
TF-BIV: Transparent and Fine-grained Binary Integrity
Verification in the Cloud

Fangjie Jiang1,2,3, Quanwei Cai1,2∗, Jingqiang Lin1,2,3, Bo Luo4, Le Guan5, Ziqiang Ma1,2,3
1. State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences

2. Data Assurance and Communication Security Center, Chinese Academy of Sciences
3. School of Cyber Security, University of Chinese Academy of Sciences

4. Department of Electrical Engineering and Computer Science, the University of Kansas, USA
5. Department of Computer Science, the University of Georgia, USA

{jiangfangjie, caiquanwei, linjingqiang}@iie.ac.cn, bluo@ku.edu, leguan@cs.uga.edu, maziqiang@iie.ac.cn

ABSTRACT
With the emergence of virtualization technologies, various services
have been migrated to the cloud. Beyond the tenants’ own secu-
rity controls implemented in the virtual machine (VM), the binary
integrity verification mechanism in the virtual machine manager
(VMM) provides stronger protections against malware. Unfortu-
nately, none of existing integrity verification mechanisms in the
cloud provides complete transparency and fine-grained efficiency.
Some schemes selectively check the integrity of sensitive bina-
ries, but they require modifications to the VMs (e.g., integrating
monitoring libraries) to trigger verification. Others, although need
no modification to the VMs, have to enforce checking on all the
binaries, because they cannot distinguish binary images for the
sensitive processes from the binaries for insensitive ones, leading
to significant performance overheads. In this paper, we present
TF-BIV, a transparent and fine-grained binary integrity verification
scheme, which does not require any modification or software/driver
installation in the VM. TF-BIV identifies the sensitive processes
at the creation, and checks the integrity of the binaries (including
the guest OS kernel and the dependant binaries) related to these
processes. The provided transparency and efficiency are achieved
by leveraging existing hardware virtualization supports (i.e., Intel
extended page table) and debugging features (i.e., monitor trap
flag). We have implemented the TF-BIV prototype based on QEMU-
KVM. To demonstrate the usability of TF-BIV, we adopted it for
cloud-based cryptographic services, to achieve the strict invoking
controls. In addition to the password-based authentication, TF-BIV
further achieves process-level authorization to the invokers. Inten-
sive evaluation shows that TF-BIV implements the designed binary
integrity verification with only about 3.6% performance overhead.

∗Quanwei Cai is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACSAC ’19, December 9–13, 2019, San Juan, PR, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7628-0/19/12. . . $15.00
https://doi.org/10.1145/3359789.3359795

CCS CONCEPTS
• Security and privacy→ Access control; Virtualization and
security.

KEYWORDS
Integrity verification, virtualization, cloud-based cryptographic ser-
vice

ACM Reference Format:
Fangjie Jiang, Quanwei Cai, Jingqiang Lin, Bo Luo, Le Guan and Ziqiang Ma.
2019. TF-BIV: Transparent and Fine-grained Binary Integrity Verification
in the Cloud. In 2019 Annual Computer Security Applications Conference
(ACSAC’19), December 9–13, 2019, San Juan, PR, USA. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3359789.3359795

1 INTRODUCTION
In the past decade, cloud computing has been becoming the de facto
standard model of hosting and delivering online services. While
migrating services to the cloud brings significant benefits such as
scalability and cost reduction, security has been amajor concern. All
stakeholders in this scenario have their own security considerations
and, in response, deploy their own controls. First, it is critical for
the tenants to ensure the integrity of their core services hosted
in the cloud. Conventional security controls, such as anti-virus,
web application firewall, and OS hardening are deployed within
the virtual machines (VMs). However, they might be unable to deal
with zero-day vulnerabilities [23–25], misconfigurations, phished
users, etc. On the other hand, cloud service providers (CSPs) are
concerned with the security of the tenants’ systems, as well as the
security of the cloud platform itself. In particular, a compromised
guest process/OS may escape from the VM to harm the host OS
[84, 85], to perform malicious tasks such as Bitcoin mining [53],
or launch attacks against other tenants [41, 62]. Meanwhile, the
traditional access control of sensitive services (e.g., cryptographic
service) in the cloud is based on the identifier of the VM and the
corresponding password, but fails to achieve the control based on
the invoking process, while only a small number of processes are
actually authorized to invoke the sensitive service. Therefore, the
malicious processes running in the victim VM may invoke the
sensitive service with leaked passwords.

A mechanism that consistently validates the integrity of the
sensitive VM binaries (including OS kernel and all dependant li-
braries) will benefit both the cloud tenants and service providers.
The CSPs could adopt this mechanism to monitor the status of

https://doi.org/10.1145/3359789.3359795
https://doi.org/10.1145/3359789.3359795

processes running in VM, and to effectively identify malicious or
compromised processes. Moreover, the cloud platform could pro-
vide the integrity verification as an add-on service to the tenants,
i.e., binary-integrity-as-a-service. The tenants will benefit from an-
other layer of protection beyond their own security controls. Since
the CSP-provided mechanism runs within the VMM, the integrity
monitor will still function even when the guest OS is compromised
and/or security functions in the guest OS fail.

Various mechanisms have been proposed to check the integrity
of the OS and applications running in a guest VM. Patagonix [54]
and HIMA [5] are proposed for the sensitive scenario, in which all
active processes in the VM are validated. To guarantee the integrity
of specified processes, InkTag [36] has to modify the guest OS
kernel and AppShield [19] integrates a secure module into the
sensitive applications, which constructs an isolated context for
high-assurance processes even in the presence of compromised OS.
En-ACCI [47] validates the integrity of the invoking processes to
cryptographic services in the cloud. However, it only validates the
invoking process when the cryptographic service is being invoked
but not beyond, making it vulnerable to Time of Check to Time
of Use (TOCTTOU) consistency attacks. In summary, no binary
integrity verification scheme has yet been developed that meets
the following four desired properties.

• Isolation: The integrity verification system is fully isolated
from the guest OS and the target applications. The in-VMM
validator should not be interfered by the malicious guest OS
or target applications.

• Transparency: The guest OS and the target application
should be oblivious of the security checking conducted in
the VMM. Thus, no modification (e.g., hooks, drivers, or
libraries) is required in the guest OS.

• TOCTTOU consistency: The continuity of integrity guar-
antee beyond the time-of-verification must be provided.

• Fine-grained verification: Given that there are more non-
sensitive applications than sensitive ones in a VM, it is de-
sirable that the tenants have the flexibility to designate the
sensitive applications to be protected. So the tenant is free to
update the non-sensitive binaries in bulk independently. For
sensitive binaries, the tenants have to notify the CSP of any
changes to sensitive binaries so that an up-to-date integrity
meta-data of the sensitive binaries are always available in
VMM.

In this paper, we present TF-BIV, a binary integrity verification
scheme in the cloud. As far as we know, TF-BIV is the first to achieve
the aforementioned properties. More specifically, (1) to achieve
isolation, in TF-BIV, integrity verification is triggered by hardware
events and is performed in VMM. Therefore, subverted applications
or OS kernel in the guest VM cannot interfere with or bypass
TF-BIV. (2) To keep the guest VM unmodified, TF-BIV leverages
hardware virtualization and virtual machine introspection (VMI) to
hook critical system events (e.g., process creation) and to infer VM
semantic (e.g., the virtual memory layout), respectively. Note that
the result of VMImight be untrusted.We never use it to influence the
verification results, but only for acceleration purposes. (3) TF-BIV
leverages hardware-assisted second-level address translation (e.g.,
Intel EPT) andmonitor trap flag (MTF) [42] to continuously monitor

any updates to the page table and the verified physical pages of the
target process. As a result, any modification to the verified memory
pages (and the memory layout) will be captured by hardware. This
ensures TOCTTOU consistency. (4) Finally, all of these security
checks are performed on a per-process basis. Unprotected processes
are not influenced. Thus, fine-grained process-level verification is
provided. Meanwhile, the basic shared system services (i.e., the OS
kernel, the runtime and drivers) are verified by default.

The process-level integrity monitoring is especially important
for critical or sensitive add-on services provided by cloud platforms.
For tenants, the invoking process requires almost the same security
assurance as the sensitive service (e.g., cloud-based cryptograhic
services). CSPs are also concerned with the security of the invoking
process. Once the invoking process is compromised, the add-on ser-
vices may be abused. For example, the RSA private key may be used
to sign a fake X.509 certificate. Typical cryptographic services in the
cloud include (1) the key management service (KMS), such as AWS
KMS [2], Azure Key Vault [55], Google Cloud KMS [34] and Aliyun
KMS [20]; and (2) the cloud-based hardware security module (Cloud
HSM), such as AWS Cloud HSM [1] and Google Cloud HSM [33].
CSPs strive to ensure the security of the cryptographic services, for
example, they adopt FIPS 140-2 [30] accredited hardware security
modules for the cryptographic computations. However, the security
of the invoking process (i.e., the invoker) is often overlooked: (1)
the identity of invokers and the corresponding passwords used in
authentication may be leaked due to various reasons [13, 75]; (2)
only one or a small number of processes running in the VM actually
need to invoke the cryptographic service, but access to the service
is authorized to the entire VM; and (3) an adversary may gain access
to the victim VM (on the whitelist), or tamper with a vulnerable
process to invoke sensitive services, bypassing authentication and
authorization. Therefore, to ensure the secure invoking of sensitive
cloud services, the CSPs are expected to verify the integrity of the
caller process, including the OS kernel and all dependant libraries.
As a side benefit, authorization of callers of sensitive services will
be specified and enforced at the process level.

The main contributions of TF-BIV are as follows:

• We propose a hardware-assisted binary integrity verification
scheme in the cloud. It supports fine-grained protections that
allow tenants to specify the processes to be validated. The
proposed mechanism is completely transparent to the VM,
and it does not need any support (OS modification, configu-
ration, driver/software installation, or modules integration)
from the guest OS and applications.

• We developed a prototype of TF-BIV on QEMU-KVM with
Intel EPT. With extensive experiments, we demonstrate the
effectiveness and efficiency of TF-BIV. We also provide an in-
depth security analysis of TF-BIV, and qualitatively compare
TF-BIV with other binary integrity verification schemes.

• We apply TF-BIV as to check the integrity of processes that
invoke cloud-based cryptographic service. The result shows
that the overhead is modest. This demonstrates that TF-BIV
effectively protects sensitive services by only allowing the
access from authorized processes.

The rest of this paper is organized as follows. We introduce the
background and the threat model in Sections 2 and 3. Section 4 de-
scribes the technical details of the integrity verification mechanism.
We then present the security analysis in Section 5. We introduce
the process-level authorization mechanism for cloud-based crypto-
graphic services, as the application of TF-BIV in Section 6. Next, we
present the implementation specifics and experimental results in
Sections 7 and 8, respectively. Finally, we discuss the related works
in Section 9, and then conclude the paper.

2 BACKGROUND AND PRELIMINARIES
TF-BIV relies onVMI and hardware-assisted virtualization to achieve
transparent process-level binary integrity checking. This section
provides necessary background information about VMI and Intel’s
hardware virtualization implementation – VT-x.

2.1 Virtualization and VMI
Virtualization allows multiple OSes to share a single physical ma-
chine. It creates an illusion that every OS runs in its own (virtual)
machine. To ensure security, a virtual machine manager (VMM)
is responsible for isolating VMs and controls access to hardware
resources, so that VMs do not interfere with each other. Exceptions,
e.g., I/O access and system events, are handled and mediated by the
VMM.

In a typical virtualization environment, the VMM is oblivious
of the computing tasks being conducted in the VMs. To increase
the visibility to VMs, virtual machine introspection (VMI) [31] is
proposed. Since VMI is conducted independently of the VM, it is
ideal for security purposes, such as software patching without inter-
rupting the execution of guest OS [9, 15], intrusion detection [31],
forensics [29]. VMI takes advantage of the OS-specific knowledge
to effectively inspect the internal states of each VM. In other words,
it assumes certain internal data structures used by guest OS [31].
Unfortunately, this assumption of VMI could be exploited by mali-
cious VMs [7]. For example, as demonstrated in DKSM [7], attackers
could easily manipulate kernel data structures to mislead a VMI
tool.

2.2 Intel Hardware-assisted Virtualization
Before hardware-assisted virtualization, virtualization has to be
implemented by fully emulating an entire computer, leading to
significant performance overheads. Modern processors integrate
hardware support for accelerated virtualization (e.g., Intel VT-x). VT-
x capability is identified by a vmx CPU flag, which stands for Virtual
Machine Extensions. It adds new instructions and architectural
support for a virtual execution mode where the guest OS perceives
itself as running with full privileges and runs native instructions
directly on the host without emulation.

The most important data structure in hardware virtualization is
virtual machine control structure (VMCS), which is maintained by
hardware. It stores critical system events of interest for the guest
OS. Whenever such an event happens, the VM is suspended and
the execution returns to VMM. Providing such an interface that
intercepts them gives VMM an opportunity to scrutinize the VM
validity. Note that the corresponding fields in VMCS, e.g., Monitor

trap flag (MTF) and CR3-load exiting flag, cannot be modified di-
rectly with load/store instructions. Instead, dedicated virtualization
instructions have been incorporated that affect VMCS indirectly.
For example, MTF [42] is a debugging feature. When set, the guest
will trigger a VM exit after executing each instruction. As indicted
by the name, when the CR3-load exiting flag is set, any operation
causing an update to CR3 register causes a VM exit.

Without hardware virtualization, VMM needs to maintain a
shadow page table that maps the guest virtual addresses (GVA) to
host physical addresses (HPA). Whenever the guest OS updates its
page table, VMM needs to synchronize it to the shadow page table.
With Intel hardware virtualization, extended page table (EPT) acts
as a second layer of address translation. EPT translates GPA into
HPA in hardware directly without the intervention of VMM. This
not only simplifies the VMM design, but also improves performance.
Like the traditional page table, the EPT paging-structure entries
contain the privilege flags (i.e., read, write and execute) for the corre-
sponding GPA. If a memory access violates the specified privileges,
the VM exits with the reason code “EPT violation”. To further in-
crease performance, the VMX extension supports virtual-processor
identifier (VPID). With VPID, the logical processor includes a tag
in the translation lookaside buffer (TLB) that identifies the corre-
sponding process. As a result, the hypervisor does not need to flush
TLBs during context switches.

3 THREAT MODEL
Assumptions. In TF-BIV, as with many software-based protection
mechanisms, we assume that all the hardware and firmware under-
neath the guest VM are trustworthy. More specifically, the physical
processor provides basic hardware-based controls (e.g., memory
management unit, task switching, privilege transition, etc.). Since
we rely on hardware virtualization, the VMX extension is also as-
sumed to work as expected. For instance, VM entry and VM exit
do not leak any sensitive information to less privileged software
stacks. VMCS can never be accessed by software, including VMM.
MTF and EPT work as documented in the Intel manuals [42].

We assume that supervisor, together with VMX-enable proces-
sor, correctly provides an isolated environment for each VM. VMM
manages system resources and mediates access to these resources
as programmed. The protection of VMM is out of the scope in
this work. However, various solutions (e.g., HyperSafe [82], Hyper-
Check [81] and XMHF [78]) are ready to be deployed.

TF-BIV focuses on the integrity protection of static code seg-
ments. Verification of dynamically generated code, such as that
generated with Just In Time (JIT) engines and Dynamic Binary
Translation (DBT), is out of the scope of this paper. Moreover, the
bugs in the protected programs themselves (e.g., logic errors, mem-
ory disclosures) are not considered, since they do not modify the
executable codes. These bugs can lead to both control-oriented (e.g.,
control flow hijacking) and data-oriented attacks [17, 37, 39, 44].
In both cases, the behavior of the program is changed. To defeat
against such software bugs, there are many orthogonal mechanisms
including control flow integrity [49, 74], data flow integrity [12, 72],
and whole memory safety [27, 57].

TF-BIV relies on the cryptographic hash to verify the integrity
of binaries. We assume that the adopted hash functions are secure

and immune to the collision attacks. Moreover, we assume that
the reference hash values of the binaries are calculated in a secure
environment and imported to the CSP securely with out-of-band
channels.
Threat Model. The attacker’s ultimate goal is to execute a mali-
cious copy of the sensitive process (called S-process in this paper).
He could target any process in the distribution, deployment and exe-
cution of the program. For example, he could intercept the network
and modify the binary of the program during software download-
ing. After the software has been deployed, he could also inject code
into the address space of the S-process at run-time. Even in the
correctly bloated Linux kernel, there are multiple approaches to
achieve this. For instance, he could exploit vulnerabilities in the OS
kernel to control the kernel [83]. Then he could inject new code or
manipulate existing code of the S-process during execution.

As mentioned above, we have integrated TF-BIV into a cloud-
based cryptographic service. In this scenario, the attacker’s goal is
to obtain access to cloud-based cryptographic service even he is not
authorized. He may obtain the identity and credential information
to access cryptographic computations using social engineering. He
also has the capability to bypass the existing access control of the
cryptographic service and invoke requests to cryptographic service
within the VM. This capability is consistent with the aforemen-
tioned assumption that the attacker can take over of the entire
guest OS.

4 TF-BIV DESIGN
In this section, we depict the design of TF-BIV.

4.1 Design Goals
Wedesign TF-BIVwith four goals inmind, corresponding to the four
desired properties of a integrity verification scheme mentioned in
Section 1. Specifically, TF-BIV protects sensitive processes in a sepa-
rated execution domain (Goal 1: Isolation) and does not need any
modification to the guest VM (Goal 2: Transparency). Moreover,
the integrity of a sensitive process is guaranteed throughout the
entire lifetime of an S-process (Goal 3: TOCTTOU consistency).
Finally, a tenant has the flexibility to protect only a particular set
of programs (Goal 4: Fine-grained verification).

4.2 Overview
TF-BIV relies on pre-computed hash values for target binaries as
a reference for integrity checking. Therefore, these hash values
are securely computed in a separated machine and transmitted
to the VMM via out-of-band channels. To calculate the reference
hash values, TF-BIV needs to analyze the target binary and obtain
all the dependant shared libraries, because all of them contain
executable code in the address space of the target program. When
the binary needs to be updated, the corresponding reference hash
values should also be re-calculated and updated.

At run-time, TF-BIV, running inside the VMM, verifies the in-
tegrity of the specified process (S-process) according to the refer-
ence hash values. To achieve the design goals mentioned in Sec-
tion 4.1, TF-BIV transparently detects four types of critical system
events occurred in the guest VM, as shown in Figure 1. ❶ TF-BIV
monitors the creation of a process by capturing changes in the CR3

S-process
Normal
process

VMM-TF-BIV

GPA

HPA

Page table

Process List

vCPU

M
o

v
e
 t

o
 C

R
3

CPU
Fetch instruction

CR3

Write to page table

S-process
code

Shared library
code

Verified Unverified

Write to verified code page

1

32 4

S-process . . .

Guest physical page
of page table

Figure 1: TF-BIV architecture.

register. This can be used to identify an S-process creation when
it is activated for the first time. ❷ TF-BIV monitors all updates to
the page table of an S-process. In this way, we track the code pages
(including S-process and the dependant libraries) mapped into the
virtual address space of an S-process. ❸ TF-BIV captures any ex-
ecution attempts of S-processes. Before the code can be executed,
TF-BIV must verify its integrity. ❹ TF-BIV captures any modifica-
tion to the verified code pages. In this way, we ensure TOCTTOU
consistency.

All of these four events will be detected transparently in VMM.
This is achieved by configuring the corresponding flags in VMCS
and EPT, which trigger a VM exit whenever one of the correspond-
ing system events happens. In particular, TF-BIV registers the fol-
lowing four events. a) CR3-load exiting: TF-BIV tracks the S-
process creation by monitoring any update to the CR3 register [40].
b)MTF VM exiting: TF-BIV monitors any update to the page table
of S-processes. To achieve this, TF-BIV sets the first-level page table
as non-writable. Any update to it triggers a VM exit. To be able
to continuously track the whole page table data structure, TF-BIV
leverages MTF to execute the relevant guest instructions in single-
step mode. After the operation is finished, the whole page tables
(including the initial first-level page table and upper level page ta-
bles discovered later) are set as non-writable again so as to monitor
any further modifications. c) EPT non-executable (NX) exiting:
TF-BIV employs this event to trigger the actual code integrity ver-
ification. In details, TF-BIV keeps track of all the unverified code
pages of S-processes and sets the non-executable bit (NX-bit) of the
corresponding EPT entries, making the execution of any unverified
code trigger a VM exit. In VMM, TF-BIV verifies the corresponding
code pages before execution. d) EPT non-writable (NW) VM ex-
iting: For the verified code pages, TF-BIV sets the non-writable bit
(NW-bit) of the corresponding EPT entry to ensure the TOCTTOU
consistency. Any modification to a verified page triggers a VM exit.
If this happens, TF-BIV marks this page as unverified so that later
execution attempts would trigger another verification.

TF-BIV verifies the integrity of all the codes related with the
S-processes, including the kernel, loadable kernel modules (LKM)
and the shared libraries. For kernel integrity, TF-BIV follows the
same approach as Patagonix [54]. It verifies kernel integrity before
execution by comparing the hash values of kernel code with the
reference hash values. Please see Patagonix [54] for more details
about this static image. In the next, we detail how TF-BIV captures

the aforementioned critical system events and transparently veri-
fies the integrity of S-processes. We also discuss how to perform
integrity verification for LKMs.

4.3 S-processes Identification
In the Linux OS, to execute a process, the kernel needs to set the
CR3 register to point to the physical address of the page table of the
target process. Therefore, monitoring updates to CR3 allows TF-BIV
to capture the schedule of an S-process. TF-BIVwill be transparently
notified of a CR3 update, thanks to hardware virtualization support,
in particular, the CR3-load exiting bit in VMCS.

TF-BIV needs to further identify if a newly scheduled process
is an S-process or not. For each scheduled (activated) process, TF-
BIV firstly checks whether the process is a newly created one by
comparing the new CR3 value with the list of all the previously
recorded CR3 values. If a new process is identified, we could simply
obtain the name of the process by examining the comm data struc-
ture. However, as kernel data structures might be manipulated, we
directly use code hash values to match an S-process. Specifically,
TF-BIV obtains the physical address of the code pages by traversing
the page table, and compares the hash values of the code pages
with the reference hash values to find the matching binary. TF-BIV
keeps a record of all the S-processes into S-process list by their CR3
values.

4.4 Memory Layout Monitoring
To verify the integrity of the S-process thoroughly, TF-BIV needs
to identify all the code pages mapped into the S-process’s virtual
address space. In details, TF-BIV firstly observes the newly mapped
code pages by monitoring any modification of the S-process’s page
table, and then finds which binary the code page belongs to, and
finally checks its integrity based on the corresponding reference
hash values.
Monitoring page table updates. TF-BIV leverages the MTF exit-
ing and EPT non-writable (NW) exiting to achieve non-bypassable
monitoring of the update to an S-process’s page table. Firstly, TF-
BIV finds the memory pages for the S-process based on the CR3
value and sets S-process’s page table as non-writable in EPT. As a
result, when the guest OS attempts to update an S-process’s page
table, a VM exit occurs. In VMM, TF-BIV modifies the correspond-
ing EPT entries for that update to allow temporary modification
to the page table. It also sets the MTF flag in the VMCS structure
to continuously monitor the following updates to the page table.
After all the updates complete, TF-BIV clears the MTF flag and sets
the page table as non-writable to monitor further modifications.
Identifying newly mapped memory areas. If a new code page
is observed to be mapped in the address space, we have to find out
which binary contains this code page to obtain the reference hash
values for comparison. As the Address Space Layout Randomization
(ASLR) has been widely adopted in modern OSes, we cannot use
virtual address to locate a code section within the binary image
of a protected program. A straightforward solution is to compare
the hash values of these code pages with the reference hash values
of all the code pages for each binary related with the S-process
to identify the mapping between memory areas (i.e., the start and

end GVAs) and the corresponding binary files. However, this is
time-consuming.

TF-BIV solves this problem by extracting necessary semantic
information of the guest OS with VMI. In the Linux kernel, the
mapping between the virtual address of the memory area and the
binary is recorded in the mm.mmap data structure. TF-BIV constructs
a mapping between thememory areas and the related binaries based
on this information. TF-BIV also constructs a mapping between the
GPAs and the memory areas, and establishes the mapping between
the virtual memory page and the code pages of the related binaries
based on the offsets between the GVA and start GVA. Therefore, for
a newly mapped memory area, TF-BIV can find the corresponding
references hash values based on these mappings efficiently. Note
that the adversaries can manipulate the kernel data structure to
fool TF-BIV. However, we never use it to influence the verification
results, but only for acceleration purposes. It only leads to DoS
attack because it fails the integrity checking of the S-process as
detailed in next section. Unverified code can never be executed in
the S-process’s address space.

4.5 Integrity Verification of Code Pages
TF-BIV configures the EPT entries of the code pages related to the
S-process to enforce the W⊕X property, so that a code page can
be executed only if it has been verified. In details, TF-BIV sets the
EPT entry for each newly loaded physical page as non-executable,
which causes a VM exit once an instruction fetching is requested on
this page. TF-BIV then checks the integrity of this code page. If the
verification passes, it configures the code page as executable but
non-writable. Anymodification to the verified code pagewill trigger
a VM exit, so that the aforementioned verification is performed
again.

TF-BIV differentiates the handling of EPT NX exiting depending
on which code page is fetched. The code page is classified into
three categories: kernel code, S-process related code (the code being
mapped in the S-process’s address space), and insensitive code (all
others). TF-BIV considers CR3 value, GVA and GPA in classifying
the code pages. As shown in Figure 2, TF-BIV uses GVA to determine
whether the code page is the kernel code. If the code page is in
user space, TF-BIV checks whether the code page belongs to any
S-processes based on the CR3 value. For the code pages of an S-
process, TF-BIV further distinguishes the code of the application
itself or that of a shared library based on the mapping between
memory areas and programs’memorymapped binaries (Section 4.4).
If the CR3 register is not in the S-process list, TF-BIV uses the
mapping between programs’ memory mapped binaries and the
guest physical pages mapped in the S-process’s address space to
determine whether the code page is related to any S-process. If not,
this page is considered insensitive.

As shown in Figure 2, different types of integrity verification
are performed in the handler of the EPT NX exit event for various
code type. For the kernel code, TF-BIV distinguishes the LKM from
other kernel code. We discuss LKM verification in Section 4.6 and
static kernel code verification in Section 4.2. For S-process related
code, TF-BIV obtains the information of the corresponding binaries
and the offsets as discussed in Section 4.4, and checks the integrity

Page content, GVA,

GPA, CR3 value

CR3 value in S-

process list

Kernel code

Memory areas

identified

Integrity

verification
Yes

Kernel code verificationYes

Remove from S-process

list
No

No

No

Exit checking

Yes

S-process related

code

YesYes

No

Figure 2: The handler of EPT NX exiting.

by comparing the hash values of the code pages with the reference
hash values.

Before the S-process related code pages are mapped into S-
process’s address space, it may have already been executed (e.g.,
the same physical page is mapped to another process). To ensure
no unverified code will be executed in S-process’s address space,
TF-BIV records the information of the newly mapped code in GPA
list, and configures the corresponding EPT entry to make it non-
executable again. Each entry of the GPA list is in the form of (id,
offset, GPA, state, num), where id, offset, GPA, state and num
denote the identifier of the binary which the code belongs to, the
offset of the code page in the binary image, the GPA of the code
page, whether the code page has been verified and the number of
S-processes that this code page is mapped to, respectively. When
an S-process related code is mapped into the address space of the
S-process, if no corresponding entry exists in the GPA list of S-
process related code, TF-BIV creates a new entry and sets num to
one. Otherwise, it increases num by one.

In the handler of EPT NX exit events, TF-BIV checks state of
the entry to check whether the code page has been verified or not.
It avoids the redundant verification when the code is shared by
multiple S-processes. When a PTE for an S-process is flushed, num
is decreased by one. When num becomes zero, the whole entry is
deleted.

4.6 Integrity Verification of LKM
An LKM is a dynamically loaded kernel component. When loaded,
it is located in the free area of the kernel space. Code in an LKM is
either loaded in the init block or core block. Pages belonging to
the init block are executed only once during the initialization of
LKM. They are erased after execution. Pages belonging to the core
block are used throughout the lifetime of the LKM. They are not
erased until the LKM is unloaded.

To identify which LKM the target code page belongs to, TF-BIV
maintains a list in the form of (inits , inite , cores , coree) for all LKMs.
In each entry of the list, inits and inite indicate the start and end
GVA of the init block, and cores and coree are for the code block.
When a code page is loaded, TF-BIV checks whether the GVA of

this page belongs to any entry in the maintained list. When a match
is identified, TF-BIV validates the calculated hash value against
the corresponding reference hash values. If no match is found,
TF-BIV checks whether the page belongs to a newly loaded LKM,
comparing the calculated hash value with the reference hash values
of the code pages which contains the entry point (initialization
function) for each specified LKM, or the core block of an initialized
LKM, and comparing the potential reference hash values based on
the GVA of this code page and each inits in the list. If any match
exists, TF-BIV updates the corresponding (inits , inite) or (cores ,
coree) entry. For an LKM that does not have code segment in its
init block (e.g., garp.ko and stp.ko), TF-BIV compares the code
page with all the code pages of each specified LKM, and inserts into
the list a new entry ((cores , coree)) if a match found. Otherwise, the
validation fails, and the code page can never be executed. An entry
is removed from the list when any page in the memory area (cores ,
coree) is modified, because it indicates that the corresponding LKM
is unloaded.

4.7 Handling Mixed Pages
Mixed page problem is common in legacy OS kernel and appli-
cations. Although, various mixed page eliminations (e.g., page-
aligning data) are proposed and even deployed in Linux kernel,
mixed kernel page still exists [61]. In essence, a mixed page con-
tains both code and mutable data, which conflicts with the basic
assumption of TF-BIV.

When a mixed page is loaded, TF-BIV makes a duplication of its
original physical page, and replaces all non-code areas with NOP
instructions in the duplicated page. Verification is performed on
the original page. If the verification is passed, TF-BIV configures
the EPT entry for the original physical page as non-executable, but
readable and writable, and sets the duplicated physical page as exe-
cutable but non-readable and non-writable. At the very beginning,
the mixed page is mapped to the original physical page, hence, exe-
cuting any instruction from the mixed page triggers a VM exit. In
the handler of this VM exit, TF-BIV re-maps the mixed page to the
duplicated physical page to allow execution. Then, accessing data
in the mixed page will trigger another VM exit, since the duplicated
physical page is non-readable and non-writable. In the VM exit
handler, TF-BIV maps the mixed page back to the original physical
page.

Mixed page has been a problem with many similar solutions. For
example, Patagonix [54] handles the problem with shadow page
table. However, it incurs significant overhead due to the complexity
of synchronization the shadow page table for maintaining the per-
mission for the corresponding memory. TF-BIV is more efficient, as
the permission is set on the GPA directly. Moreover, our protection
does not result in frequent VM exits. This is because the mappings
between the GPA to HPA for the instruction and data are cached
in instruction TLB (iTLB) and data TLB (dTLB) separately, which
avoids the VM exit when the corresponding iTLB and dTLB are not
flushed.

5 SECURITY ANALYSIS AND COMPARISON
In this section, we analyze the security of TF-BIV, and compare it
with other solutions.

5.1 Security Analysis
TF-BIV verifies all the code related with the S-processes, including
the kernel code, LKM, the application code and shared libraries.
The kernel code is verified during the start-up of the OS. The LKM
is identified upon the loading and verified before execution. The
code related to S-processes is verified before executing the code.

TF-BIV finds all these code pages based on the GVAs and in-
memory page table. TF-BIV attempts to find the reference hash
values for the code pages based on the kernel data structure (e.g.,
mmap) to accelerate the integrity verification. The adversary may
modify the kernel data structure, which breaks the mapping be-
tween the code page and the reference hash values. However, in
this case, the verification fails and the code page will never be ex-
ecuted. This only introduces the DoS attack but still ensures the
goal that only the verified code will be executed in S-processes. The
DoS attack may be mitigated by comparing the code page with all
the reference hash values when it is inconsistent with the inferred
reference hash values.

In the life cycle of an S-process, TF-BIV monitors and verifies
each modification to all the related code. TF-BIV prevents the mod-
ification that occurs before the binary is loaded into memory, as
the corresponding pages will yield an invalid hash values. At run-
time, various attacks may be adopted to modify the integrity of
S-processes or add new code pages. For example, the attackers can
exploit vulnerabilities (e.g., buffer overflow and format string over-
flow [51]) of the S-process and others attacks (e.g., double mapping
attack [19] and [63]) to inject malicious instructions and bypass
the software protections (e.g., Stackguard [21], Stackshield [79],
Formatguard [22], PaX [76], RSX [73] and kNoX [60]). TF-BIV pre-
vents these attacks as it relies on EPT, the hardware features, to find
the modification of code page in the address space of an S-process.
Once any modification is detected, re-verification is enforced.

The adversary may also attempt to execute malicious code in
S-process without modifying any code pages. For example, the
address mapping manipulation attacks [19] may be adopted to map
an unverified physical page to the S-process’s address space, or
map a physical page of an S-process to an unprotected process
which makes the physical page executable without being verified.
TF-BIV defeats these attacks by monitoring the page table of an
S-process. Once a new physical page is mapped, TF-BIV finds this
mapping operation immediately as the modification to S-process’s
page table triggers a VM exit. In processing this VM exit, TF-BIV sets
the physical page as non-executable and classifies it as S-process
related code, which ensures that the physical page will be verified
before execution nomatter which process it belongs to. More details
are provided in Section 4.5.
Limitations. TF-BIV fails to provide protection for programs gen-
erated by the JIT engines and DBT, because they require the code
pages to be both writable and executable. However, the interpreters
themselves may still benefit from TF-BIV. TF-BIV fails to present
software bugs in the programs themselves (e.g., CFI attacks, data-
oriented attacks), because code integrity is not violated in these
attacks. Existing mitigation mechanisms, such as Heisenbyte [74],
PITTYAPT [28], KVM-PT [67], µCFI [38], CPI [49], YARRA [66],
HardScope [58], HDFI [72] and DFI [72], may be employed for this

Table 1: Analysis of existing integrity verification systems.

Isolation Consistency Transparency Fine-grained
Patagonix [54] #
HIMA [5] G# G# #

En-ACCI [47] G# # G#
InkTag [36] #

AppShield [19] #
AppSec [59] #

TF-BIV
#: not supportedG#: partially supported : fully supported

purpose. The DMA attacks may modify the physical memory di-
rectly, bypassing the permission checking in MMU. As a result,
code may be modified without causing a VM exit. IOMMU [69] may
be integrated to prevent illegal DMA attacks.

5.2 Comparison with Existing Solutions
Various hypervisor-based solutions [5, 19, 36, 47, 54, 59] have been
proposed for the integrity verification and protection for different
purposes. Patagonix [54] verifies all the binaries before execution
to detect the rootkits. HIMA [5] prevents the execution of unau-
thorized binaries. InkTag [36], AppShield [19] and AppSec [59]
protect the integrity of the critical process even when the guest
OS is untrusted. En-ACCI [47] aims to enhance the authentication
mechanism of the cloud-based cryptographic services by checking
the integrity of the caller. Table 1 compares these solutions based
on the design goals described in Section 4.1.
Isolation: The integrity validator needs to be isolated from the
guest VM, and any activity in the guest VM should never harm the
correctness of verification results. All these solutions aim to achieve
this based on virtualization. Patagonix and TF-BIV achieve the full
isolation, as Patagonix utilizes the VMM’s control of the MMU
while TF-BIV relies on the hardware feature to discover the code
execution and trigger the integrity verification executed in VMM.
However, HIMA requires kernel patch (PaX [76]) to enforce W⊕X
support, which may impact the verification result if the patching
is subverted. En-ACCI relies on the semantic information provide
by VMI and thus is vulnerable to the VMI subversion attacks (e.g.,
DKSM [7]). InkTag, AppShield and AppSec require the protected bi-
naries to issue a hypercall at the startup, which triggers the integrity
verification performed in the VMM.
TOCTTOU consistency: Once a code page has been verified, it
should not be changed any more. Patagonix and HIMA use shadow
page table to translate the GVA to HPA while AppSec and TF-
BIV adopt EPT to translate the GPA to HPA. They achieve full
TOCTTOU consistency as the VMM configures the verified pages
non-writable based on the mechanisms provided by shadow page
table or EPT. En-ACCI fails to provide TOCTTOU consistency as it
doesn’t provide any protection for the verified code pages. InkTag
and AppShield isolate the critical application from the untrusted
guest OS by adopting two EPTs, one for the critical application
and one for all the others, while the code is verified before being
executed in the isolated environment.
Transparency: The to-be-protected binaries and VM OS should
not need any modification. In Patagonix, En-ACCI and TF-BIV, the

integrity checking is transparent to the guest OS and the target
programs because the solution is deployed directly in the VMM
without any modification (e.g., hooks, drivers, libraries) in the guest
VM. For Patagonix and TF-BIV, the integrity verification is trig-
gered and performed in VMM directly if the permission on the
physical frames (i.e., non-executable) is violated. En-ACCI invokes
the verification in VMM directly once the VMM captures a crypto-
graphic service invocation. HIMA doesn’t require any modification
to most OS kernels which provide native support of W⊕X, while
others (e.g., Linux kernel v2.6.18) need to be patched with PaX [76].
InkTag and AppShield require the modification and redeployment
of the specified applications for invoking a set of hypercalls to
trigger the protection provided by VMM. AppSec requires the VM
to deploy a safe loader, which distinguishes S-processes from oth-
ers and invokes hypercalls to trigger the integrity verification for
S-processes.
Fine-grained Verification: In TF-BIV, InkTag, AppShield and
AppSec, only the specified processes are thoroughly checked while
the others may be installed and updated arbitrarily. The details
for identifying the S-process in TF-BIV are provided in Section 4.
In InkTag and AppShield, the programs declare they are sensitive
by invoking the corresponding hypercall actively. In AppSec, the
safe loader, running in VM, distinguishes the S-process from others.
Patagonix and HIMA verify all the binaries before execution, at-
tempting to provide a safe environment without rootkits. En-ACCI
fails to perform thorough verification for S-process, as it doesn’t
verify the dependent libraries.

6 THE APPLICATION IN CLOUD-BASED
CRYPTOGRAPHIC SERVICES

We integrate TF-BIV with a cloud-based cryptographic service.
TF-BIV provides integrity verification for the programs that need
access to cryptographic keys stored outside of the VM.
Motivation. Cloud-based cryptographic service is a sensitive ser-
vice, the abuse of which may introduce significant damages. For
example, the abuse of the cryptographic signing service may re-
sult in an illegal transaction. For the cloud-based cryptographic
service, usually the cryptographic algorithms are semantically se-
cure and the cryptographic key is strong enough. However, the
authentication and authorization mechanisms are often too weak
to prevent the adversary from abusing the cryptographic service.
As described in Section 1, the existing authentication mechanism
of the cloud-based cryptographic service is based on identification
and passwords, and the service is authorized to the entire VM once
the authentication passed, even only one or a small number of
processes running in the VM actually need to invoke the service.
Therefore, the adversary, who obtains the leaked identification and
passwords [13, 75], may exploit the vulnerability of the VM OS or
any application, to illegally access the cryptographic computations
for his purpose.

6.1 Integration into Cloud-based Service
When using TF-BIV to protect cloud-based cryptographic service,
the tenants need to specify a list of binaries that are authorized to
invoke the cloud-based cryptographic service. TF-BIV analyzes the
dependency of the binary, calculates the reference hash values for

KMS
Monitored VM

User App

Network Card

Emulator
TF-BIV

VMM

User Space

Kernel

VM Exit VM Entry

VM Exit

Handler

https

 Reference Hashes

and OS Profile

Figure 3: TF-BIV applied in cloud-based cryptographic ser-
vice.

each code page of the authorized binaries and the dependency (i.e.,
the OS kernel, LKMs and shared libraries), and stores the reference
hash values in the database.

An overview of the integration of TF-BIV in the authorization of
cloud-based cryptographic service is provided in Figure 3. Firstly,
TF-BIV transparently identifies and verifies the integrity of the
S-processes (and the dependencies) in the corresponding VM exit
handlers as described in Section 4, and maintains a list of verified S-
processes. Then, before sending the cryptographic service request
to the remote cryptographic service provider and returning the
response to the requester, the agent deployed in the VMM identifies
the process that issues the cryptographic request, and transmits
the request and response only if the process is in the S-process list.

As the real-world cloud-based cryptographic services [2, 20, 34,
55] usually provides the service through HTTPS connections, we
deploy the agent in the network card emulator. When the IP address
and port indicate that an HTTPS connection to the cloud-based
cryptographic service is established or being used, the process
corresponding to this HTTPS connection needs to be located to
enforce the process-level authorization. If the process is not in the
list of verified S-processes, the HTTPS connection will be dropped
directly.

The semantics information of the guest VMOS is required to iden-
tify the process corresponding to theHTTPS connection. In addition
to the assumption described in Section 3, we assume that the profile
of OS kernel (i.e., the kernel data structure and the logical addresses
of the essential kernel symbols) is not tampered with during the
integration. Specifically, in our implementation, the adopted kernel
data structures include task_stuct, mm_struct, files_struct,
fdtable and file, while the used system symbols are init_task,
socket_operation and socket_dentry_operation. TF-BIV veri-
fies the integrity of the kernel code, and may integrate OSck [35]
or KI-MON [50] to protect the kernel data for the correctness of
obtained semantics information.

7 IMPLEMENTATION
We have implemented a prototype of TF-BIV based on QEMU-KVM
v1.7.1, and have integrated it in the process-level authorization for
a cloud-based cryptographic service.

7.1 TF-BIV Implementation
TF-BIV is implemented as a KVM component. In details, TF-BIV sets
MTF flag and CR3-load exiting flag in VMCS, configures the EPT

entries to trigger necessary VM exits, and completes the identifica-
tion and integrity verification of the processes in the corresponding
VM exit handlers. All the implementation is completed with less
than 1000 lines of code.

As described in Section 4, TF-BIV triggers four VM exits (CR3-
load exiting, MTF exiting, EPT NW exiting, and EPT NX exiting), for
tracking the S-process creation, monitoring the memory page and
modification of S-processes, and verifying the integrity of the code
for S-process. TF-BIV invokes the function vmcs_write to set the
corresponding bit in VMCS to register each VM exit events. For the
CR3-load exit event, TF-BIV sets the Cr3-load exiting bit, clears
the Cr3-target value and configures the Cr3-target count to 0
in VMCS, which causes a VM exit once an instruction loads any value
to the CR3 register. In the corresponding handler, TF-BIV checks
whether the process is a newly created and identifies the newly
created process by comparing the code page with the reference
hash values.

To monitor the memory pages for S-processes, TF-BIV invokes
the functions vmcs_read to obtain the base physical address of
S-process from the CR3 register, identifies the memory areas cor-
responding to the memory pages, and sets the page table pointed
by CR3 value as non-writable in the handler of CR3-load exiting.
Once a VM exit event occurs due to the modification of S-process’s
page table, TF-BIV makes the page table as writable by configuring
the corresponding EPT entries and sets the MTF bit in VMCS to ob-
tain the stable version of the page table before the first instruction
of the newly mapped code page executed. In the handler of MTF
exiting, TF-BIV clears the MTF bit and sets the memory pages as
non-writable again to capture the further modification.

To register EPT violation events, TF-BIV sets the access bits
on the pte entry in EPT. According to the exit-qualification
obtained from VMCS, the corresponding functions will be invoked
to handle the EPT violation events. For each loaded code page,
TF-BIV sets it as non-executable by configuring the pte entry. In
the handler, TF-BIV invokes vmcs_read for the GVA of page fault
from the CR2 register, obtains the memory area information from
task_struct.mm, identifies the binaries for the process, verifies
the integrity according to the type of the code, and sets the code
page as executable but non-writable once the integrity verification
passed. In the handler of EPT NW exiting, TF-BIV sets the modified
code page as non-executable again for the re-verification.

For different types of code (i.e., kernel, LKMs, S-processes, and
shared libraries), various analyzers are adopted to generate the
reference hash values. For S-processes and shared libraries, the an-
alyzer obtains the .text content, entry point, offset and alignment
from the ELF file directly, and adopts the hash algorithm to generate
the reference hash value for each code page, which is stored with
the offset information in the database. For S-processes, the code
page containing the entry point will be identified to accelerate the
identification of S-process. The kernel and LKM will modify the in-
structions for optimization based on the hardware platform, which
is specified in a special section [54]. TF-BIV simulates the loading
process of the kernel and LKM in the target platform, and generates
the corresponding reference hash values. For LKM, the analyzer
parses the binary according to the section header table and an array
of Elf64_Shdr structures to obtain the .text, .data and symbols

for the init and core blocks. For the relocatable addresses in each
binary, TF-BIV sets them as zero in calculating the hash values.

7.2 Integration
When TF-BIV is applied to the cloud-based cryptographic ser-
vice for process-level authorization, we need to find the process
that issues network connection between the VM and the service
provider. To achieve this, we modify the e1000 card emulator in
QEMU with less than 400 lines of code. In details, in the func-
tions e1000_send_packet (sending network packets) and e1000_
receive_iov (receiving network packets), we find the process cor-
responding to the TCP packets whose IP address and port are con-
sistent with these of the service provider, and transmit the data
only when the process is in the S-process list.

We find the process corresponding to the packets based on the
guest OS profile, which is generated by the memory forensics tool
volatility [80] and dwarf-tools. For example, in Linux, because the
network connection is processed as a file, we parse the files of
the type files_struct for each process (i.e., each element of the
type task_struct in the kernel variable tasks) to obtain the files
opened by each process. After parsing the kernel data structure
file for each file, we check whether the file represents a network
connection. This is achieved by checking the socket_file_ops
function pointer array. We parse the dentry further to obtain the
IP address and port, and check whether the connection is related
to the cryptographic service. Finally, we obtain the base physical
address through the variable pgd, which is a member of the data
structure mm_struct. The obtained base physical address is used to
checkwhether the process is authorized to invoke the cryptographic
service.

8 PERFORMANCE EVALUATION
We have evaluated the performance overhead imposed by TF-BIV to
the startup of guest VM and to the host CPU.We have also evaluated
the introduced network delay and the performance impact when
TF-BIV is integrated in the cloud-based cryptographic service. The
evaluation was conducted on a Dell Optiplex 9020 PC with Intel
i7-4770 CPU (3.4GHZ) and 16GB RAM. The host runs the Linux OS
(kernel v3.13) with QEMU v1.7.1, while the guest VM is assigned
with 4 vCPUs and 4GB RAM, and the guest OS is Linux kernel
v3.13.7.
Startup: We used Bootchart [32], a tool for performance analysis
of Linux booting process, to analyze the performance overhead
introduced by TF-BIV on the startup. With Bootchart, we mea-
sured the startup time of the VM OS with TF-BIV deployed, and
compared it with that on the native host. We have performed the
measurement for 10 times. The average overhead is 1.49%, which
is mainly introduced by the additional integrity verification.
SPECINT Benchmark: SPECINT 2006, comprising of a set of per-
formance benchmarks, is used to evaluate the influence on the vir-
tualized VM. We created an S-process which issues a cryptographic
service request every 5 seconds and measured the SPECINT 2006
scores. We compared the results on three scenarios: native Linux,
with TF-BIV being active and with TF-BIV being active to monitor
S-process. As illustrated in Figure 4, the impact on the evaluated

0

10

20

30

40

50

60

N
o

rm
al

iz
ed

 O
ve

rh
ea

d

Native TF-BIV TF-BIV with cryptographic service

Figure 4: SPECINT 2006 perf. overhead.

0

228

456

684

912

1140

1368

1596

1 2 4 8 16 32 64 128

C
o

m
p

le
te

d
 R

eq
u

es
t

p
er

 S
ec

o
n

d

Number of Concurrenct HTTPS Requests

Native TF-BIV with cryptographic service

Figure 5: Speed of HTTPS service.

performance is less than 3.6%, which can be attributed to 1) identi-
fication and integrity verification of S-processes, and 2) capturing
and filtering the network connection in network card emulation.
Network Performance: We adopts iPerf [43], an active measure-
ment tool of network bandwidth, to evaluate the influence on the
network introduced by TF-BIV application. In the evaluation, we
used the VM with TF-BIV deployed as the client and server re-
spectively, while the other peer was a host with Intel i5-4590 CPU
(3.3GHZ) and 16GB RAM. We evaluated the overhead in the full-
duplex (i.e., Dual Testing) and half-duplex (i.e., Tradeoff Testing)
scenarios. As shown in Table 2, the bandwidth decreases by 3.81%
when the VM (monitored by TF-BIV) works as the server in the
dual testing. The reason is that TF-BIV needs to process more con-
nections when the VM works as the server and needs to filter more
packets in the dual testing as both the client and server send packets.

Table 2: Bandwidth evaluation.

Testing Mode Native TF-BIV
Dual C 920.67MB/s 894.00MB/s

Testing S 632.11MB/s 608.00MB/s
Tradeoff C 819.78MB/s 810.56MB/s
Testing S 1089MB/s 1086MB/s

C: VM with TF-BIV as the client, S: VM with TF-BIV as the server.

0

200

400

600

800

1000

1200

1400

1 2 4 8 16 32 64 128

9
9

%
Pe

rc
en

ti
le

 o
f

La
te

n
cy

 (
m

s)

Number of Concurrent HTTPS Requests

Native TF-BIV with cryptographic service

Figure 6: 99th Percentile of HTTPS latency.

HTTPS Throughput and Latency: We have integrated TF-BIV
with the cloud-based cryptographic service for process-level autho-
rization, and evaluated the performance overhead by constructing
an HTTPS service which requests the cloud-based cryptographic
service for RSA-2048 decryption. In details, the RSA-2048 decryp-
tion was deployed on a separated host and provided service through
HTTPS connections. We ran the Apache in the monitored VM,
which requests cryptographic service for HTTPS. Therefore, httpd
is the S-process in our experiment. We also used the Apache bench-
mark to evaluate the throughput and latency of HTTPS service.
For each evaluation, the client constructed 10,000 HTTPS requests
for a 4KB web page at different concurrency levels. As shown in
Figure 5, the maximum decrease in throughput is 8.3% and the
largest latency is 5.7%, which occurs at the largest concurrency
level (i.e., 128). This is because the network card emulator needs
to process more connections and packets (i.e., finding the process
corresponding to the packets, and obtaining the IP address and port
for the packets) when the concurrency level increases.

9 RELATEDWORK
Various in-kernel solutions have been proposed to protect the in-
tegrity of user space programs. Integrity Measurement Architecture
(IMA) [65] and the extension PRIMA [45], deployed in the Linux
kernel, measure all binaries at load-time based on TPM, but fail to
provide the run-time integrity protection.

Hypervisor, as layer between hardware and the OS, has been
leveraged in many solutions. Patagonix [54] and HIMA [5] aim
to safeguard the guest VM, but lack flexibility, because all the
binaries running in the VM need to be protected. AppSec [59],
AppShield [19] and InkTag [36] protect both the integrity and con-
fidentiality of the sensitive applications even if the guest VM OS
is untrusted. However, they require modification to the protected
applications. Moreover, various schemes (e.g., HyperCheck [81],
HyperSentry [6]) have been proposed to protect the hypervisor
itself.

Many hardware features (e.g., Intel SGX [42], AMD SEV [48],
ARM TrustZone [3]) have been proposed to provide the isolation
for the sensitive applications [4, 8, 68]. However, these solutions [4,
8, 68] require the substantial re-engineering effort.

The adversary may hijack the control flow without injecting
or modifying the binaries [10, 11, 14, 63, 70, 77]. For these attacks,
various protections [21, 28, 38, 52, 67, 74] are proposed, which may

be integrated with TF-BIV. Heisenbyte [74] utilizes Intel EPT for
garbling the code right after it is read, to prevent code reuse attacks.
PITTYAPT [28] uses the Intel PT [42] to enforce path-sensitive CFI.
KVM-PT [67] extends PITTYAPT to the virtualized environment.
µCFI [38] guarantees only one valid target for each invocation of
an indirect control-flow transfer based on the points-to analysis
on control data with the collected constraining data, to reduce the
illegal jumps possibility.

Data-oriented attack manipulates the target data directly [17, 37],
or constructs malicious sequences of instructions by tamperingwith
multiple chosen data [39, 44], which alters the program’s benign
behavior without being detected or prevented by the mechanisms
of CFI. Various data-oriented attacks have been proposed for the
real-world software, such as Chrome [46, 64], Linux Kernel [26],
ProFTPd [39] and Nginx [56]. As systematically analyzed in [18],
the generic memory corruption defenses [27, 49, 57, 71], and the
special defenses [12, 16, 26, 58, 66, 72] may be used to construct the
three-level defense for the general/dedicated data-oriented attacks
by avoiding exploitation of memory errors, increasing the difficulty
for guessing memory layout or preventing the use of corrupted
data. These schemes may be integrated with TF-BIV, to strengthen
sensitive applications.

10 CONCLUSION
In this paper, we provide TF-BIV, a binary integrity verification
scheme for the cloud environment, which achieves isolation, trans-
parency, TOCTTOU consistency and fine-grained verification si-
multaneously. TF-BIV leverages hardware virtualization to achieve
transparent and fine-grained verification, and adopts the semantic
information obtained through VMI to accelerate the identification
of S-process and integrity verification. TF-BIV registers VM exit
events based on the hardware features (i.e., CR3-load exit, MTF,
and EPT volition) to transparently capture the creation of process,
identify all the dependent code of S-processes and continuously
perform the integrity verification for S-processes. Moreover, TF-BIV
can be easily integrated with real-world applications that need pro-
tection. To demonstrate this, We integrate TF-BIV with a real open
source cloud-based cryptographic service. The evaluation demon-
strates that the performance overhead introduced by TF-BIV is
modest – we observed less than 3.6% overhead in CPU benchmark-
ing, about 3.81% network overhead, and about 8.3% degradation of
the throughput in cloud-based cryptographic service.

ACKNOWLEDGMENT
This work is supported partially by 973 Program of China (Grant
No. 2014CB340603), Informatization Project of Chinese Academy of
Sciences (Grant No. XXH13507-01), Cyber Security Program of Na-
tional Key RD Plan of China (Grant No. 2017YFB0802100), National
Natural Science Foundation of China (Grant No. 61772518), National
Science Foundation (Grant CNS-1422206 and DGE-1565570), and
National Security Agency (NSA) Science of Security (SoS) initiative.

REFERENCES
[1] Amazon. 2018. AMAZON AWS CloudHSM. Retrieved May 27, 2019 from https:

//amazonaws-china.com/cloudhsm/
[2] Amazon. 2018. AMAZON AWS Key Management Service KMS. Retrieved May 27,

2019 from https://amazonaws-china.com/kms/

[3] ARM 2009. ARM security technology: Building a secure system using TrustZone
technology. ARM.

[4] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, André Martin,
Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’Keeffe, Mark Still-
well, David Goltzsche, David M. Eyers, Rüdiger Kapitza, Peter R. Pietzuch, and
Christof Fetzer. 2016. SCONE: Secure Linux Containers with Intel SGX. In 12th
USENIX Symposium on Operating Systems Design and Implementation, OSDI 2016,
Savannah, GA, USA, November 2-4, 2016. 689–703.

[5] Ahmed M. Azab, Peng Ning, Emre Can Sezer, and Xiaolan Zhang. 2009. HIMA:
A Hypervisor-Based Integrity Measurement Agent. In Twenty-Fifth Annual Com-
puter Security Applications Conference, ACSAC 2009, Honolulu, Hawaii, USA, 7-11
December 2009. 461–470.

[6] Ahmed M. Azab, Peng Ning, Zhi Wang, Xuxian Jiang, Xiaolan Zhang, and
Nathan C. Skalsky. 2010. HyperSentry: enabling stealthy in-context measurement
of hypervisor integrity. In Proceedings of the 17th ACM Conference on Computer
and Communications Security, CCS 2010, Chicago, Illinois, USA, October 4-8, 2010.
38–49.

[7] Sina Bahram, Xuxian Jiang, Zhi Wang, Mike Grace, Jinku Li, Deepa Srinivasan,
Junghwan Rhee, and Dongyan Xu. 2010. DKSM: Subverting Virtual Machine
Introspection for Fun and Profit. In 29th IEEE Symposium on Reliable Distributed
Systems (SRDS 2010), New Delhi, Punjab, India, October 31 - November 3, 2010.
82–91.

[8] Andrew Baumann, Marcus Peinado, and Galen C. Hunt. 2015. Shielding Appli-
cations from an Untrusted Cloud with Haven. ACM Trans. Comput. Syst. 33, 3
(2015), 8:1–8:26.

[9] Sebastian Biedermann, Stefan Katzenbeisser, and Jakub Szefer. 2014. Leveraging
Virtual Machine Introspection for Hot-Hardening of Arbitrary Cloud-User Ap-
plications. In 6th USENIX Workshop on Hot Topics in Cloud Computing, HotCloud
’14, Philadelphia, PA, USA, June 17-18, 2014.

[10] Bruno Bierbaumer, Julian Kirsch, Thomas Kittel, Aurélien Francillon, and Aposto-
lis Zarras. 2018. Smashing the Stack Protector for Fun and Profit. In ICT Systems
Security and Privacy Protection - 33rd IFIP TC 11 International Conference, SEC
2018, Held at the 24th IFIP World Computer Congress, WCC 2018, Poznan, Poland,
September 18-20, 2018, Proceedings. 293–306.

[11] Tyler K. Bletsch, Xuxian Jiang, Vincent W. Freeh, and Zhenkai Liang. 2011. Jump-
oriented programming: a new class of code-reuse attack. In Proceedings of the
6th ACM Symposium on Information, Computer and Communications Security,
ASIACCS 2011, Hong Kong, China, March 22-24, 2011. 30–40.

[12] Miguel Castro, Manuel Costa, and Tim Harris. 2006. Securing Software by
Enforcing Data-flow Integrity. In 7th Symposium on Operating Systems Design
and Implementation (OSDI ’06), November 6-8, Seattle, WA, USA. 147–160.

[13] Rahul Chatterjee, Joseph Bonneau, Ari Juels, and Thomas Ristenpart. 2015.
Cracking-Resistant Password Vaults Using Natural Language Encoders. In 2015
IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21,
2015. 481–498.

[14] Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi,
Hovav Shacham, and Marcel Winandy. 2010. Return-oriented programming
without returns. In Proceedings of the 17th ACM Conference on Computer and
Communications Security, CCS 2010, Chicago, Illinois, USA, October 4-8, 2010.
559–572.

[15] Ping Chen, Dongyan Xu, and Bing Mao. 2012. CloudER: a framework for au-
tomatic software vulnerability location and patching in the cloud. In 7th ACM
Symposium on Information, Compuer and Communications Security, ASIACCS ’12,
Seoul, Korea, May 2-4, 2012. 50.

[16] Quan Chen, Ahmed M. Azab, Guruprasad Ganesh, and Peng Ning. 2017.
PrivWatcher: Non-bypassable Monitoring and Protection of Process Creden-
tials from Memory Corruption Attacks. In Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security, AsiaCCS 2017, Abu Dhabi,
United Arab Emirates, April 2-6, 2017. 167–178.

[17] Shuo Chen, Jun Xu, and Emre Can Sezer. 2005. Non-Control-Data Attacks Are
Realistic Threats. In Proceedings of the 14th USENIX Security Symposium, Baltimore,
MD, USA, July 31 - August 5, 2005.

[18] Long Cheng, Hans Liljestrand, Thomas Nyman, Yu Tsung Lee, Danfeng Yao,
Trent Jaeger, and N. Asokan. 2019. Exploitation Techniques and Defenses for
Data-Oriented Attacks. CoRR (2019).

[19] Yueqiang Cheng, Xuhua Ding, and Robert H. Deng. 2015. Efficient Virtualization-
Based Application Protection Against Untrusted Operating System. In Proceedings
of the 10th ACM Symposium on Information, Computer and Communications
Security, ASIA CCS ’15, Singapore, April 14-17, 2015. 345–356.

[20] Alibaba Cloud. 2019. Aliyun cryption service. Retrieved May 27, 2019 from
https://www.aliyun.com/product/kms

[21] Crispan Cowan. 1998. StackGuard: Automatic Adaptive Detection and Prevention
of Buffer-Overflow Attacks. In Proceedings of the 7th USENIX Security Symposium,
San Antonio, TX, USA, January 26-29, 1998.

[22] Crispin Cowan, Matt Barringer, Steve Beattie, Greg Kroah-Hartman, Michael
Frantzen, and Jamie Lokier. 2001. FormatGuard: Automatic Protection From
printf Format String Vulnerabilities. In 10th USENIX Security Symposium, August
13-17, 2001, Washington, D.C., USA.

https://amazonaws-china.com/cloudhsm/
https://amazonaws-china.com/cloudhsm/
https://amazonaws-china.com/kms/
https://www.aliyun.com/product/kms

[23] CVE20188492 2019. Common Vulnerabilities and Exposures.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-8492.

[24] CVE20190247 2019. Common Vulnerabilities and Exposures.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-0247.

[25] CVE20196250 2019. Common Vulnerabilities and Exposures.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-6250.

[26] Lucas Davi, David Gens, Christopher Liebchen, and Ahmad-Reza Sadeghi. 2017.
PT-Rand: Practical Mitigation of Data-only Attacks against Page Tables. In 24th
Annual Network and Distributed System Security Symposium, NDSS 2017, San
Diego, California, USA, February 26 - March 1, 2017.

[27] Joe Devietti, Colin Blundell, Milo M. K. Martin, and Steve Zdancewic. 2008. Hard-
bound: architectural support for spatial safety of the C programming language.
In Proceedings of the 13th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2008, Seattle, WA, USA,
March 1-5, 2008. 103–114.

[28] Ren Ding, Chenxiong Qian, Chengyu Song, William Harris, Taesoo Kim, and
Wenke Lee. 2017. Efficient Protection of Path-Sensitive Control Security. In
26th USENIX Security Symposium, USENIX Security 2017, Vancouver, BC, Canada,
August 16-18, 2017. 131–148.

[29] Brendan Dolan-Gavitt, Tim Leek, Michael Zhivich, Jonathon T. Giffin, andWenke
Lee. 2011. Virtuoso: Narrowing the Semantic Gap in Virtual Machine Introspec-
tion. In 32nd IEEE Symposium on Security and Privacy, S&P 2011, 22-25 May 2011,
Berkeley, California, USA. 297–312.

[30] FIPS-140-2 2019. Security Requirements for Cryptographic Modules.
https://www.nist.gov/publications/.

[31] Tal Garfinkel and Mendel Rosenblum. 2003. A Virtual Machine Introspection
Based Architecture for Intrusion Detection. In Proceedings of the Network and
Distributed System Security Symposium, NDSS 2003, San Diego, California, USA.
San Diego, California.

[32] Inc. Gentoo Foundation. 2019. Boot Process Performance Visualization. Retrieved
May 27, 2019 from http://www.bootchart.org/

[33] Google. 2018. GOOGLE Cloud HSM. Retrieved May 27, 2019 from https://cloud.
google.com/hsm/

[34] Google. 2018. GOOGLE CLOUD KEY MANAGEMENT SERVICE. Retrieved May
27, 2019 from https://cloud.google.com/kms/

[35] Owen S. Hofmann, Alan M. Dunn, Sangman Kim, Indrajit Roy, and Emmett
Witchel. 2011. Ensuring operating system kernel integrity with OSck. In Proceed-
ings of the 16th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2011, Newport Beach, CA, USA, March
5-11, 2011. 279–290.

[36] Owen S. Hofmann, Sangman Kim, Alan M. Dunn, Michael Z. Lee, and Emmett
Witchel. 2013. InkTag: secure applications on an untrusted operating system. In
Architectural Support for Programming Languages and Operating Systems, ASPLOS
’13, Houston, TX, USA - March 16 - 20, 2013. 265–278.

[37] Hong Hu, Zheng Leong Chua, Sendroiu Adrian, Prateek Saxena, and Zhenkai
Liang. 2015. Automatic Generation of Data-Oriented Exploits. In 24th USENIX
Security Symposium, USENIX Security 15, Washington, D.C., USA, August 12-14,
2015. 177–192.

[38] Hong Hu, Chenxiong Qian, Carter Yagemann, Simon Pak Ho Chung, William R.
Harris, Taesoo Kim, andWenke Lee. 2018. Enforcing Unique Code Target Property
for Control-Flow Integrity. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2018, Toronto, ON, Canada, October
15-19, 2018. 1470–1486.

[39] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Prateek Saxena,
and Zhenkai Liang. 2016. Data-Oriented Programming: On the Expressiveness
of Non-control Data Attacks. In IEEE Symposium on Security and Privacy, SP 2016,
San Jose, CA, USA, May 22-26, 2016. 969–986.

[40] Zhichao Hua, Dong Du, Yubin Xia, Haibo Chen, and Binyu Zang. 2018. EPTI:
Efficient Defence against Meltdown Attack for Unpatched VMs. In 2018 USENIX
Annual Technical Conference, USENIX ATC 2018, Boston, MA, USA, July 11-13,
2018. 255–266.

[41] Mehmet Sinan Inci, Berk Gülmezoglu, Gorka Irazoqui Apecechea, Thomas Eisen-
barth, and Berk Sunar. 2015. Seriously, get off my cloud! Cross-VM RSA Key
Recovery in a Public Cloud. IACR Cryptology ePrint Archive 2015 (2015), 898.

[42] Intel Corporation 2019. Intel 64 and IA-32 Architectures Software Developer’s
Manual. Intel Corporation.

[43] iPerf 2017. The ultimate speed test tool for TCP, UDP and SCTP. Retrieved May
27, 2019 from https://iperf.fr

[44] Kyriakos K. Ispoglou, Bader AlBassam, Trent Jaeger, and Mathias Payer. 2018.
Block Oriented Programming: Automating Data-Only Attacks. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2018, Toronto, ON, Canada, October 15-19, 2018. 1868–1882.

[45] Trent Jaeger, Reiner Sailer, and Umesh Shankar. 2006. PRIMA: policy-reduced
integrity measurement architecture. In 11th ACM Symposium on Access Control
Models and Technologies, SACMAT 2006, Lake Tahoe, California, USA, June 7-9,
2006, Proceedings. 19–28.

[46] Yaoqi Jia, Zheng Leong Chua, Hong Hu, Shuo Chen, Prateek Saxena, and Zhenkai
Liang. 2016. "The Web/Local" Boundary Is Fuzzy: A Security Study of Chrome’s

Process-based Sandboxing. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, Vienna, Austria, October 24-28, 2016.
791–804.

[47] Fangjie Jiang, Quanwei Cai, Le Guan, and Jingqiang Lin. 2018. Enforcing Access
Controls for the Cryptographic Cloud Service Invocation Based on Virtual Ma-
chine Introspection. In Information Security - 21st International Conference, ISC
2018, Guildford, UK, September 9-12, 2018, Proceedings. 213–230.

[48] Kaplan, David 2016. AMD x86 Memory Encryption Technologies.
[49] Volodymyr Kuznetsov, Laszlo Szekeres, Mathias Payer, George Candea, R. Sekar,

and Dawn Song. 2014. Code-Pointer Integrity. In 11th USENIX Symposium on
Operating Systems Design and Implementation, OSDI ’14, Broomfield, CO, USA,
October 6-8, 2014. 147–163.

[50] Hojoon Lee, Hyungon Moon, DaeHee Jang, Kihwan Kim, Jihoon Lee, Yunheung
Paek, and Brent ByungHoon Kang. 2013. KI-Mon: A Hardware-assisted Event-
triggered Monitoring Platform for Mutable Kernel Object. In Proceedings of the
22th USENIX Security Symposium, Washington, DC, USA, August 14-16, 2013. 511–
526.

[51] Kyung-suk Lhee and Steve J. Chapin. 2003. Buffer overflow and format string
overflow vulnerabilities. Softw., Pract. Exper. 33, 5 (2003), 423–460.

[52] Jinku Li, Zhi Wang, Tyler K. Bletsch, Deepa Srinivasan, Michael C. Grace, and
Xuxian Jiang. 2011. Comprehensive and Efficient Protection of Kernel Control
Data. IEEE Trans. Information Forensics and Security 6, 4 (2011), 1404–1417.

[53] Song Li and Scott Wu. 2018. Your Device and Your Power, My Bitcoin. In
Blockchain - ICBC 2018 - First International Conference, Held as Part of the Services
Conference Federation, SCF 2018, Seattle, WA, USA, June 25-30, 2018, Proceedings.
285–292.

[54] Lionel Litty, H. Andrés Lagar-Cavilla, and David Lie. 2008. Hypervisor Support
for Identifying Covertly Executing Binaries. In Proceedings of the 17th USENIX
Security Symposium, July 28-August 1, 2008, San Jose, CA, USA. 243–258.

[55] Microsoft. 2018. Microsoft Key Vault. Retrieved May 27, 2019 from https://www.
azure.cn/home/features/key-vault/

[56] MicahMorton, JanWerner, Panagiotis Kintis, Kevin Z. Snow, Manos Antonakakis,
Michalis Polychronakis, and Fabian Monrose. 2018. Security Risks in Asynchro-
nous Web Servers: When Performance Optimizations Amplify the Impact of
Data-Oriented Attacks. In 2018 IEEE European Symposium on Security and Privacy,
EuroS&P 2018, London, United Kingdom, April 24-26, 2018. 167–182.

[57] Santosh Nagarakatte, Jianzhou Zhao, Milo M. K. Martin, and Steve Zdancewic.
2009. SoftBound: highly compatible and complete spatial memory safety for c.
In Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2009, Dublin, Ireland, June 15-21, 2009. 245–258.

[58] Thomas Nyman, Ghada Dessouky, Shaza Zeitouni, Aaro Lehikoinen, Andrew
Paverd, N. Asokan, and Ahmad-Reza Sadeghi. 2017. HardScope: Thwarting DOP
with Hardware-assisted Run-time Scope Enforcement. CoRR (2017).

[59] Jianbao Ren, Yong Qi, Yue-hua Dai, Xiaoguang Wang, and Yi Shi. 2015. AppSec:
A Safe Execution Environment for Security Sensitive Applications. In Proceedings
of the 11th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments, Istanbul, Turkey, March 14-15, 2015. 187–199.

[60] ISEC Security Research. [n.d.]. knox-implementation of non-executable page
protection mechanism. http://isec.pl/projects/knox/knox.html

[61] Ryan Riley, Xuxian Jiang, and Dongyan Xu. 2008. Guest-Transparent Prevention
of Kernel Rootkits with VMM-Based Memory Shadowing. In Recent Advances in
Intrusion Detection, 11th International Symposium, RAID 2008, Cambridge, MA,
USA, September 15-17, 2008. Proceedings. 1–20.

[62] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. 2009.
Hey, you, get off of my cloud: exploring information leakage in third-party
compute clouds. In Proceedings of the 2009 ACM Conference on Computer and
Communications Security, CCS 2009, Chicago, Illinois, USA, November 9-13, 2009.
199–212.

[63] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. 2012. Return-
Oriented Programming: Systems, Languages, and Applications. ACM Trans. Inf.
Syst. Secur. 15, 1 (2012), 2:1–2:34.

[64] Roman Rogowski, Micah Morton, Forrest Li, Fabian Monrose, Kevin Z. Snow,
and Michalis Polychronakis. 2017. Revisiting Browser Security in the Modern
Era: New Data-Only Attacks and Defenses. In 2017 IEEE European Symposium on
Security and Privacy, EuroS&P 2017, Paris, France, April 26-28, 2017. 366–381.

[65] Reiner Sailer, Xiaolan Zhang, Trent Jaeger, and Leendert van Doorn. 2004. Design
and Implementation of a TCG-based Integrity Measurement Architecture. In
Proceedings of the 13th USENIX Security Symposium, August 9-13, 2004, San Diego,
CA, USA. 223–238.

[66] Cole Schlesinger, Karthik Pattabiraman, Nikhil Swamy, David Walker, and Ben-
jamin G. Zorn. 2011. Modular Protections against Non-control Data Attacks. In
Proceedings of the 24th IEEE Computer Security Foundations Symposium, CSF 2011,
Cernay-la-Ville, France, 27-29 June, 2011. 131–145.

[67] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian Schinzel, and
Thorsten Holz. 2017. kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels.
In 26th USENIX Security Symposium, USENIX Security 2017, Vancouver, BC, Canada,
August 16-18, 2017. 167–182.

http://www.bootchart.org/
https://cloud.google.com/hsm/
https://cloud.google.com/hsm/
https://cloud.google.com/kms/
https://iperf.fr
https://www.azure.cn/home/features/key-vault/
https://www.azure.cn/home/features/key-vault/
http://isec.pl/projects/knox/knox.html

[68] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus
Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. 2015. VC3: Trustworthy
Data Analytics in the Cloud Using SGX. In 2015 IEEE Symposium on Security and
Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015. 38–54.

[69] Arvind Seshadri, Mark Luk, Ning Qu, and Adrian Perrig. 2007. SecVisor: a tiny
hypervisor to provide lifetime kernel code integrity for commodity OSes. In
Proceedings of the 21st ACM Symposium on Operating Systems Principles 2007,
SOSP 2007, Stevenson, Washington, USA, October 14-17, 2007. 335–350.

[70] Hovav Shacham. 2007. The geometry of innocent flesh on the bone: return-into-
libc without function calls (on the x86). In Proceedings of the 2007 ACM Conference
on Computer and Communications Security, CCS 2007, Alexandria, Virginia, USA,
October 28-31, 2007. 552–561.

[71] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu,
and Dan Boneh. 2004. On the effectiveness of address-space randomization.
In Proceedings of the 11th ACM Conference on Computer and Communications
Security, CCS 2004, Washington, DC, USA, October 25-29, 2004. 298–307.

[72] Chengyu Song, Hyungon Moon, Monjur Alam, Insu Yun, Byoungyoung Lee,
Taesoo Kim, Wenke Lee, and Yunheung Paek. 2016. HDFI: Hardware-Assisted
Data-Flow Isolation. In IEEE Symposium on Security and Privacy, SP 2016, San
Jose, CA, USA, May 22-26, 2016. 1–17.

[73] Starzetz. [n.d.]. RSX. Retrieved May 27, 2019 from http://www.starzetz.com/
software/rsx/

[74] Adrian Tang, Simha Sethumadhavan, and Salvatore J. Stolfo. 2015. Heisenbyte:
Thwarting Memory Disclosure Attacks using Destructive Code Reads. In Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, Denver, CO, USA, October 12-16, 2015. 256–267.

[75] Yang Tang, Phillip Ames, Sravan Bhamidipati, Ashish Bijlani, Roxana Geambasu,
and Nikhil Sarda. 2012. CleanOS: Limiting Mobile Data Exposure with Idle Evic-
tion. In 10th USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2012, Hollywood, CA, USA, October 8-10, 2012. 77–91.

[76] The PaX Team. 2013. PaX. RetrievedMay 27, 2019 from https://pax.grsecurity.net/

[77] Minh Tran, Mark Etheridge, Tyler K. Bletsch, Xuxian Jiang, Vincent W. Freeh, and
Peng Ning. 2011. On the Expressiveness of Return-into-libc Attacks. In Recent
Advances in Intrusion Detection - 14th International Symposium, RAID 2011, Menlo
Park, CA, USA, September 20-21, 2011. Proceedings. 121–141.

[78] Amit Vasudevan, Sagar Chaki, Limin Jia, Jonathan M. McCune, James Newsome,
and Anupam Datta. 2013. Design, Implementation and Verification of an eXten-
sible and Modular Hypervisor Framework. In 2013 IEEE Symposium on Security
and Privacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013. 430–444.

[79] Vendicator. [n.d.]. Stack Shield: A Stack Smashing Tecnique protection tool for
Linux. Retrieved May 27, 2019 from http://www.angel?re.com/sk/stackshield

[80] Volatility 2015. The Volatility Framework.
https://code.google.com/archive/p/volatility/.

[81] Jiang Wang, Angelos Stavrou, and Anup K. Ghosh. 2010. HyperCheck: A
Hardware-Assisted Integrity Monitor. In Recent Advances in Intrusion Detection,
13th International Symposium, RAID 2010, Ottawa, Ontario, Canada, September
15-17, 2010. Proceedings. 158–177.

[82] Zhi Wang and Xuxian Jiang. 2010. HyperSafe: A Lightweight Approach to
Provide Lifetime Hypervisor Control-Flow Integrity. In 31st IEEE Symposium on
Security and Privacy, S&P 2010, 16-19 May 2010, Berleley/Oakland, California, USA.
380–395.

[83] Wei Wu, Yueqi Chen, Xinyu Xing, and Wei Zou. 2019. KEPLER: Facilitating
Control-flow Hijacking Primitive Evaluation for Linux Kernel Vulnerabilities.
In 28th USENIX Security Symposium (USENIX Security 19). USENIX Associa-
tion, Santa Clara, CA. https://www.usenix.org/conference/usenixsecurity19/
presentation/wu-wei

[84] Su Zhang. 2012. Deep-diving into an easily-overlooked threat: Inter-VM attacks.
Technical Report. Technical Report. Manhattan, Kansas: Kansas State University.

[85] Shuhui Zhang, Xiangxu Meng, Lianhai Wang, Lijuan Xu, and Xiaohui Han. 2018.
Secure Virtualization Environment Based on Advanced Memory Introspection.
Security and Communication Networks 2018 (2018), 9410278:1–9410278:16.

http://www.starzetz.com/software/rsx/
http://www.starzetz.com/software/rsx/
https://pax.grsecurity.net/
http://www.angel?re.com/sk/stackshield
https://www.usenix.org/conference/usenixsecurity19/presentation/wu-wei
https://www.usenix.org/conference/usenixsecurity19/presentation/wu-wei

	Abstract
	1 Introduction
	2 Background and Preliminaries
	2.1 Virtualization and VMI
	2.2 Intel Hardware-assisted Virtualization

	3 Threat Model
	4 TF-BIV Design
	4.1 Design Goals
	4.2 Overview
	4.3 S-processes Identification
	4.4 Memory Layout Monitoring
	4.5 Integrity Verification of Code Pages
	4.6 Integrity Verification of LKM
	4.7 Handling Mixed Pages

	5 Security Analysis and Comparison
	5.1 Security Analysis
	5.2 Comparison with Existing Solutions

	6 The Application in Cloud-based Cryptographic Services
	6.1 Integration into Cloud-based Service

	7 Implementation
	7.1 TF-BIV Implementation
	7.2 Integration

	8 Performance Evaluation
	9 Related Work
	10 Conclusion
	References

