 32] to more sophisticated
bus-off [42, 23] and arbitration denial attacks [27, 3, 12, 36]. In response to the
vulnerabilities and attacks, significant research efforts have been devoted to au-
tomobile and CAN security. Solutions such as message authentication and intru-
sion detection, akin to those designed for Internet security, have been proposed
to secure CAN [49, 50]. However, these proposals suffer from major efficiency is-
sues. For instance, the authentication-based schemes deploy cryptographic keys
among ECUs to generate MACs, which inevitably incur non-negligible process-
ing overhead and significantly impact CAN’s transmission speed. Moreover, such
defense mechanisms can be defeated if the adversary exploits compromised ECUs
to nullify authentication or MAC frames [3]. The intrusion detection-based mech-
anisms leverage ECUs’ behavioral features to detect abnormal frames on the bus,
hence, they have to collect a sufficient number of frames by monitoring the bus
and ECUs, which inevitably results in delays in the detection.

In this paper, we first present a new stealthy arbitration denial attack against
CAN, which takes seemingly legitimate actions to prevent selected CAN nodes
from sending messages to the bus. This attack bypasses CAN controllers to inject
deliberately crafted messages without triggering packet-based detectors, which
allows the adversary to extend the length of the attack and cause severe damages.
For instance, the attack can block all steering and breaking messages from being
sent to the bus without causing any bus error, while keeping other sub-systems
such as the engine operating normally. We implement the attack using an STM32
Nucleo-144 board as the attacker and an instrument panel cluster from a 2014
passenger car as the victim and demonstrate a successful attack.

Moreover, we propose a new defense mechanism, namely CANSentry, against
the family of general CAN denial and spoofing attacks. This system-level con-
trol mechanism addresses the fundamental CAN security problem caused by the
protocol’s broadcast nature and lack of authentication without demanding any
modification to the CAN standard or the ECUs. CANSentry leverages the mali-
cious behavior of the attacks, e.g., inconsistency between attack ECU state and
the bus state, to filter frames from high-risk ECUs (i.e., a few external-facing
ECUs) in a bit-by-bit fashion and block unauthorized frames from being sent to
the bus. We implement a cost-efficient prototype of CANSentry using the STM32
Nucleo-144 development board and demonstrate its effectiveness against recent
denial and spoofing attacks including the one we propose in this paper.

The contributions of this paper are three-fold: (1) we demonstrate a stealthy
selective arbitration denial attack against CAN that prevents selected ECUs
from transmitting to the CAN bus without triggering any error or anomaly.
(2) More importantly, we design a proof-of-concept CAN firewall, CANSentry,
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which is deployed between high-risk CAN nodes and the bus to defend against
bus/ECU denial attacks and ECU spoofing attacks. And (3) we implement the
proposed CAN firewall using low-cost hardware and demonstrate its effectiveness
on a platform consisting of components from modern passenger cars.

The rest of the paper is organized as follows: we introduce the CAN bus and
CAN attacks in Section 2 and the threat model in Section 3. Then, we present the
stealthy selective arbitration denial attack in Section 4, and CANSentry design
and implementation in Section 5, followed by security analysis in Section 6.
Finally, we conclude the paper in Section 7.

2 Background and Related Work

2.1 The Control Area Network (CAN)

CAN has been widely used in many distributed real-time control systems. While
components differ, the main concepts/mechanisms remain similar in all CAN
applications. A CAN network consists of nodes interconnected by a differential
bus. Each node is controlled by a microcontroller (MCU), a.k.a. electronic control
unit (ECU) in automotive CAN networks. A node connects to the bus through
a controller and a transceiver. The controller is a stand-alone circuit or an MCU
module, which implements the protocol, e.g., encoding/decoding frames and
error handling. The transceiver converts between logic data and physical bits.

Frame Prioritization. In CAN, frame prioritization is realized by the arbitra-
tion ID (a.k.a. CAN ID). Fig. 1 (a) shows a simplified CAN frame. It starts with
the 11-bit arbitration ID (or 29-bit in the extended format), which determines
the frame’s priority on the bus as well as the frame’s relevance to receivers,
based on which each receiver decides to accept or ignore the frame. When multi-
ple nodes attempt to send to the bus simultaneously, the lowest ID indicates the
highest priority and wins the arbitration. To support prioritization of frames,
the CAN specification defines dominant and recessive bits, denoted by “0” and
“1”, respectively. Whenever a dominant and a recessive bit are sent at the same
time by different nodes, the dominant bit will dominate the bus. This mechanism
allows CAN to resolve real-time conflicts during arbitration and transmission.

CAN Error Handling. Error handling in CAN allows nodes to autonomously
detect and resolve transmission errors without third-party intervention. It also
supports fault confinement and the containment of defective nodes. There are
five types of errors in CAN: bit, ACK, stuff, form, and CRC errors. Each ECU
is responsible for detecting and keeping track of both transmission and receiving
errors with two error counters, transmit error counter (TEC) and receive error
counter (REC). Depending on the role of the ECU, one of the counters will
increase when an error is detected or decrease after a successful transmission or
reception. The ECU determines its error state according to the values of both
counters, as shown in Fig. 1 (b). The transitions between error states allow nodes
to treat temporary errors and permanent failures differently. In particular, when
a node encounters persistent transmission errors that may affect other nodes, it
switches to bus-off state, resulting in its complete isolation from the CAN bus.
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(a) (b)

Fig. 1: The CAN Bus: (a) Format of a CAN data frame; (b) CAN error state
transition. *: RESET or reception of 128 occurrences of 11 recessive bits.

2.2 Existing CAN Attacks

In this paper, we focus on denial and spoofing attacks against CAN. Denial
attacks are further classified into bus, ECU, and arbitration denial.

Bus Denial. A naive approach is to flood the bus with a stream of 0x0 IDs so
the bus is always occupied with this highest priority ID (BD1 ) [27, 12]. Another
approach is to occupy the bus by transmitting a stream of dominant bits and
prevent any ECU from transmitting. However, this bit-stream does not conform
to CAN protocol, hence, it cannot be dispatched by CAN controllers in regu-
lar mode. [12] exploited the Test Mode in some CAN controllers to flood the
bus with dominant bits (BD2 ). [36] built a malicious ECU without the CAN
controller to allow them to launch the dominant bit-stream attack (BD3 ).

ECU Denial. The attacker attempts to force an ECU to a bus-off state (TEC>255)
and eliminates all the functionalities managed by the target ECU. Four types
of ECU denial attacks have been proposed in the literature: (1) CAN Controller
Abuse (ED1 ). [12] exploited the ID Ready Interrupt feature and the Test Mode
on some ECUs to inject dominant bits when the target ID attempts to trans-
mit. This would trigger transmission bit errors at the target ECU, as it detects
the discrepancies between what it sends and what it sees on the bus. Repeat-
ing this attack would gradually increase the transmitter’s TEC, and eventually
force it to bus-off. (2) Malicious Frames (ED2 ). An adversarial ECU may send
a frame with identical contents to the targeted ECU’s, except replacing a reces-
sive bit with a dominant one, to trigger a bit error at the transmitting ECU [3,
12]. (3) Bypassed CAN Controller (ED3 ). Adversaries directly connect mali-
cious/compromised ECUs to CAN transceivers to inject arbitrary bit streams to
the bus. [42, 36, 23] implemented this attack to overwrite recessive bits from the
target ECU by dominant ones to trigger bit errors at the transmitting ECU.

Arbitration Denial. The adversarial ECU attempts to inject frames with the
lowest possible ID (0x0) to win the arbitration over any other CAN ID and pre-
vent all non-0x0 IDs from sending to the bus, so that the bus becomes completely
non-functional [12]. It could also target on a selected ID by transmitting an ID
of higher priority whenever that ID starts transmission [22]. We categorize both
cases as AD1. [36] monitored the bus with an MCU connected through a CAN
transceiver (without CAN controller) to detect the target ID and then inject a
dominant bit that replaces a recessive bit in the ID field (AD2 ). The target ID
loses arbitration and is unaware of the attack, however, the attack results in an
incomplete frame that causes a form error. In Section 4, we propose a stealthier
version so that no error frame is generated (AD3 ).
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Control
Features Effectiveness against attacks

Inj. Aper. RT Cost BD1 BD2 BD3 ED1 ED2 ED3 AD1 AD2 AD3 Spoof

C1 7 X 7 X D D D D D D D D D D
C2 7 X 7 7 D - - - D - D - - D
C3 7 7 7 X D - - - D - D - - D
C4 7 X 7 X - - - P P P P P P P
C5 7 X X X P - - - P - P - - P
C6 7 X 7 7 P - - - D - D - - P
C7 7 X 7 7 P - - - D - P - - P
CANSentry X X X X P P P P P P P P P P

Features: Inj.: preventing injection of incomplete frames or random bits, Aper.:
handling aperiodic attacks, RT: real-time defense; Cost: low cost.
Effectiveness: D: Detect, P: Prevent, -: No protection
Controls: C1: Anomaly-based IDS [19, 13, 38, 52, 51, 37]; C2: Voltage-based IDS [35,
6, 7, 5, 4, 10]; C3: Time-based IDS [15, 4]; C4: CAN-ID Obfuscation [22, 59, 17, 24, 29,
58]; C5: Counterattacking [8, 30, 28, 48]; C6: Authentication [41, 44, 18, 53, 54]; C7:
Application-level Firewalls [45, 26].

Table 1: Summary of CAN security control mechanisms: features and effective-
ness against attacks discussed in Section 2.2.

Spoofing Attacks. Due to the lack of authentication in CAN and the broadcast
nature of the bus, a compromised ECU could easily send CAN frames with
any ID, including IDs that belong to other legitimate/critical ECUs. In [32,
27], attackers compromised an ECU through a remote channel, and sent CAN
frames to unlock doors, stall the engine, or control the steering wheel. In the
masquerade attack, the attacker first disables the target ECU and then transmits
its frames [40]. In the conquest attack, the target ECU is fully compromised to
transmit legitimate frames but with malicious intentions [40]. Lastly, [31] sent
spoofed diagnostic frames to force a target ECU into diagnostic session, which
would stop transmitting frames until the diagnostic session is terminated.

2.3 Existing Controls and Limitations

IDS for CAN. Due to the high predictability of CAN traffic, anomaly de-
tection becomes a viable solution. For example, [19, 13, 38, 52, 51, 37] monitor
CAN traffic and detect frame injection attacks based on the analysis of traffic
pattern and packet contents. Meanwhile, due to the lack of sender authentica-
tion in CAN, a number of fingerprinting approaches are proposed to identify
senders based on physical layer properties. For example, ECUs could be profiled
and identified with time/clock features [15, 4] or electric/voltage features [35,
5, 7, 6, 25, 10]. These approaches associate frames with their legitimate senders.
When a mismatch is detected, an attack is assumed. They are effective against
the spoofing attacks and some of the denial attacks, as shown in Table 1. The
IDS mechanisms do not provide real-time detection except [10], which detects a
malicious frame before it completes transmission. In addition, they all assume
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that packets conform to CAN protocol. Therefore, they cannot recognize many
random bit or incomplete frame injection attacks discussed in Section 2.2.

CAN-ID Obfuscation. Many attacks discussed in Section 2.2 target specific
CAN IDs. Several solutions have been proposed to obfuscate CAN IDs to con-
fuse or deter the attackers, e.g., ID-Hopping [22, 59], ID Randomization [17, 24],
ID Obfuscation [29], and ID Shuffling [58]. The effectiveness of these solutions
rely on the secrecy of the obfuscation mechanism, i.e., the assumption that the
obfuscated CAN IDs are known to the legitimate ECUs but not the attackers.
This assumption may not be practical in real world applications.

Counterattacking. The counterattack mechanisms attempt to stop CAN in-
trusions by attacking the source. In [30], owners of CAN IDs (legitimate ECUs)
would detect spoofed frames on the bus, and interrupt the sender by sending an
error frame. [8] proposed a similar mechanism that induced collisions with the
spoofed frames until the attacking ECU was forced into bus-off. [28] proposed
a counterattack technique with a central monitoring node , which shared secret
keys with legitimate ECUs for authentication and spoof detection. [48] launched
a bus-off attack against the adversarial ECU of the attacks proposed in [3].
The counterattack approaches need to add detection and counterattacking ca-
pacity to all ECUs, so that they can protect their own CAN IDs. This is not
cost-effective, and may be impractical for some mission-critical ECUs.

Authentication. Cryptography-based solutions have been proposed to enable
node (ECU) authentication, and to support data confidentiality and integrity [54,
55, 34, 60]. In addition, controls against attacks from external devices have been
introduced [9, 16, 47, 57]. They require encryption, key management, and collab-
oration between ECUs, which implies significant changes to the existing CAN
infrastructure. Additional communication overhead and delays are also expected,
which is undesired in real-time environments such as CAN.

Firewalls. The idea of an in-vehicle firewall was first suggested in [56] to enforce
authentication and authorization of CAN nodes, but it did not articulate any
technical details behind the concept. Application-level firewalls have been intro-
duced in [45, 26], which require intensive modification at the CAN node (in both
software and hardware) and system-wide cryptographic capabilities to CAN.
This is impractical in real world CAN systems. Finally, the attacks performed
by the skipper model [36, 42] cannot be prevented using such solutions.

In Table 1, we compare different CAN defense approaches with our CANSen-
try solution in terms of features and capabilities of detecting or preventing the
attacks discussed in Section 2.2. We also like to note that existing countermea-
sures do not consider cases where the attacker abuses or bypasses the CAN
controller to send arbitrary bit streams or incomplete frames, e.g. [12, 36, 23].
Meanwhile, controls that transmit frames to the bus, e.g., counterattacks, are
also vulnerable to denial attacks that would nullify their effectiveness. Lastly,
many existing solutions require overhead such as renovating the protocol, up-
grading all or many ECUs, employing statistical learning for IDS, etc., which
makes them less cost-efficient and impractical.
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3 The Threat Model

Attackers’ Objectives. In this paper, we study two attacks, denial and spoof-
ing. In denial attacks, the attacker aims to nullify certain functionality of an
ECU or the CAN bus, such as forcing an ECU into bus-off, stopping a CAN ID
from sending to the bus, or occupying the bus. A stealthy denial is to achieve
the goal without being noticed by the target ECU or the bus. In spoofing, the
attacker aims to spoof a selected ID to send frames to the bus and deceive
the receiver, which can trigger undesired consequences ranging from displaying
incorrect information to disabling the brakes or the steering wheel [27, 32, 39].
Attacker’s Capabilities and Limitations. Attackers with local or remote
access have been demonstrated in the literature [27, 2, 11, 32]. We consider two
attacker models with different capabilities, based on which, different attacks
could be realized that vary in impact and sophistication. In both cases, we assume
that the attacker knows the design and specifications of the targeted system
(automobile) model through open documentation or reverse engineering. For
example, the attacker knows the IDs and functionalities of the ECUs.
1. CAN Abusers. The attacker has a local or remote access to an ECU. The
attacker obtains full control of all software components of the ECU but cannot
alter the hardware. The attacker is assumed to be able to sniff the bus and inject
frames to abuse one or more of the CAN’s basic functionalities: arbitration and
error handling. Note that the integrity of the CAN controller is preserved, so that
all the injected frames conform to the CAN protocol. When an attacker transmits
a frame with a high priority ID, the frame wins arbitration over legitimate low
priority IDs. On the other hand, the attacker can transmit an almost identical
frame with a small difference to trigger error handling and eventually force a
target ECU to bus-off state. The attacker may also abuse a feature provided by
some CAN controllers, e.g., the “Test Mode”, to inject dominant bits [12].
2. The Skippers. An attacker can sniff and inject arbitrary CAN traffic by skip-
ping the CAN controller. This allows her to inject bits at any time without
having to be limited by the rules enforced by CAN controllers. This could be
achieved through direct or remote access: (1) Direct Access: the attacker could
connect a malicious MCU and a CAN transceiver to the OBD-II port (e.g., [42,
36]), or connect the MCU through an aftermarket OBD-II adapter (e.g. [11]).
This approach requires brief physical access to the vehicle. (2) Remote Access:
the attacker may first compromise an ECU (usually one with remote access
capabilities such as WiFi or cellular), and then exploit certain hardware design
vulnerabilities to directly connect to the bus (e.g. [32]). In particular, [12] showed
that 78% of the MCUs deployed in vehicles have built-in CAN controllers, which
connect to CAN transceivers through GPIO pins. A compromised MCU could
change GPIO configurations to disconnect the CAN controller, and then directly
connect itself to the transceiver. In both cases, the attacker “skips” the CAN
controller, analyzes the traffic in a bit-by-bit fashion in a process known as “Bit
Banging”, and injects arbitrary bit-streams to the bus.

We assume that the attacker does not have unlimited and uncontrolled access
to alter or to break the integrity of CAN hardware. The attacker could access the
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bus through any legitimate access point, or through existing hardware/software
vulnerabilities, but she cannot alter the hardware to create new vulnerabilities or
access points. That is, the attacker may have brief access to the car to connect a
malicious ECU to the OBD-II port. However, she cannot disassemble the system
to weld a new port or a new attacking device directly to the bus.

4 The Stealthy Selective Arbitration Denial Attack

In this section, we improve the design of the arbitration denial attack presented
in [36] with two added features: stealthiness and inexpensive hardware imple-
mentation. We present the implementation of the new attack and evaluate it
with an Instrument Panel Cluster (IPC) from a used passenger car.
Attack Objectives. The objective of the attack is to stealthily prevent frames
with specific IDs from being sent to the bus. The attack is expected to have
the following features: (1) Selective: only specific IDs are denied, while other
ECUs/frames all function as expected. (2) Stealthy: the attack should conform
to CAN standard and should not trigger any error on the bus. Hence, the attacker
controls the damage and extends the length of the attack. And (3) Practical: the
attack should not require expensive hardware or extended access to the bus.
Adversary Model. The attacker needs to bypass CAN controllers’ restrictions
to perform bit-by-bit analysis/manipulation on the bus. Therefore, the attacker
connects directly to the CAN transceiver, i.e., the Skipper model in Section 3.
Challenges. First, most of existing CAN tools (e.g., CANoe, VehicleSpy, Sock-
etCAN only work with full CAN frames. However, we need to monitor the bus
at bit-level and inject bits at any arbitrary time. Next, the attack requires a
high degree of precision to the bit-level timing. Last, since the skipper model
operates without a CAN controller, any unexpected operation delay, premature
injection, or malformed CAN frame will result in bus errors, which may render
the attack unsuccessful or detectable.
The Attack. The proposed attack passively monitors the bus to detect a specific
CAN ID in the arbitration phase. The attacker waits for the last recessive bit
in the target ID, and overwrites it with a dominant one, to beat the targeted
ECU in arbitration. The attacker completes the transmission with a fake frame,
so that it would not trigger any error flag (as in [36]). Hence, the malfunctioning
on the bus cannot be detected, and the attacking ECU cannot be identified.
Attack Implementation and Evaluation. Most of the current CAN research
that require precise timing use automotive-grade micro-controllers or other ex-
pensive tools. We use an open-source tool, CANT [1], which facilitates the syn-
chronization with the bus and bit-level analysis/manipulation on the bus. We
connect the following to the CAN bus: (1) attacker: an STM32 Nucleo-144 board
(connected through OBD-II) running CANT; (2) victim: the IPC of a used 2014
passenger car; (3) other nodes: simulated by BeagleBone Black (BBB) micro-
controllers. In the experiments, when we launch the proposed attack against
ID 0x9A (turn signals), the turn signals become unresponsive regardless of the
status of the turn signal lever, since their control messages are blocked.
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(a) (b) (c)

Fig. 2: Comparison of the stealthiness of CAN denial attacks: (a) ECU denial;
(b) arbitration denial; (c) stealthy selective arbitration denial.

We compare the stealthiness of the proposed attack with the other denial
attacks discussed in Sec. 2.2: ECU denial [12, 42] and arbitration denial[12, 36].
We assign a BBB microcontroller as the victim ECU and capture its errors
(TEC, REC and error state). The ECU denial attack (Fig. 2 (a)) causes a sharp
increase of TEC at the victim ECU, to force it into bus-off state. It also increases
the REC counters on other ECUs. The arbitration denial attack (Fig. 2 (b))
interrupts the victim ECU and causes a form error, which also drives all ECUs
into error passive mode, since incomplete frames are detected on the bus. Finally,
our attack (Fig. 2 (c)) is stealthy as it achieves the arbitration denial without
causing any error on any ECU.

5 CANSentry: A Firewall for the CAN Bus

Next, we present CANSentry, an efficient and low-cost firewall for the CAN bus
to defend against the attacks discussed in Sections 2.2 and 4.

5.1 The Architecture of the CANSentry Firewall

The objective of CANSentry is to prevent an attacker node (either a CAN abuser
or a skipper) from sending malicious frames onto the CAN bus without intro-
ducing any practical delay. This requires monitoring and filtering all the mes-
sages in real time, since we cannot block any ECU from accessing the bus be-
fore an abnormal activity is detected. To address this challenge, we propose a
segmentation-based approach to separate high-risk CAN nodes, i.e., a few ECUs
with interfaces to the external network, from the rest of the bus, using a firewall.

As shown in Fig. 3(a), CANSentry is deployed between each high-risk node
and the main bus, which logically divides the original CAN bus into two seg-
ments, the internal bus CANint and the external bus CANext. A high-risk ECU
directly connects to CANext, which further connects to CANint through the
CANSentry firewall. Both segments send and receive messages following the orig-
inal CAN specifications, where the bi-directional firewall functions mainly as a
relay to transmit legitimate messages between CANint and CANext without caus-
ing any collision. Therefore, CANSentry monitors the current transmission state
of the main bus and decides to forward or block the messages from CANext.
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(a) (b)

Fig. 3: The CANSentry Approach: (a) Firewall architecture; (b) Implementation.

Introducing a firewall component for network segmentation enforces the nec-
essary security control, which is missing in the current CAN standard, to regulate
the activities of the high-risk, potentially vulnerable nodes. This defense mecha-
nism could fundamentally overcome the vulnerabilities caused by the broadcast
nature and lack of authentication/authorization capacities of the CAN bus by
preventing the attacker node from broadcasting unauthorized frames. Note that
CANSentry does not demand any modifications to the CAN standard, or require
any changes to the existing ECUs, which makes it easily adoptable.

5.2 Firewall Principle and Rules

The CANSentry firewall monitors the states of the internal and external buses.
Similar to other network firewalls, it checks bi-directional traffic against a set of
rules and enforces the forwarding or blocking actions. However, the design of the
firewall rules is not straightforward. We have to leverage the features of CAN
denial and spoofing attacks to derive appropriate firewall rules for prevention.

States and State Transitions of CAN Bus and Nodes. We examine the
relationship between the states of a CAN node and the corresponding states
of the CAN bus, as seen by the firewall. As shown in Fig. 4(a), each CAN
node transits between four legitimate states. In particular, the Receive state
denotes the node is listening to the bus when another node is transmitting,
while the Idle state denotes the node is listening to the bus and waiting for
other nodes to transmit. We combine them as the node takes the same action
in both states. Moreover, the Arbitration state denotes the transmission of
CAN ID bits and the Transmit state denotes the transmission of all other
data and control bits. Correspondingly, the CAN bus also transits between four
legitimate states as shown in Fig. 4(b). For the internal bus, we further define
Transmitint and Transmitext states to distinguish the transmission due to an
(directly connected) internal node or an (firewalled) external node, respectively.

From the aspect of bus state transitions, we can interpret the attacks dis-
cussed in Section 2.2 as exploiting malicious messages to compromise specific
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Fig. 4: State transitions of a CAN node and the CAN bus.

bus states. In particular, in the spoofing and arbitration denial attacks, the ad-
versary node (e.g., a malicious abuser or skipper ECU) compromises the bus
Arbitration state (denoted as “A1” in Fig. 4(b)) by injecting a partial or
complete fake frame with a fraudulent CAN ID to falsely win the arbitration. In
the ECU denial attacks, the attacker node compromises the bus Transmit state
by injecting messages with deliberately crafted data bits to falsely trigger the
target node into transmission errors. Finally, the bus denial attack is a special
case of compromising either Arbitration or Transmit states with a stream
of dominant bits to take over the entire bus.

Firewall Rules. The fundamental principle of the firewall is to ensure that at
any time high-risk nodes on the external bus operate in a state consistent with
the state of the internal bus. So, for each bus state, we derive the corresponding
consistent node states based on the CAN protocol. In particular, (i) for the bus
Idle state, the consistent node states are Idle/Receive, Arbitration and
Transmit; (ii) for the bus Arbitration state, the consistent node state are
Idle/Receive and Arbitration; and (iii) for the bus Transmit or Error-
Flag states, the consistent node state is only the Idle/Receive state. Finally,
we derive a set of firewall rules following the above principle. Similar to network
firewall enforcement, the rules will be executed in order such that the traffic
blocked by an upper rule will not be evaluated by the lower rules.

R1: When the internal bus is in either Transmitint or ErrorFlag state, the
firewall always forwards the traffic (bits or frames) from CANint to CANext and
blocks the traffic from external to internal, regardless of high-risk node’s state.

R2: When the internal bus is in either Idle or Arbitration state, the firewall
forwards all the traffic from CANint to CANext. It also forwards traffic that has
a CAN ID in the arbitration whitelist and conforms to CAN specifications from
CANext to CANint. It blocks all other traffic from external to internal.

R3: When the internal bus is in the Transmitext, the firewall forwards the
traffic from CANext to CANint that conforms CAN specifications, and blocks all
traffic from CANint to CANext, except for error flags.

Discussions. First, we assume that the traffic on the internal bus conforms to
CAN specifications, because all the nodes behind the firewalls are considered low
risk and more trustworthy than external nodes. Regulated by CAN controllers,
their activities should not deviate from the CAN protocol. Meanwhile, in R1,
the firewall blocks all the traffic from CANext to CANint so that it may block
legitimate error flags generated by a benign external node. This may mistak-
enly block all error flags originated in CANext, since we cannot distinguish if it
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Fig. 5: An example DFA for CAN ID matching.

comes from a benign or compromised external ECU. However, the impact of this
blocking to both external and internal nodes is negligible: it does not affect the
error counters of the external node, meantime, the internal node causing the er-
ror can still receive enough reliable error flags from internal nodes. Lastly, when
the internal bus is in Transmitext (i.e., an external node won the arbitration
and is sending to the bus), no legitimate traffic should be sent by any other
node on the internal bus. So, we block the CANint-to-CANext circuit in R3 as a
protective measure. It is worth noting that error flags are handled as a special
case – they are collected by an error buffer in the firewall, and sent to CANext

when identified. For example, when an internal node detects any error and sends
out an error flag, it will trigger R2 to block the CANext-to-CANint circuit and
forward the error flag to the transmission ECU on CANext. Error flags will arrive
at CANext with a 5-bit delay, which would not cause any issue in error handling.

Rule Enforcement. Each firewall monitors both internal and external buses
and detects the current internal bus state and external bus state (almost equiv-
alent to the external node state since there is only one node on CANext). Since
R1 and R3 only involve two firewall actions, forward and block, the implementa-
tion is straightforward. However, R2 requires the firewall to check the CAN ID
originated from the external node against a pre-determined whitelist during the
arbitration. The key challenge is to detect the malicious bit as soon as possible
before a spoofed ID wins the arbitration. Therefore, we construct a deterministic
finite automaton (DFA) to enforce this bit-by-bit ID matching.

Formally, a DFA is defined as a 5-tuple (Q, q0, Σ, δ, F ), where Q is a finite
set of states, q0 ∈ Q denotes the initial state, Σ is a finite set of input symbols,
known as the input alphabet, δ : Q × Σ −→ Q is a transition function, and
F ⊆ Q denotes the accept states. To start the arbitration, a node always issues
a Start-of-Frame (SOF) for hard synchronization, so the input of q0 is always
0. Σ = {0, 1} since the input is a bit stream. Since each firewall is in charge
of one high-risk node on the external bus, it maintains a set of CAN IDs to
which the external ECU is allowed to send messages. Based on the ID set, we
derive the transition function δ and the accepted states F = {CAN IDs}. For
example, Fig. 5 shows the DFA of a firewall whose whitelist contains four CAN
IDs: “0x123”, “0x456”, “0x789” and “0x7AB”. For a spoofed ID “0x481”, its
fifth bit (i.e., “1”) will be rejected by the state S3 of the DFA, then the firewall
will block all the remaining bits of this ID.

In practice, we cannot wait until an Arbitration ID reaches an accept state to
disseminate it to the bus, since the arbitration phase is expected to be precisely



CANSentry: Securing CAN-Based Cyber-Physical Systems 13

synchronized bit-by-bit among all competing ECUs. To be precise, the proposed
CAN firewall implements a Moore machine [33], which is a DFA that generates
an output at each state. At each DFA state, an output bit will be disseminated
to CANint instantly so that it competes with other nodes on the bus. Lastly,
when a spoofed ID is rejected by the DFA, the prefix bits have already been sent
to CANint. We will further discuss this and its impact to security in Section 6.

5.3 Implementation and Evaluation

To enable an efficient bit-by-bit monitoring and manipulation of bit streams
transmitted over CAN, CANSentry is constructed with one MCU and two CAN
transceivers, where one transceiver interfaces between the firewall and CANint

and the other interfaces between the firewall and CANext, as shown in Fig. 3(a).
As the main component of the firewall, the MCU has a filter module, which
implements firewall rules and the DFA for CAN ID matching, and then enforces
the forwarding or blocking decisions for CAN traffic.
Hardware and costs. We use the open-source tool CANT [1] on an STM32
Nucleo-144 development board to implement the proof-of-concept CANSentry.
The MCU board is connected to CANint and CANext through two designated
transceivers. The hardware cost is about $20 to us, which could be significantly
lowered in mass production. Meanwhile, we only need to deploy firewalls to
external-facing ECUs in a vehicle, which is very limited in number.
Transmission delay. We evaluate the transmission delay introduced by CANSen-
try. Fig. 6 depicts the received bit streams on the CANint and CANext buses when
a frame is relayed by the firewall from internal to external (i.e., Fig. 6(a)) and
vice versa (i.e., Fig. 6(b)). In Fig. 6(b), the firewall processing includes DFA-
based ID matching. Obviously, in both cases, there is no noticeable delay that
could cause any bit error or synchronization error.

Fig. 6: Traffic between two buses: (a) CANint to CANext; (b) CANext to CANint.

Effectiveness against Attacks. As shown in Fig. 3(b), CANSentry is connected
to two CAN transceivers interfacing CANext and CANint, respectively. We use
another STM32 Nucleo-144 board to simulate the attacks, which is connected to
CANext through ODB-II. We further select an ECU from the Instrument Panel
Cluster (IPC) from a used 2014 passenger car as the victim ECU. The IPC is
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Fig. 7: Evaluation of firewall performance under: (a) bus-off attack; (b) arbitra-
tion denial attack; (c) the proposed stealthy selective arbitration denial attack.

connected to CANint. We simulate ten attacks discussed in Section 2.2 (Table
1) to evaluate the performance of CANSentry. In all the attacks, the attacker
attempts to inject illegal bits that violate the CAN protocol (e.g., continuous
dominant bits in bus-denial attack and arbitration-denial attack), a spoofed
frame (e.g., spoofing attack and bus-denial attack), or a spoofed CAN ID (e.g.,
selective arbitration-denial attack). To evaluate the effectiveness of CANSentry,
we monitor the bit stream on the Tx pin of the attacker ECU (i.e., the injected
bits from the attacker), and the ones on the internal bus CANint, which shows
the traffic on the main bus after the attacks, as shown in Fig. 7.

In the experiments, CANSentry was able to block all attack attempts from
the adversary ECU, while not interfering with the normal operations on the
internal bus CANint. Due to space limit, we only demonstrate the results of
three attacks. Fig. 7(a) shows a bus-off attack, when a skipper-type attacker
injects arbitrary bits (denoted in the block with dashed-line) to trigger a receive
bit error at the victim ECU, this attempt is blocked by CANSentry (i.e., no
change is observed on the internal bus). Meanwhile, when the attacker injects
a dominant bit “0” to win the arbitration and block the transmission attempt
of the victim ECU (Fig. 7(b)), or even covers his trace with a complete frame
(from a spoofed CAN ID) and a valid CRC (Fig. 7(c)), the malicious actions are
prevented by CANSentry and thus have no effect on the internal bus. Finally,
it is worth pointing out that although we evaluate CANSentry in the in-vehicle
network setting, it can be adopted to secure any CAN-based system.

6 Security Analysis and Discussions

Now we analyze the security guarantees of CANSentry and its effectiveness
against threats introduced in Sec. 3, and discuss the remaining attack surfaces.

Security Analysis of Arbitration. A Deterministic Finite-state Automaton
(DFA) is used to filter arbitration IDs (in binary strings).

Theorem 1. Let L(M) be the list of arbitration IDs on the whitelist, which
is used to generate DFA M . When M is correctly generated, no CAN frames
carrying an ID field that is not in L(M) shall be disseminated to the bus.

Theorem 1 roots on automata theory – a binary string I is accepted by M
if and only if I ∈ L(M). The firewall allows the transmission of the rest of
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the CAN frame only when I is accepted by M , and I wins arbitration. Theo-
rem 1 ensures that CAN spoofing attacks are effectively blocked: when a mali-
cious/compromised ECU tries to send CAN frames with IDs not in the whitelist,
the attempt is rejected in the arbitration phase.

Theorem 2. Let Im be the lowest arbitration ID accepted by DFA M , any (par-
tial) ID output from M cannot win arbitration against a target ID It that has
higher priority than Im (i.e., It < Im).

During the arbitration phase, the DFA generates an intermediate output bit
at each state and transmits the output to CANint. It is possible that the prefix of
a spoofed ID (Is 6∈ L(M)) being sent to CANint. For instance, if the firewall only
allows 0b1010110011, the ID 0b1010001011 will be denied at bit 5. However, its
prefix 0b1010 will be sent to CANint. Theorem 2 shows that adversaries cannot
exploit this mechanism to launch arbitration denial attacks against high-priority
IDs. Please refer to Appendix A for the proof of this theorem.

Security Analysis of Data Frame Transmission. The external node is au-
thorized to transmit its frame to the bus only when it wins arbitration on CANint.
The firewall enforces R3 to forward traffic from CANext to CANint. For the sim-
plicity of the design and the portability of the firewalls, we do not further audit
the validity of the data frame. When CANext loses arbitration, the firewall moves
to enforce R1, which blocks traffic from CANext to CANint. Therefore, an adver-
sary node cannot inject dominate bit(s) to the bus to interrupt CAN frame from
other nodes, which may eventually drive other nodes into bus-off. Such ECU
denial and bus denial attacks are denied at the firewall.

Security of CANSentry. The physical and software security of CANSentry re-
lies on the following factors: (1) CANSentry nodes are deployed in a physically
isolated environment, i.e., inside the car. It is difficult for an adversary to by-
pass/alter it unless he has extended time to physically modify the in-vehicle com-
ponents. (2) CANSentry only has two network interfaces: CANext and CANint.
The limited communication channel and the simplicity of CAN makes it im-
practical to compromise the operations of the firewall from CANext. And (3) the
simplicity of the firewall makes it unlikely to have significant software faults.

Updates. We do not consider remote updates to CANSentry in this paper, to
keep the simplicity of CANSentry and to avoid adding a new attack vector. In case
a CANSentry-protected ECU is remotely updated to send CAN packets with new
IDs, such packets will be blocked. In practice, we are not aware of any existing
remote update that adds new CAN IDs to the high-risk (e.g., remotely accessible)
ECUs. Meanwhile, when the vehicle is updated in the shop, the corresponding
CANSentry could be easily updated to add new CAN IDs to the whitelist.

Remaining Attack Surfaces. An adversary node may send to CANint using
IDs on the whitelist, which may potentially block frames from higher CAN IDs.If
the adversary node keeps sending at high frequency, it becomes arbitration denial
attacks to nodes with lower priority. CANSentry cannot detect or block this at-
tack. Fortunately, this may not be a severe problem, since: (1) the attack paths
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from known attacks (e.g. [32, 39, 27] are all attacking from low priority nodes
(i.e., components with wireless interfaces and externally-facing vulnerabilities)
to high priority nodes. Attacks from the other direction appear to be meaning-
less. (2) The high-risk nodes, i.e., nodes that have shown to be compromisable
by remote adversaries, mostly belong to low priority nodes (entertainment units,
navigation, etc), which are only allowed to send CAN frames with high arbitra-
tion IDs. (3) Arbitration denial attacks from such nodes are detectable with a
simple IDS, which runs on the same chip as the firewall, monitors traffic from
CANint, and informs the firewall to take actions when attacks are detected.

When a spoofing attempt is blocked by CANSentry, a partial frame, which
only contains the first few bits of the arbitration ID, will be observed on the bus.
An adversary node could then intentionally inject malformed frames to CANint.
Other receiving nodes on the bus will detect form errors and raise error flags.
This will increase RECs at the receiving nodes, and may drive them into error
passive mode, in the worst case. This is not a severe problem since: (1) To force a
node into error passive mode, REC>127 is needed. This requires continuous attack
attempts from a adversary node (assuming that the node manages to avoid
increasing its own TEC). (2) Such persistent attacks could be easily detected by
a simple counter or IDS embedded in CANSentry. And (3) nodes in error passive
mode still perform their functions (with a performance penalty), and they can
recover from error passive mode when frames are correctly received.

In the attack model, internal ECUs are considered low risk. While we are un-
aware of any attack that compromises an internal ECU with only brief physical
access, we cannot completely rule out this possibility. Lastly, a small number of
units in modern automobiles, such as GM’s OnStar, are both remotely compro-
misable and capable of sending high priority frames, e.g., stopping the vehicle
by shutting down fuel injection. When such systems are compromised, they may
take over control of the cars even with the existence of CANSentry. From the
CAN bus perspective, they are fully authorized to send such frames. Defending
against such attacks is outside of the scope of CANSentry.

7 Conclusion

In this paper, we first summarize existing DoS and spoofing attacks on the
CAN bus, then implement and evaluate a stealthy selective arbitration denial
attack. We present a novel CAN firewall, CANSentry, to be deployed between
each high-risk ECU (external-facing ECUs with remote attack vectors) and the
internal bus. It defends against attacks that violate CAN standards or abuse
the error-handling mechanism to achieve malicious goals. To the best of our
knowledge, CANSentry is the first mechanism to not only detect but also prevent
denial attacks at data link layer that have not been addressed yet, in addition
to preventing the traditional spoofing and denial attacks. Despite the simple yet
powerful design, CANSentry effectively prevents the attacks with no noticeable
overhead at a low cost with no need to modify CAN standard nor existing ECUs.



CANSentry: Securing CAN-Based Cyber-Physical Systems 17

With hardware implementation and evaluation, we demonstrate the effectiveness
of the firewall against the bus/ECU denial attacks and ECU spoofing attacks.

Acknowledgements

We would like to thank the anonymous reviewers for their constructive com-
ments. Fengjun Li and Bo Luo were sponsored in part by NSF CNS-1422206,
DGE-1565570, NSA Science of Security Initiative H98230-18-D-0009, and the
Ripple University Blockchain Research Initiative. Jingqiang Lin was partially
supported by National Natural Science Foundation of China (No. 61772518) and
Cyber Security Program of National Key RD Plan of China (2017YFB0802100).

References

1. Grimm co. cant. https://github.com/bitbane/CANT.
2. S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Savage,

K. Koscher, A. Czeskis, F. Roesner, and T. Kohno. Comprehensive experimen-
tal analyses of automotive attack surfaces. In USENIX Security Symposium, 2011.

3. Kyong-Tak Cho and Kang G Shin. Error handling of in-vehicle networks makes
them vulnerable. In ACM CCS, pages 1044–1055. ACM, 2016.

4. Kyong-Tak Cho and Kang G Shin. Fingerprinting electronic control units for
vehicle intrusion detection. In USENIX Security Symposium, 2016.

5. Kyong-Tak Cho and Kang G Shin. Viden: Attacker identification on in-vehicle
networks. In ACM CCS, 2017.

6. Wonsuk Choi, Hyo Jin Jo, Samuel Woo, Ji Young Chun, Jooyoung Park, and
Dong Hoon Lee. Identifying ecus using inimitable characteristics of signals in
controller area networks. IEEE Trans. on Vehicular Tech., 67(6):4757–4770, 2018.

7. Wonsuk Choi, Kyungho Joo, Hyo Jin Jo, Moon Chan Park, and Dong Hoon Lee.
Voltageids: Low-level communication characteristics for automotive intrusion de-
tection system. IEEE TIFS, 13(8):2114–2129, 2018.

8. Tsvika Dagan and Avishai Wool. Parrot, a software-only anti-spoofing defense
system for the can bus. ESCAR EUROPE, 2016.

9. Andrea Dardanelli, Federico Maggi, Mara Tanelli, Stefano Zanero, Sergio M
Savaresi, R Kochanek, and T Holz. A security layer for smartphone-to-vehicle
communication over bluetooth. IEEE embedded systems letters, 5(3):34–37, 2013.

10. Mahsa Foruhandeh, Yanmao Man, Ryan Gerdes, Ming Li, and Thidapat Chantem.
Simple: single-frame based physical layer identification for intrusion detection and
prevention on in-vehicle networks. In ACSAC, pages 229–244, 2019.

11. Ian Foster, Andrew Prudhomme, Karl Koscher, and Stefan Savage. Fast and vul-
nerable: A story of telematic failures. In USENIX WOOT, 2015.
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A Proof of Theorem 2

Theorem 2. Let Im be the lowest arbitration ID accepted by DFA M , any (par-
tial) ID output from M cannot win arbitration against a target ID It that has
higher priority than Im (i.e., It < Im).

Proof. Assume that the adversary attempts to spoof arbitration ID Is (Is < It)
to win against It. Let Bit(S, i) be the i-th bit of string S. If the longest com-
mon prefix of Im, Is, and It is an i-bit string P , then the first i bits of Is
would be accepted in M (since Prefix(Is, i) = Prefix(Im, i)) and sent to
CAN accordingly. It and Is would tie in the first i bits of arbitration (since
Prefix(Is, i) = Prefix(It, i)). At bit i + 1, we have the following three condi-
tions:

• If Bit(Is, i+1) < Bit(Im, i+1), Is will be rejected by M , since: (1) Is cannot be
accepted by the DFA branch that contains Im, sinceBit(Is, i+1) 6= Bit(Im, i+1);
(2) if there exist another DFA branch (with ID In) that accepts Bit(Is, i + 1),
then we have In < Im (since they are identical in the first i bits and In < Im
at bit i+ 1). This violates our assumption that Im be the lowest arbitration ID
accepted by M . Therefore, such In and the corresponding DFA branch does not
exist. Is will be rejected by M , and It wins arbitration against Is.

• If Bit(Is, i+1) > Bit(Im, i+1), then we have Is > Im, since they are identical
in the first i bits and Is > Im at bit i + 1. This violates our assumption that
Is < It < Im.

• If Bit(Is, i + 1) = Bit(Im, i + 1), then Bit(Is, i + 1) will be sent to the bus.
Meanwhile, we need Bit(Is, i+ 1) 6= Bit(It, i+ 1), otherwise Prefix(Is, i+ 1) is
a longer common prefix than P . In case Bit(Is, i+ 1) > Bit(It, i+ 1), Is would
lose arbitration against It. In case Bit(Is, i + 1) < Bit(It, i + 1), then we have
Im = Is < It. This violates our assumption that It < Im.

In summary, with the existence of M , any (partial) output generated by
Is < Im cannot win arbitration against a higher priority ID It < Im. ut


