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Abstract—Cryptosystems are essential for computer and communication security, e.g., RSA or ECDSA in PGP Email clients and AES

in full disk encryption. In practice, the cryptographic keys are loaded and stored in RAM as plain-text, and therefore vulnerable to

cold-boot attacks exploiting the remanence effect of RAM chips to directly read memory data. To tackle this problem, we propose

Copker, a cryptographic engine that implements asymmetric cryptosystems entirely within the CPU, without storing any plain-text

sensitive data in RAM. Copker supports the popular asymmetric cryptosystems (i.e., RSA and ECDSA), and deterministic random bit

generators (DRBGs) used in ECDSA signing. In its active mode, Copker stores kilobytes of sensitive data, including the private key, the

DRBG seed and intermediate states, only in on-chip CPU caches (and registers). Decryption/signing operations are performed without

storing any sensitive information in RAM. In the suspend mode, Copker stores symmetrically-encrypted private keys and DRBG seeds

in memory, while employs existing solutions to keep the key-encryption key securely in CPU registers. Hence, Copker releases the

system resources in the suspend mode. We implement Copker with the support of multiple private keys. With security analyses and

intensive experiments, we demonstrate that Copker provides cryptographic services that are secure against cold-boot attacks and

introduce reasonable overhead.

Index Terms—Cache-as-RAM, cold-boot attack, public-key cryptography implementation, deterministic random bit generator
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1 INTRODUCTION

IN computer and communication systems, cryptographic
protocols are indispensable in protecting data in motion

and at rest. In particular, public-key (or asymmetric) cryp-
tography is the foundation of a number of Internet applica-
tions. For example, PGP is used to encrypt Emails and
verify the identities of senders; SSL/TLS is widely adopted
in secure HTTP, anonymous communications, voice over IP
and other systems. The security of these systems relies on
the confidentiality of private keys. In practice, when the
cryptographic engines are loaded, the plain-text keys are
usually stored in the main random-access-memory (RAM)
of a computer. Although various mechanisms have been
proposed for memory protections, the RAM is still vulnera-
ble to physical attacks. When adversaries have physical
access to a running computer, they can launch cold-boot
attacks [1] to retrieve the contents of RAM chips. Any
data stored in RAM, including cryptographic keys, are

extracted. The compromised keys could be exploited to
decrypt messages, or to impersonate the owners of the keys.

Access control, process isolation and othermemory protec-
tions at the operating system (OS) level cannot prevent cold-
boot attacks, since they are essentially at the lowest level (i.e.,
hardware). Even though the cold-boot attackers do not have
any system privilege in the target machine, they can reboot
the machine with removable disks or plug the RAM chips
to their own machines, to dump the memory. Existing
approaches on memory management (e.g., the one-copy pol-
icy [2]) mitigate this problem, by increasing the difficulty to
find keys. Such methods are moderately effective for partial
memory disclosure. Unfortunately, a successful cold-boot
attack generates a dump of the entire physical memory, so
that all “hidden” information is disclosed. TRESOR [3] and
Amnesia [4] store AES keys and execute encryption/decryp-
tion entirely in CPU registers, so that the keys are not loaded
into main memory. The solutions are effective in protecting
symmetric keys (typically not longer than 256 bit) against
cold-boot attacks. However, they are not suitable for asym-
metric cryptography, since private keys are too long to fit into
registers. For example, a 2,048 bit RSA private key needs 1,152
bytes with Chinese remainder theorem (CRT) speed-up, and
the intermediate states need additional 512 bytes at least.

This paper presents a mechanism named Copker that
COmputes with Private KEys without RAM, to defeat
against cold-boot attacks. In particular, we implement RSA
and ECDSA, the prevalent public-key cryptographic algo-
rithms, on multi-core CPU systems. Copker also supports
an AES-CTR deterministic random bit generator (DRBG)
[5], used in ECDSA signing. During the computations,
Copker stores private keys, DRBG seeds and all
intermediate states in on-chip CPU caches and registers,
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and computes entirely on the CPU. Therefore, plain-text
keys and sensitive data never appear in RAM. To achieve
this goal, Copker designs the following mechanisms: (1)
during decryption/signing, the stack is switched so that all
variables are directed into a reserved address space within
caches as no data are stored in the system heap; (2) the
Copker task enters an atomic section, so that it cannot be
suspended and the variables are never swapped to RAM;
(3) other cores that share caches with the core running
Copker tasks are set to the no-fill mode during the computa-
tion, so that any task on these cores would not trigger cache
replacement; and (4) cryptographic keys are either dynami-
cally loaded into caches or encrypted in RAM, to release the
caches when there is no protected computation.

The design goal of Copker is to defend against physical
attacks on RAM. Hence, we assume a trustworthy OS
kernel-all binaries and processes with root privileges are
trusted; underlying software, peripherals’ firmware and
CPU hardware that the kernel depends on, are also trusted.
The prototype system runs in a customized Linux, but it can
be ported to a trustworthy OS such as seL4 [6]. The crypto-
graphic algorithms in Copker are written in C language, so
they are easier to be extended for more algorithms, com-
pared with assembly codes in [3], [4], [7]. We also designed
a validator to verify that no plain-text sensitive data are
leaked to RAM under stress tests.

Our contributions are three-fold. (1) Copker is the first
solution to perform asymmetric decryption/signing with-
out RAM. We keep cryptographic keys and intermediate
states in CPU caches and registers, so that sensitive data
never appear in RAM. (2) We implement the designed
architecture, and demonstrate its security through security
analyses as well as experimental validations. (3) Through
intensive experiments, we show that our secure crypto-
graphic services introduce reasonable overhead.

The remainder of this paper is organized as follows.
Section 2 presents the background. The design and the
implementation of Copker are described in Sections 3 and 4,
respectively. Section 5 evaluates Copker in term of validity
and performance, followed by the security analysis in
Section 6. Section 7 surveys the related work and Section 8
draws the conclusion.

2 BACKGROUND

2.1 The RSA Algorithm

RSA is the most prevalent public-key cryptosystem for both
encryption/decryption and signing/verification [8]. A
typical RSA private key block is an octuple (n; e; d; p; q;
dp; dq; qinv), where (n; e) is the public key, d is the private
key, and other variables are private parameters enabling
CRT speed-up. CRT makes the computation approximately
four times faster than that does not use [9]. The key length
(i.e., the length of n) denoted as L, shall be 2,048 bit at least
[10]. The length of d is also L, while p, q, dp, dq and qinv are
L=2 in length. Therefore, a 2,048 bit RSA private key needs
at least 4:5L ¼ 1; 152 bytes.

To execute RSA computations, more memory in addition
to the private key block is required. Algorithm 1 shows the
RSA decryption with CRT speed-up. The pseudo-code
requires at least 3 intermediate variables: t1 is L in length,
while t2 and t3 are L=2. So, for 2,048 bit RSA, at least

6:5L ¼ 1; 664 bytes are needed. This pseudo-code shows only
the major steps. When we consider the detailed implementa-
tion in each step, more memory is needed. For example, to
accelerate modular multiplications, Montgomery reduction
needs three long integers forMontgomery values [11].

Algorithm 1. RSA Decryption with CRT

Input: ciphertext, n, e, d, p, q, dp, dq, qinv
Output: plaintext

1: t1 ¼ Str2IntðciphertextÞ;
2: t2 ¼ t1dp mod p;
3: t3 ¼ t1dq mod q;
4: t1 ¼ ðt2� t3Þ � qinvmod p;
5: t1 ¼ t3þ t1 � q;
6: plaintext ¼ Int2Strðt1Þ;

2.2 The ECDSA Algorithm

ECDSA [12] is designed for digital signatures only. It works
on an elliptic curve EðFpÞ with a base point G. An ECDSA
private key is d 2 ð1; n� 1�, where n is the order of G. The
public key is P ¼ ðxP ; yP Þ ¼ d�G. The key length (i.e., the
length of n) is typically 192, 224, 256, 384 or 521 bits.

ECDSA signing is shown in Algorithm 2. Basically,
ECDSA needs less memory than RSA; however, to acceler-
ate the expensive elliptic curve point multiplication, a base-
point multiplication precomputation table is usually needed
[13]. The random number k needs to be kept secret, which
controls the precomputation table lookup; otherwise, attack-
ers could deduce the private key, with a valid signature
ðr; sÞ and its corresponding k.

Algorithm 2. ECDSA Signing

Input: digest, d, G, n
Output: signature

1: k random 2 ð1; n� 1�;
2: ðxk; ykÞ ¼ k�G;
3: r ¼ xk modn;
4: s ¼ k�1 � ðStr2IntðdigestÞ þ r � dÞmodn;
5: signature ¼ Int2Strðr; sÞ;

2.3 The AES-CTR DRBG

A DRBG generates deterministic “random” bits with a sym-
metric cryptographic algorithm and a secret seed. The seed
is updated on each generation. The AES-CTR DRBG [5]
works as follows. If the seed is kept secret (i.e., the AES key
and the counter), the output bits are computationally unpre-
dictable to attackers.

After a certain number of generations, the DRBG is
reseeded with entropy input data: the seed is updated by
itself and then XORed with the input data.

Algorithm 3. AES-CTR DRBG

Input: length, key, cntr
Output: rnd

1: while l < length do
2: rnd ¼ rnd jj AESEncryptðkey;þþ cntrÞ
3: l ¼ lþ 128
4: t1 ¼ AESEncryptðkey;þþ cntrÞ
5: t2 ¼ AESEncryptðkey;þþ cntrÞ
6: ðkey; cntrÞ  ðt1; t2Þ
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3 SYSTEM DESIGN

3.1 Threat Model

The primary goal of Copker is to defend against physical
memory-based attacks, such as the cold-boot attack [1]. In
such attacks, the target computer is physically accessible to
attackers. The attacker takes the following steps to obtain
the data in RAM: (1) power off the target computer; (2) pull
out the RAM chip; (3) put it in another machine fully con-
trolled by the attacker; and (4) dump the contents of RAM
to the attack machine. To make it more effective, the
attacker could reduce the temperature of RAM chips to
slow down the fading speed of memory contents. The phys-
ical attackers are also allowed to probe the front side bus
(FSB) that connects the CPU to RAM.

We do not consider OS vulnerabilities, or software
attacks on OSes. In particular, we assume a trustworthy OS
kernel to prevent attacks at the system level, if the attackers
have privileges on the system. The trustworthy OS ensures
basic security mechanisms, e.g., integrity and process isola-
tion. Formally verified OSes [6] would be used for this pur-
pose. Such an system implies trusted CPU hardware and
peripherals’ firmware. Unauthorized calls to the crypto-
graphic service are out of our scope. Attackers might obtain
decryption/signing results, but it does not harm the confi-
dentiality of private keys.

Assume that the system is safe (i.e., no malicious process
stealing secret information) during its initialization. In this
short-time period, we derive an AES key-encryption key to
be used in Copker, by asking the user to input a password.
This vulnerable window only happens early in kernel space.
The password is assumed to be strong enough to defeat
brute-force attacks. After the initialization period, malicious
processes may exist (e.g., an attacker gains root privileges
and invokes system calls); however, such processes shall
not break the protections by the trusted OS kernel. That is,
the attackers could invoke any system call, but the system
calls always perform as expected.

3.2 Design Goals and Principles

To defend against cold-boot attacks, our most important
design goal is to ensure that sensitive information never
appears on the FSB or in RAM chips. That is, plain-text keys,
as well as any intermediate results that might be exploited
to expose the keys, are always kept in on-chip CPU caches
and registers. To minimize the impact on CPU performance,
we only “lock” the caches when we are using the private
keys to decrypt/sign messages or the DRBG seed to gener-
ate random bits. To release unused resources and to protect
keys when they are not actively used, we employ TRESOR
[3], to encrypt them with AES, and protect the AES master
key in privileged registers. When Copker is not in its active
mode, the caches are used normally, so that system perfor-
mance is not affected. This design of dynamic loading ena-
bles Copker to support multiple private keys.

The Copker service is implemented as system functions
in OS kernel. To provide cryptographic services secure
against physical memory attacks, the design of Copker satis-
fies the following criteria:

1) A fixed address space is allocated and reserved for
computing with private keys and secret DRBG seeds.

During the computations, the address space is
accessed only by Copker, so that we can further
ensure data in this space are confined entirely in
caches and not written to RAM.

2) All variables are limited strictly in the address space
allocated, including private keys, DRBG seeds and
intermediate variables.

3) The Copker decryption/signing process cannot be
interrupted by any other task. Otherwise, the sensi-
tive data in this space might be flushed to RAM,
when cache replacement is triggered by read or write
misses from other tasks.

4) When Copker finishes computing with private keys
and seeds, all sensitive information in this address
space is erased. The used cache lines are cleaned
deliberately before they are released.

All sensitive data and variables of the private-key opera-
tions are strictly stored and confined within the fixed space.
The size of this space is carefully chosen, so that (a) it is suf-
ficient to hold all variables and data, and (b) it can be
completely filled into the level-one data (L1D) cache, typi-
cally 32 KB. No data are stored in the system heap, since
heap variables are difficult to be limited within a fixed
space. When a user-mode process calls decryption/signing
services, the stack is also redirected to the reserved space,
before Copker starts to compute with plain-text keys.

For secure public-key algorithms, input and output are
allowed to appear as plaintext in RAM, i.e., known to
attackers. As for DRBGs, in addition to the seed, the entropy
input should be kept secret. In Copker, the entropy input is
collected as ciphertext in RAM and decrypted by the AES
master key into caches before it is used. Plaintext random
bit outputs do not disclose any sensitive states of DRBGs,
but they could be exploited to deduce the private keys
when used in ECDSA signing. So the DRBG output is pro-
tected as sensitive intermediate variables of ECDSA. If an
ECDSA precomputation table is used, the access pattern
will leak some information about the random bits, and we
also need to confine the table access within CPUs.

The Copker task runs in an atomic section: all interrupts
are disabled during the computations. It enters the atomic
section before any keys or sensitive data are decrypted as
plaintext, and exits after the cache is erased. On multi-core
CPUs, we disables local interrupts, i.e., interrupts of the core
that runs Copker.

Finally, it is very difficult to explicitly obtain consistency
status of RAMand caches (i.e., whether data in caches are syn-
chronized to RAM or not), because consistency controls are
performed transparently by hardware. We design a valida-
tion utility using instructioninvd, which invalidates all cache
entries without flushing data to RAM. After the decryption/
signing process, we invalidate all cache entries, and check the
corresponding RAM contents. Unchanged contents in RAM
indicate that cache data are not flushed to RAM.

3.3 Key Management

When the private keys and the DRBG seed are not being
used, they are encrypted in RAM. When a user invokes
Copker services, the requested private key is loaded,
decrypted by the master key, used, and finally erased within
the reserved space. If the DRBG is needed during this
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process, the seed is decrypted and updated also in the
reserved space, and encrypted again before written back
to RAM.

3.3.1 The Master Key

The AES master key is derived from the user password. The
128 bit master key is always protected by TRESOR [3] in
four debug registers (in particular, db0/1/2/3). The debug
registers are privileged resources that are not accessible
from user space and seldom used in regular applications.
When the system boots, a command-line prompt is set up
for the user to enter the password. The master key is
derived and copied to each CPU core. Then, all intermediate
states are erased carefully.

With Copker, some hardware debug features become
unavailable (e.g., debug self-modifying codes), because
debug registers are occupied. However, debug registers
are not the only place to protect the master key. The solu-
tions storing AES keys in other registers [4], [14], provide
alternative choices, when debug registers are necessary
for other tasks.

3.3.2 Private Keys

When the system boots, the encrypted private keys are pre-
loaded into RAM from hard disks. These private keys were
securely generated, and then encrypted by the same AES
key in a secure machine, for example, on an off-line trust-
worthy computer.

To support multiple private keys, and more importantly,
to release caches when Copker suspends, the encrypted pri-
vate key blocks and DRBG seeds are decrypted in caches
only when a decryption/signing request is received. The
steps are shown in Fig. 1: (1) the master key is derived from
the user’s password and stored in debug registers; (2) the
cipher-text private keys are loaded into RAM from hard
disks; (3) when a decryption/signing request is received,
the master key is first written to caches; (4) the requested
private key is loaded to caches, (5) the private key is
decrypted by the master key, to perform private-key opera-
tions, and optionally (6) the DRBG seed is decrypted to gen-
erate random bits during the private-key operations when
necessary. In Fig. 1, memory locations in locked shadow
indicate encrypted data.

3.3.3 Deterministic Random Bit Generators

DRBGs are used in ECDSA signing, and the DRBG seed is
also protected against cold-boot attacks as well as private
keys. In particular, when the system boots, random bytes
are collected from the kernel entropy pool as an initial
“encrypted” DRBG seed in RAM. This initial seed is directly

assigned in ciphertext. On each ECDSA signing, the seed is
decrypted by the AES master key in caches, and used to
generate random bits (see Algorithm 3). Then, the updated
seed is encrypted again and written back to RAM.

The DRBG seed is deterministically updated after each
generation, and reseeded with entropy inputs after a certain
number of generations. Random bytes are exacted from the
kernel entropy pool and then decrypted by the master key
as entropy inputs. When the system is running, the kernel
entropy pool might be disclosed to cold-boot attacks, but
the AES master key in privileged registers is kept secure. So
the entropy inputs are still unpredictable to attackers.

3.4 A Cryptographic Engine Entirely in Caches

3.4.1 Cache-Fill Modes

We introduce two cache-fill modes on Intel CPUs, which
play important roles in Copker.Write-Back Mode. In this
mode, modified data are not synchronized into RAM until
explicit or implicit write-back operations. It is supported by
all modern CPUs, and provides the best performance. In
Intel CPUs, this mode is enabled when both memory type
range registers (MTRRs) and page attribute tables (PATs) are
set properly. The accesses to memory data are performed
entirely in caches, whenever possible. On cache hits, the core
reads from cache lines (read hit) or updates the caches (write
hit). Meanwhile, on cache misses, cache lines may be filled.
Write-back-to-RAM operations are performed, only if cache
lines are (1) evicted to make room for other memory blocks
or (2) explicitly flushed by instructions.No-Fill Mode. This
mode is enabled individually on each core. In the no-fill
mode, if the PAT of accessed memory block is set in the
write-back mode, cache hits still access the cache. However,
read misses do not cause cache replacement (data are read
either from another core that holds the newest copy of the
data, or directly from RAM), and write misses access RAM
directly. That is, the cache is “frozen”, restricting cache
access only to data that have been loaded in caches.

3.4.2 Computing Within the Confined Environment

We construct an execution environment entirely in caches
that contains all data/variables during the protected com-
putations, including these elements:

� The AES mater key copied from debug registers.
� The AES context, including the round keys.
� The private-key context initialized by the plain-text

private key bytes.
� The DRBG seed block.
� The stack frames of functions that compute with the

sensitive data.
� Input and output of the private-key operations.
The environment shall not contain any system-level heap

memory. Heap data are dynamically allocated and the loca-
tions are determined by the OS memory management.
Hence, it would be difficult, if not impossible, to restrict the
heap usage in a pre-allocated address space and then lock
them in caches. We reserve a static memory buffer to store
all variables of the protected computations. In Copker, the
long integer module of public-key cryptographic algorithms
which is usually defined in heap, is implemented as static

Fig. 1. Dynamic loading of private keys.
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variables or dynamically-constructed ones but within the
reserved static buffer (see Section 4.2.1).

C language takes advantages of stack to support function
calls. Function parameters and local variables are stored in
stack, so the system stack may also contain sensitive data.
However, the OS designated memory locations of the stack
is uncontrollable. We temporarily take over the stack loca-
tion control by stack switching, as shown in Fig. 2. In the
Copker system functions, it temporarily switches to a cus-
tomized stack, which also resides in the secure execution
environment as defined above.

When Copker is invoked to decrypt or sign a message,
the procedure is outlined as follows:

1) The debug registers protected by TRESOR, are
loaded to reconstruct the master key.

2) The AES context is initialized by the master key.
3) The encrypted private key is decrypted using the

AES context.
4) The private-key context is initialized, using the

plain-text private key block.
5) The desired private-key operation is performed, and,

if it is necessary, the DRBG seed is decrypted to gen-
erate random bits and then updated.

6) The environment is erased, except the outputs are
flushed to RAM. The DRBG seed is re-encrypted and
flushed if it is updated.

All above functions are executed on the customized stack
in the secure environment. When the DRBG is about to be
reseeded with entropy input data, the data are collected out-
side the protected computation, because it uses the kernel
entropy pool and the memory access cannot be limited
within the allocated space. The number of random bit gener-
ations is stored as plaintext, and we prepare the “encrypted”
entropy data before starting the protected computation.

3.4.3 Securing the Execution Environment

We must ensure that this environment only resides in
caches after it is updated and then contains sensitive varia-
bles. It seems that, this requirement has been satisfied by
the write-back mode. However, modern OSes are compli-
cated: setting the cache mode is only the first step, while
more complicated mechanisms are needed to securely
“lock” the environment in caches.

Protecting Shared Caches. Modern CPUs usually imple-
ment cache hierarchy with multiple levels, and higher-level

caches (e.g., L2/L3 caches) are often shared among a set of
cores. For example, as Cores 0 and 1 shares a cache, the tasks
running on Core 1 may compete for the shared cache with
Copker on Core 0. A memory-intensive task running on
Core 1 may occupy most cache lines of the shared cache. If
this shared cache is not exclusive with inner (or lower-level)
caches, Copker’s execution environment in the L1D cache is
also evicted.Hence, the cores sharing cacheswith the Copker
core are forced to enter the no-fill mode, so that they cannot
evict Copker’s caches.

We define the cache-sharing core set. It is a set of cores that:
(1) share with each other some levels of caches that are not
exclusive to inner caches, and (2) do not share any cache
with cores outside this set. If Copker is running on a core of a
cache-sharing core set, all other cores in this set switch to the
no-fill mode.

Atomicity. Multi-tasking is supported in modern OSes via
context switch, which is triggered by scheduling, interrupts
or exceptions. When context switch is triggered, the states
of the suspended task, including registers, are kept in mem-
ory. If the task is not resumed soon, the occupied caches
may be evicted. In both cases, the data of suspended tasks
are leaked to RAM. To prevent this, the private-key opera-
tions of Copker work in an atomic section; so it cannot be
interrupted by other tasks on the same core.

Clearing the Environment. Before Copker leaves the atomic
section, the plain-text keys and all intermediate states shall be
erased. Because all sensitive data are confined in the reserved
space, instead of scattered in any memory allocated by OSes,
it is easier to clear them. We only need to clean the reserved
space and all registers, except the output, the encrypted
DRBG, and the read-only ECDSAprecomputation table.

4 IMPLEMENTATION

We implement and integrate Copker into Linux kernel 3.9.2
for 32 bit x86 compatible platforms with SMP support. In
this prototype, Copker supports 2,048 bit RSA, 192 bit
ECDAS and AES128-CTR DRBGs.

The prototype runs on an Intel Core2 Q8200 CPU. As
shown in Fig. 3, Q8200 contains two separate cache-sharing
core sets, each of which has two cores. Each core has a L1D
cache of 32 KB. The two cores of each cache set share a uni-
fied L2 cache of 2 MB.

The interface exported to user space is provided by the
ioctl system call in a synchronous manner. The ioctl

system call takes a device-dependent request code to
accomplish specific functions in Linux kernel. In the proto-
type, we provide three functions:

� Get the number of encrypted private keys.
� Get the public information of a key pair, including

the algorithm identifier and its public key.

Fig. 2. Stack switch.

Fig. 3. Cache hierarchy of Intel Q8200.
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� Perform a private-key operation using a key pair
specified by its index.

Fig. 4 shows the structure of Copker API. The API is
further encapsulated as an OpenSSL engine, making it
easy for Copker to be integrated into existing crypto-
graphic applications.

4.1 Cache Control in x86 Platforms

The x86 architecture provides very limited cache control utili-
ties to software. Control register cr0 is used to control sys-
tem-wide cache behaviors. Page-based virtual space and
region-based physical space cache-fill types can be set indi-
vidually. It also provides instructions that can be used to
flush all or specified cache lines of a core. However, none of
them could be used to query the status of a specific cache line.

The following cache control utilities are relevant:

� Control register cr0: bits 29 and 30 of cr0 control
system-wide cache behaviors. In normal setting,
both bits are cleared, and cache-fill is fully enabled.
When bit 29 is cleared and bit 30 is set, the core
enters the no-fill mode (see Section 3.4).

� Instruction wbinvd: write back all modified cache
lines to RAM and invalidate the cache lines. After
invalidating the local cache (e.g., L1D cache),
wbinvd also signals the corresponding shared cache
(e.g., shared L2 cache) to do the same thing. Note
that, wbinvd works on the cache set that corre-
sponds to the core-other cache lines outside this set
are not affected.

� Instruction invd: it works in the same way as
wbinvd, except that the modified data are not writ-
ten back to RAM before invalidated. Data in the
caches are abandoned.

� Instruction clflush: it takes a virtual memory
address as operand and flushes the (modified) data
in the corresponding cache line into RAM. Then, the
cache line is invalidated.

4.2 Implementation Details

4.2.1 Cryptographic Algorithms

RSA. Copker’s RSA implementation is based on PolarSSL
v1.2.5 [15], a lightweight cryptographic library.We eliminate
the heap usage in its long integer module. Each long integer
is statically allocated 268 bytes: 256 bytes store the basic 2,048
bit value, and 12 bytes for other auxiliary information. To
speed up RSA decryption/signing, PolarSSL implements

CRT, sliding windows, and Montgomery multiplication.
We change the default value of sliding windows from 6 to
1, to reduce the memory allocation in stack with little sacri-
fice of efficiency.

ECDSA. ECDSA is implemented on PolarSSL v1.3.5, for
v1.2.5 does not support ECDSA. This improved version also
introduces built-in dynamic memory functions, indepen-
dent of the OS dynamic memory library. These functions
are used for long integers and require a fixed memory range
that is specified in the reserved space. PolarSSL uses a
16-point precomputation table to speed up base-point mul-
tiplications, and entries of the table are constructed one by
one on the fly as it is used in ECDSA signing. We modify it
to construct the whole table when Copker is initializing;
and the table is loaded into the L1D cache as a whole, to
defeat against FSB probing attacks (see Section 6.1).

DRBG. The AES-CTR DRBG is also borrowed from
PolarSSL. The DRBG seed is 48 bytes, consisting of a 256 bit
AES key and a 128 bit counter. It reseeds after 10,000 times
of function calling. The system function get_random_

bytes() returns entropy data to initialize the seed and to
reseed the DRBG.

4.2.2 Execution Environment Definition

CACHE_CRYPTO_ENV contains all variables that Copker
accesses during the private-key operations. This data struc-
ture is defined in a staticmanner as below.

struct CACHE_CRYPTO_ENV {

unsigned char masterKey[128/8];

AES_CONTEXT aes;

union {

RSA rsaCtx;

ECDSA {

ECDSA_KEY ecdsaKey;

unsigned char mallocBuffer[DMEM_SIZE];

} ecdsaCtx;

} pkcontext;

DRBG drbg;

PRECOMPUTATION_TABLE table;

unsigned char cacheStack[CSTACK_SIZE];

unsigned long privKeyId;

unsigned char input[MAX_IN_LENGTH];

unsigned char output[MAX_OUT_LENGTH];

} cacheCryptoEnv;

CSTACK_SIZE is 6,400, sufficient in all our experiments.
In the 2,048 bit RSA experiments, the deepest stack that has
been used is 5,584 bytes, while it is 1,376 bytes in 192 bit
ECDSA. Input and output of RSA private-key operations
are both 256 byte. The input of ECDSA signing is typically
32 or 20 bytes (i.e., a SHA1 or SHA256 digest), and the out-
put is 48 byte. In the 192 bit ECDSA experiments, 5,120
bytes of mallocBufferwas used for the long integer mod-
ule in ECDSA, not including the precomputation table
table. Finally, table needs about 1,344 bytes.

The structure occupies about 15 KB, for both 2,048 bit
RSA and 192 bit ECDSA. To support stronger keys, more
memory are needed. For example, 3,072 bit RSA requires
8,028 bytes of cacheStack in our experiments, while 256
bit ECDSA requires 5,632 bytes of mallocBuffer and
about 1,600 bytes of table.

Fig. 4. Copker API structure.
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The size of cacheCryptoEnv is smaller than the size of
L1D caches in Intel CPUs, typically 32 KB. Note that
cacheCryptoEnv is statically allocated in kernel, hence, it
is contiguous in both logical and physical memories. Con-
tiguous 15 KB are guaranteed to fit in the eight-way set-
associative L1D cache, without any conflict. This is con-
firmed in our experiments. In developing the prototype, we
have tested the maximum RSA key length of 4,096 bit and
256 bit ECDSA.

4.2.3 Filling the L1D Cache

In an x86 CPU, when an instruction writes data to a memory
location that is in the write-back mode, the core checks
whether this location is in its L1D cache. If not, the core first
fetches it from higher levels of the memory hierarchy (i.e.,
L2/L3 caches or RAM) [16]. Taking advantage of this fea-
ture, we put cacheCryptoEnv into the L1D cache by sim-
ply reading and writing back one byte of each cache line.
Before doing this, we ensure that cacheCryptoEnv is in
the write-back mode.

4.2.4 Stack Switch

In x86 platforms, register esp points to the current stack
top, and ebp points to the base of the current function’s
stack frame. The stack operation instructions, e.g., pushl
and popl, implicitly use the base address from the stack
segment register, plus the operand, to construct a linear
address. Linux kernel implements flat-mode memory,
which means that the data segment and the stack segment
start from the same virtual address. We utilize memory area
in the data segment as if it was in the stack segment.

4.2.5 Atomicity

First of all, task scheduling is disabled by calling
preempt_disable() that disables kernel preemption. By
calling local_irq_save(), maskable interrupts are dis-
abled as well, so they will not suspend Copker’s execution.
When Copker exits the atomic section, two operations are
reversed. System management interrupts (SMIs) and non-
maskable interrupts (NMIs) are discussed in Section 6.2.

4.2.6 SMP Support

When the core in a cache-sharing core set is running
Copker, all other cores in the set are forced to enter the no-
fill mode. It implies that the maximum number of threads
running Copker concurrently, is restricted by the number of
separate cache sets. Here, we refer to real concurrent tasks,
not time-sharing concurrency. Intel Q8200 can run two con-
current Copker threads.

Algorithm 4 lists the main logic of Copker with SMP sup-
port. In particular, CSET_CNT is the number of separate
cache sets. Semaphores are used to avoid multiple cores in
the same cache set to run Copker concurrently, as only one
cacheCryptoEnv is allocated for each set. They are imple-
mented with down() and up(), the PV functions of sema-
phores in Linux.

At the beginning, the task is restricted in the core where
it is running, by setting the thread’s affinity to idCore. It
avoids inconsistency of idCore if the task is scheduled

onto another core after Line 1 is executed. cache_set_id
(id) and cache_set(id) return the index and the mem-
bers of the cache-sharing core set that contains the core
identified by id, respectively. Then, these cores enter the
no-fill mode.

Algorithm 4. Copker with SMP Support

Variable: cacheCryptoEnv[CSET_CNT], semaphoreCopker
[CSET_CNT]

Input: message, keyId
Output: result

1: idCore smp_processor_id(current);
2: set the current thread’s affinity to core idCore;
3: idCache cache_set_id(idCore);
4: env cacheCryptoEnv+idCache;
5: if get_memory_type(env) 6¼WRITE_BACK then
6: exit
7: end
8: down(semaphoreCopker[idCache])
9: preempt_disable()
10: local_irq_save(irq_flag)
11: C cache_set(idCore)n{idCore}
12: for cid 2 C do
13: enter_no_fill(cid)
14: end
15: fill_L1D(env)
16: env->(input, privKeyId) (message, keyId)
17: switch_stack(env, private_key_compute, env->”cacheStack

+CACHE_STACK_SIZE-4)
18: clear_env(env)
19: for cid 2 C do
20: exit_no_fill(cid)
21: end
22: local_irq_restore(irq_flag)
23: preempt_enable()
24: up(semaphoreCopker[idCache])
25: return result env->output

private_key_compute() executes the private-key
operations using the switched stack, pointed by env->
cacheStack+CSTACK_SIZE-4”. We subtract four from the
end, because in 32 bit x86 platforms, the stack grows down-
wards in units of 4 bytes.

4.3 Kernel Patch

Linux kernel is patched to ensure that sensitive data are
only in caches and registers. TRESOR patch is first applied
[3], so the debug registers that contain the master key are
unaccessible to other tasks except Copker. ptrace()

accessing debug registers in user space is patched, as well
as native_get_debugreg() and native_set_debu-

greg() that access debug registers in kernel space. Second,
although direct access to cacheCryptoEnv is restricted by
process isolation of the OS, other tasks in the same cache-
sharing core set could issue cache instructions to violate
Copker’s protections, when Copker is in the atomic section:
(1) exit from the no-fill mode by setting cr0; and (2) issue
wbinvd to flush caches that Copker is accessing.

Setting cr0 and issuing wbinvd are only executed with
ring 0 privileges, so we only need to patch the correspond-
ing kernel codes: write operations to cr0 and wbinvd are
executed only if there is no Copker thread running within
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the same cache set. The introduced overhead is negligible,
as these operations are rarely used.

In Linux kernel for x86 platforms, instruction wbinvd

and write operations to cr0 are implemented as inline func-
tions, wbinvd() and write_cr0(), in /arch/x86/

include/asm/special_insns.h. We searched all
usages of these operations in Linux kernel source codes,
and found that all occurrences strictly invoke wbinvd()

and write_cr0(). The patches to them are similar; hence,
we only list the patch to wbinvd() as below. The lines
marked by “+” indicate codes added by the patch, while
other lines belong to the original Linux kernel codes.

Listing 1. Kernel patch to wbinvd().

static inline void wbinvd(void)

{

+ cpumask_t tempSet,savedSet;

+ int idCore;

+ savedSet = current->cpu_allowed;

+ idCore = smp_processor_id();

+ cpumask_clear(&tempSet);

+ cpumast_set_cpu(idCore,&tempSet);

+ set_cpus_allowed_ptr(current,&tempSet);

+ if(-EINTR == down_interruptible(

+ semaphoreCopker + cache_set_id(idCore));

+ return;

native_wbinvd();

+ up(semaphoreCopker + cache_set_id(idCore));

+ set_cpus_allowed_ptr(current,&savedSet);

}

There are other operations that might violate Copker’s
protections, e.g., setting MTRR or PATs to change the cache
mode of cacheCryptoEnv. MTRR operations must be exe-
cuted on the same core as Copker is running on, so it is
impossible during the atomic Copker computations. And
PATs cannot be changed, because the OS kernel is (assumed
to be) trustworthy. Besides, attackers may flush the transla-
tion lookaside buffer (TLB), the specific cache for the trans-
lation between virtual and physical addresses; but flushing
TLB does not affect data caches [17].

Although instruction clflush can flush the specified
cache lines in ring 0 or ring 3, it cannot be exploited to break
Copker’s protections. First, the user-space code does not
have permissions to access kernel memory space, where the
sensitive information of Copker is located. Second, Linux
kernel does not export any system call that flushes a user-
specified memory range. Third, in a trusted kernel, no piece
of code would flush cacheCryptoEnv.

5 EVALUATION

5.1 Validation

We designed a mechanism to experimentally prove that the
sensitive data in caches are not flushed from caches to
RAM. Theoretically, based on the analysis of Algorithm 4,
we ensure that cacheCryptoEnv in the L1D cache cannot
be evicted before it is erased explicitly. However, we expect
to have empirical evidences that the data are locked in
caches. This is considered to be a challenging task [3], [18],
because memory consistency is automatically maintained

by CPUs and the RAM controller in x86 platforms, and
these is no instruction that queries the cache line status.

The basic idea of our validator is as follows. We first place
canary words in cacheCryptoEnv in the RAM before any
private-key operation. After the private-key operation, invd
is issued to invalidate all the modified cache lines of cache-
CryptoEnv, without flushing them to RAM. Then the copy
of cacheCryptoEnv in RAM is checked. If all canary words
remain, no data are written to RAM.

Based on Algorithm 4, we add the steps as below to vali-
date the correctness of Copker:

1) Fill cacheCryptoEnv with canary words, except
drbg, table, privKeyId, input and output,
when Copker is initializing. This operation is only
executed once.

2) When Copker starts the atomic section, other cores in
the same cache-sharing core set execute wbinvd

before entering the no-fill mode. It flushes all modi-
fied data in other cores’ caches to RAM. Then, these
cores run without caches.

3) Before calling private_key_compute(), Copker
executeswbinvd. It flushes all modified data in caches
to the RAMonCopker’s core.

4) After private_key_compute() returns, Copker
flushes the result and the updated DRBG by using
clflush, and then executes invd. At this time, all
other modified data in caches are lost. Instruction
wbinvd in Steps 1 and 2, is executed to avoid data
inconsistency caused by invd.

5) Check whether canary words are crashed, when
leaving the atomic section. If all canary words keep
unchanged, it is verified that no data are flushed to
RAM; otherwise, sensitive data may have been
leaked into RAM.

Caches are flushed in units of cache lines, typically 64
byte for the L1D caches. To avoid flushing data more than
output and drbg, the definition of output is changed as
below, and drbg is done similiarly.

unsigned char output[(MAX_OUT_LENGTH +

CACHE_LINE_SIZE - 1)

/ CACHE_LINE_SIZE * CACHE_LINE_SIZE]

__attribute__((aligned(CACHE_LINE_SIZE)));

We ran Copker services using the above algorithm con-
currently with a memory-intensive program for more than
ten days, and found no cache leakage. That is, all canary
words keep unchanged during this validation experiment.
As the above algorithm almost shares the same procedure
with Algorithm 4, we are convinced that Copker effectively
protect sensitive data from being flushed into RAM. In the
validation, Copker is integrated into an Apache web server
to provide RSA/ECDSA decryption/signing services, in
response to continuous HTTPS requests from a client at the
concurrency level of 10. The memory-intensive program is
an infinite loop. In each iteration, it requests a 4 MB block
using malloc(), adds up each byte, and frees the memory.

Although the validator is also capable of keeping sensitive
information in caches, we only use it as a validation method.
The Copker prototype is much more efficient. In the final
design, all other cores that share caches with the Copker core
works in the no-fill mode. In the validator, other cores are
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running without any cache, since wbinvd is invoked before
entering the no-fill mode. Moreover, the validator invokes
wbinvd and invd, both of which are expensive.

5.2 Performance

We evaluated the efficiency of Copker and its impact on the
overall system performance. It is compared with the modi-
fied PolarSSL and the original one. The modified version is
the PolarSSL with the modifications by Copker, including
(a) long integers without heap and modified sliding win-
dow values in RSA, and (b) long integers with built-in
dynamic memory and the precomputation table in ECDSA,
but it runs in the same environment as the original version.
The difference between Copker and the modified PolarSSL
indicates the performance loss from the protections.

In these experiments, all approaches are invoked through
OpenSSL engine API to perform 2,048 bit RSA decryption or
192 bit ECDSA signing. They use the same RSA (or ECDSA)
key. The testing machine is a Dell OptiPlex 760 PC with one
Intel Q8200 CPU.

5.2.1 Maximum Private-Key Operations per Second

We measure the maximum private-key operations speed.
The client program requests services on each approach, run-
ning at different concurrency levels. We record the number
of served requests in 10 minutes.

As shown in Fig. 5, Copker runs comparably to PolarSSL
when there are 1 or 2 concurrent threads. However, as the
concurrency level increases, PolarSSL surpasses Copker: com-
pared with the single-thread case, the maximum speed of
Copker is only about doubled, while others are quadrupled.
This result is expected: the maximum effective concurrency
level of Copker is 2, which is restricted by the number of cache
sets in the CPU, while this level of others is 4, restricted by the
number of CPU cores. Copker RSA runs a little faster than the
modified PolarSSL, because it is not affected by task schedul-
ing; due to the reduced slidingwindows of RSA, themodified
PolarSSL is less efficient than the original one. On the con-
trary, an ECDSA task is much more lightweight than RSA, so
disabled task scheduling does not bring remarkable benefits.
The modified ECDSA is better than the original one, because
each thread keeps a separate buffer as its long-integer space
while the original PolarSSL v1.3.5 needs to synchronize these
threads on the OS dynamic memory. We also found that,
when there are many concurrent tasks (e.g., 16 threads), the
efficiency of PolarSSL v1.3.5 decreases, probably due to its
built-in dynamicmemory option.

5.2.2 Overall Performance at the Application Level

We evaluate the performance of Copker, integrated into an
Apache web server as the HTTPS private-key engine.
Apache serves a 5 KB web page under HTTPS with
TLSv1.2. The TLS cipher suit is RSA-AES128-SHA or
ECDHE-ECDSA-AES128-SHA. The client runs on another
computer in 1 Gbps LAN with the server. ApacheBench
[19] issues 10 K requests with various levels of concurrent
requests, and we measure the HTTPS server throughput.

The HTTPS throughput is shown in Fig. 6. The upper
limit due to the process of network packets and protocols, is
about 250 requests per second. When the original PolarSSL
(RSA or ECDSA) and the modified ECDSA are used, their
results are very close, about 250 requests completed per sec-
ond. The modified version and the Copker version of RSA
reach closely to their limits in Fig. 5, as the concurrency level
increases. Although Copker finishes ECDSA signing more
than 500 times per second, its HTTPS throughput is less
than the upper limit (only about 200 requests per second)
due to the overhead of Copker’s protections.

5.2.3 Impact on Concurrent Applications

As Copker forces other cores in the same cache-sharing core
set to enter the no-fill mode, the performance is affected.
We use SysBench [20] to measure the impact, as a single
Copker thread is running at different densities. Fig. 7 shows
the results of SysBench in its CPU mode. The benchmark
launches four threads to issue 10 K requests. Each request
consists in calculation of prime numbers up to 30 K. The
score is the average time for each request. When SysBench
spends more time on the task, Copker brings higher impact
on the concurrent applications. In Fig. 7, the baseline is mea-
sured in a clean environment without any task. At the same
request frequency, the original PolarSSL performs the best

Fig. 5. RSA and ECDSA performance. Fig. 6. Apache benchmark.

Fig. 7. CPU impact on concurrent applications.
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among the three. The original PolarSSL spends fewer
resources on cryptographic tasks, thereby spares more
resources for benchmark tasks. Although Copker performs
the worst, the additional overhead is acceptable-compared
with the original PolarSSL, about 10–35 percent more time
for each SysBench task depending on different crypto-
graphic algorithms and densities.

We also ran SysBench in the memory mode. Table 1
shows the throughput of memory access (four bench-
mark threads, one KB each read or write operation for
3 GB data), as the cryptographic engine is called at its
maximum speed by one thread. The baseline is mea-
sured without any cryptographic engine. Compared with
the CPU-mode results which are determined by the CPU
computation power mostly (and also its memory access),
the impact remarkably increases because these results
are determined by the memory-access capability. It is
shown that, either for RSA or ECDSA, Copker brings the
most significant impact. The modified PolarSSL performs
the best for RSA (i.e., brings the least impact to memory
access), while the original version does the best for
ECDSA. The impact of memory access by Copker is
acceptable-compared with the best one, the throughput
under Copker is about 51-58 percent for RSA (or about
64-84 percent for ECDSA).

5.3 Performance Optimization

During the protected computations, CPU cores that share
caches with the Copker core are forced into the no-fill
mode. Such design brings performance impacts: the caches
of these core cannot be filled with new data during the
Copker computations, and the number of concurrent
Copker tasks is limited. It becomes severe on newer CPUs,
which usually have a L3 cache shared by all cores. Such
platforms will not run concurrent Copker tasks. Meanwhile,
one Copker thread on Intel Q8200, performs more than 60
2,048 bit RSA decryption per second or 500 192 bit ECDSA
signing, which is sufficient for many applications.

To mitigate this performance impact, Copker can work
with an intelligent scheduling scheme. The idea is to add a
hold mode. In this mode, Copker still runs as a service to
collect and hold decryption/signing requests from applica-
tions, but not performing the private-key operations. It peri-
odically switches to the active mode to process all on-hold
requests. Therefore, the performance will be improved by
reducing the switch between the active and suspend modes.
It also decreases the performance impact to the tasks on
other cores by reducing the frequency of forcing them into
the no-fill mode. This scheme is only effective in some

scenarios, where Copker requests arrive at medium fre-
quency and a small delay is tolerated.

5.4 Applicability

The prototype system is implemented on Intel Q8200 CPUs
and a customized Linux kernel, but the design is applicable
to other platforms. First, Copker depends on two cache-fill
modes, i.e., write-back mode and no-fill mode. These modes
are supported on most (and almost all recent) Intel CPUs,
and lots of ARM and AMD chips support similar controls
[21], [22]. Second, the Copker design requires privileged
registers to protect the master key, which are also available
on ARM and AMD platforms [4], [23]. Finally, the Copker
computation runs in an atomic section, and atomicity is a
general function of commodity OSes. So it is practicable to
integrate Copker into different platforms as common secu-
rity services, and this integration requires the co-operation
of vendors if the OSes are not open-source. Moreover, since
it accesses only caches during the computations, such serv-
ices offer the potential to prevent cache-based side channels
in the virtualization environment [24], [25].

6 SECURITY ANALYSIS

6.1 Attacks Directly on Copker

We consider the protection of the password and the AES
master key. First, Copker employs TRESOR to protect the
master key, hence, all analyses of TRESOR also apply to
(the AES portion of) Copker. On system booting, the OS ker-
nel reads the password from users to derive the master key.
All the memory traces must be carefully cleaned. In TRE-
SOR, when the computer wakes up from the suspend
mode, the administrator may type in the password again to
derive the master key (and to access the encrypted hard
disk); or, reboot the computer. This option gives attackers
chances to compromise the password (i.e., the master key) if
they launch keystroke-logger attacks, so Copker does not
support such master key re-derivation. Since the AES mas-
ter key is not used to encrypt disks, the computer still func-
tions without it. If Copker is then invoked to provide
services, the unavailability of the master key is notified to
users via an error code. The master key has to be re-deviated
by rebooting the machine.

A skillful attacker may launch bus-probing attacks, to
monitor the FSB connecting the main memory and CPUs.
As shown before, the plain-text sensitive memory data in
cacheCryptoEnv is only generated inside the L1D cache
and never appears in the FSB. In ECDSA signing, the pre-
computation table is loaded into the L1D cache as a whole;
otherwise, if the table entries are loaded into caches one by
one across the FSB as k�G is being computed, such bus-
probing attacks could infer some information about k.

The OS entropy pool is not always random enough;
sometimes, its outputs might be predictable [26], [27]. In
Copker, although the OS-provided entropy is used to initial-
ize and reseed the DRBG, the actual inputs appear only after
the entropy data are decrypted with the AES master key. If
the master key is well-protected, these inputs are computa-
tionally unpredictable and random to attackers.

The last attacks are side channels on cryptographic
engines. Exploiting the fact that accessing cached data is

TABLE 1
The Throughput of Memory Access

Write (MB/s) Read (MB/s)

Baseline 957.69 1,276.76
Copker RSA 302.19 352.26
Modified RSA 520.19 693.74
Original RSA 500.75 659.12
Copker ECDSA 614.90 659.23
Modified ECDSA 725.46 1,020.51
Original ECDSA 739.36 1,022.25
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about two orders of magnitude faster than those in RAM
[28], various cache-based timing attacks could detect cache
hits and misses during the computations and then deduce
the keys [29], [30], [31], [32]. Copker is immune to such
attacks, because it accesses only caches during the computa-
tions and no concurrent task is allowed to control the shared
caches. Another timing side channel [33] on the RSA library
of PolarSSL v1.1.4, has been fixed in the recent versions.
Other side channels are built by analyzing electromagnetic
fields [34], power [35], ground electric potential [36] or
acoustic emanations [37]. There are algorithm designs
against these side channel attacks, e.g., RSA blinding [38]
and ECC randomization [39]. We will integrate these
designs into Copker in the future.

6.2 OS-Level Attacks

For Copker to operate securely, the following conditions
shall be held: (1) the Copker decryption/signing execution
cannot be interrupted by other tasks; (2) the reserved
address space is not accessed by any other process; (3) the
cache of Copker tasks cannot be influenced by other cores;
and (4) the memory of kernel space cannot be swapped into
hard disks.

The first condition is partly satisfied, since Copker dis-
ables task scheduling and local interrupts, before private-
key operations. However, NMIs, SMIs and processor gener-
ated exceptions (e.g., segment not present, invalid opcode)
cannot be disabled by software settings. Processor gener-
ated exceptions can be eliminated through careful program-
ming; but NMIs and SMIs are unavoidable. Therefore, we
need to prevent adversaries from exploiting SMIs or NMIs
to access sensitive information in caches. That is, SMI/NMI
handlers need to be modified to clean cacheCryptoEnv in
L1D caches (and registers) immediately after these inter-
rupts are triggered.

The second condition is mostly ensured with OSes.
Unprivileged processes cannot access others’ memory,
because the OS enforces process isolation. Privileged attack-
ers may have ways to access Copker’s memory – by insert-
ing self-written kernel modules, any ring 0 code can be
executed; by reading /dev/mem, any memory in Linux ker-
nel can be read. Copker should be compiled without load-
able kernel module (LKM) or KMEM support, to mitigate
such privileged attacks. For the third condition, as we have
patched the kernel to restrict wbinvd() and write\_cr0

() from being called when Copker is running, unprivileged
or privileged attackers could not influence Copker’s caches.
The last condition is satisfied, as Linux enforces an un-
swappable kernel space memory.

When Linux crashes, the kernel memory may be dumped
to disks automatically. This feature is supported by Kdump,
which utilizes kexec to quickly boot to a dump-capture ker-
nel. As a result, sensitive data in cacheCryptoEnv may be
flushed to RAM and contained in the dump. An attacker
might exploit this feature to crash the kernel, by inducing sys-
tem errors. So kexec should not be compiledwith Copker.

If ACPI state S3 (suspend-to-RAM) or S4 (suspend-to-
disk) happens while Copker is in the active mode, we
shall ensure that sensitive data are not flushed out. Before
ACPI calls (.prepare and .enter) are issued, Linux
kernel signals all user processes and some kernel threads

to call __refrigerator(), which puts the caller into a
frozen state [40]. Because this call has to wait until
Copker leaves the atomic section, nothing sensitive will
be written to RAM or disks.

6.3 Attacks on Hardware

Attackers might reboot the computer with a malicious boot-
ing device (e.g., an external USB drive), attempting to dump
the cache content in a way similar to cold-boot attacks. If the
cache lines were not cleared after rebooting, the cache con-
tent might be captured. However, such attack does not
work, since internal caches are invalid after power-up or
reset [17]. Even if data might remain in caches (depending
on CPU hardware features), read instructions fetch data
from RAM, thereby data in caches are overwritten.

DMA attacks [41], [42] are launched from peripherals
and bypass the OS security mechanisms. Copker is not
designed to withstand such attacks. Fortunately, it can be
countered by monitoring bus activities [43] or configuring
IOMMU [41]. Finally, the JTAG interface is used by hard-
ware engineers to debug chips. The CPU state can be
extracted using the JTAG interface. However, commercial
CPUs rarely export JTAG ports.

7 RELATED WORK

Keeping cryptographic keys safe in computer systems is a
great challenge. CPU-bound solutions improve full disk
encryption by storing AES keys in CPU registers [3], [4],
[14], to counter cold-boot attacks [1] and DMA attacks [41].
These systems defeat cold-boot attacks effectively, but are
vulnerable to the advanced DMA attack [42] that actively
reads and writes values to memory on running computers.
Trusted platform modules (TPMs) are dedicated coproces-
sors for cryptographic computing [44], and these chips may
store the master key of Copker, to mitigate the vulnerable
window of initial key derivation.

To protect private keys against memory disclosure
attacks, K. Harrison and S. Xu suggested one copy of keys
in memory [2], and x86 SSE XMM registers are used to store
a 1,024 bit RSA private key [45]. PRIME [7] implemented
2,048 bit RSA on Intel AVX registers against cold-boot
attacks, where some non-sensitive intermediate values are
stored in RAM. The one-copy principle is strengthened in
Copker and PRIME: only one copy of keys during the com-
putations; otherwise, private keys are encrypted in memory.
By using Intel AES-NI instructions, the AES implementation
of TRESOR [3] is free of timing side channels. Instructions
rdrand or rdseed return hardware random bits in newer
Intel CPUs. These extensions are unavailable in Intel Q8200.
It is easy to integrate these extensions into Copker if avail-
able. White-box cryptography [46], [47] tries to hide fixed
secret keys in binaries, when the binaries are publicly avail-
able. However, this approach does not work effectively for
asymmetric algorithms.

The cache-as-RAM (CAR) mechanism [22] is adopted in
most BIOSes, to support stack before RAM chips are initial-
ized. Employing the CAR method, CARMA [48] built a
trusted computing base with a minimal set of hardware
components. Copker integrates CAR and TRESOR: caches
are used as RAM for cryptographic computations, and an
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AES key-encryption key is protected by TRESOR. The exe-
cution environment of Copker is more complex than BIOSes
and it provides services not only for trusted kernel tasks as
TRESOR, but also for untrusted user-mode tasks. FrozenC-
ache [18] is the first attempt to employ CAR to mitigate the
threat of cold-boot attacks. FrozenCache uses caches as
“pure” storage, while Copker uses caches as memory to per-
form protected private-key computations.

All execution paths are loaded into GPU instruction
caches while keys are stored in GPU registers, so the integ-
rity of PixelVault cryptographic service binaries is kept
against any malicious process on CPUs [49]. Mimosa [50]
employs hardware transactional memory (HTM) to prevent
unauthorized access to sensitive data during cryptographic
computations. The transactional execution of cryptographic
computations aborts and all sensitive data are cleared with
HTM, once any other task attempts to access the sensitive
data. Sentry encrypts all data of certain applications, and
decrypts them in caches [23]. Sentry employs ARM cache
features to lock the plain-text data in caches, against cold-
boot and DMA attacks.

CPU security features such as Intel TXT, Intel SGX and
ARM TrustZone, are employed to build computing environ-
ments against physical attacks and/or software attacks [51],
[52], [53], [54], [55], [56], [57]. Copker is built on top of CPU
cache-fill modes (not designed for security), against cold-
boot attacks.

8 CONCLUSION

We present Copker, a cryptographic engine that computes
with private keys without using RAM. During the computa-
tions, Copker uses CPU caches as RAM to store all private
keys and sensitive states, and ensures that sensitive data
never appear in RAM. Therefore, it is secure against physi-
cal attacks on the main memory, such as cold-boot attacks.
We implement Cokper, and finish a method to verify that
the sensitive data are kept in caches only. The prototype
supports two typical public-key algorithms, RSA and
ECDSA, and also AES-CTR DRBGs. Experiments show that
Copker achieves its security goals with good performance
and acceptable impact on other programs.

Copker demonstrates a general framework to implement
cryptographic algorithms against cold-boot attacks. Various
basic cryptographic operations are performed in caches
with sensitive data: AES encryption/decryption, long inte-
ger computations, precomputation table lookup, and ran-
dom bit generations. The large size of caches supports
stronger keys and more complicated algorithms. Moreover,
Copker allows the algorithms to be implemented with high-
level programming languages, also making it easy to be
extended for other cryptographic algorithms.
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