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Abstract—Automatic social circle detection in ego-networks is a fundamentally important task for social network analysis. So far, most

studies focused on how to detect overlapping circles or how to detect based on both network structure and node profiles. This paper

asks an orthogonal research question: how to detect circles by leveraging multiple views of the network structure? As a first step, we

crawl ego networks from Twitter and model them by six views, including user relationships, user interactions, and user content. We then

apply both standard and our modified multi-view spectral clustering techniques to detect circles on these ego-networks. By extensive

automatic and manual evaluations, we deliver two major findings: first, multi-view clustering techniques detect better circles than single-

view clustering methods; second, our modified clustering technique which presumes sparse networks are incomplete detects better

circles than the standard clustering technique which ignores such potential incompleteness. In particular, the second finding makes us

conjecture a direct application of standard clustering on potentially incomplete networks may yield biased results. We lightly investigate

this issue by deriving a bias upper bound that integrates theories of spectral clustering and matrix perturbation, and discussing how the

bound may be affected by several network characteristics.

Index Terms—Social circle detection, privacy protection, multi-view spectral clustering, graph perturbation

Ç

1 INTRODUCTION

ONLINE social network has been rising as a new and very
popular platform for modern socialization - Facebook

had recorded one billion active user accounts by late 2012,
with about 10 million messages posted every hour and
46 percent of young users checking their Facebook as a first
thing in the morning1. What lies behind this tremendous
popularity, on the other hand, is a rich source of network
information that could be properly integrated and analyzed
for better understanding and promoting the modern online
socialization, fulfilling the values of social network analysis.

In social network analysis, a fundamental and important
task is to detect social circles in a user’s ego-network (or, as we
abbreviate as ego-net) [40]. Here, a user’s ego-net is a sub-net-
work that contains only her friends as nodes—the user is
called the ego, each friend is called an alter, and a social circle is
a subset of the alters who are similar under certain measure-
ment. As suggested in [40], social circle has many potential
applications, including content filtering and group recom-
mendation.We also notice its particular application in the pri-
vacy and HCI research communities for controlling
information boundary [52], [54], in a sense that an ego could
have some new posts only visible to friends in designated
social circles, which could reduce the risk of revealing her

(private) information to untargeted friends. Indeed, it has
been shown a user’s information such as location could be
inferred from her posts that contain local restaurants [35] or
location-indicatingwords like “Time Square” [8], [12].

While the notion of social circle has been commercialized
in several products including the Google+ circle and the
Facebook custom list, it seems not well-received by users.
As argued in [40], a main reason is most products require
manual labeling of these circles, which is usually tedious
and labor-intensive. To push the practice of social circle, it
hence remains an important task to design methods that
could automatically and effectively detect them in ego-nets.

Tracing this line of research, we notice the literature has
been focused on addressing two questions, namely, how to
detect circles that overlap and how to detect circles based on
network node attributes (e.g., [7], [40], [64]); there is also an
attempt to improve circle detection in a target ego-net by
leveraging circle information from other ego-nets [16]. While
these studies have advanced the practice of social circle in
various directions, they all consider only a single view of the
network structure. In reality, however, the ego-net structure
may be described by multiple views—one view may show
the friend relationship between alters while another may
show their interaction frequencies. This simple observation
motivates us to ask an orthogonal research question in this
paper, i.e., how to effectively leverage the (usually present) multi-
ple views of ego-net structure for better social circle detection?

To investigate the question, we first crawl ego-nets from
Twitter and employ classic techniques to model the ego-net
structure from six views, namely, two relationship views
regarding the friendship and common friends between alters,
three interaction views regarding the replies, co-replies and
re-tweets of alters, and one content view regarding alters’
post similarities. We do not use alter profiles (e.g., education,
age or hobbies) asmost studies do, considering alters may not
provide these information due to privacy concerns.

1. http://www.statisticbrain.com/facebook-statistics/
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Then, we examine and compare several clustering techni-
ques in their performance of detecting social circles based on
the constructed multi-view ego-net structure. The examina-
tion includes a most common single-view clustering tech-
nique based solely on the friendship view [63], a benchmark
single-view clustering technique that naively integrates all
views into one and performs clustering, a standard multi-
view clustering technique that fully transfers information
across views [29], and our modification of this technique
which now selectively transfers information across views.
Based on extensive experimental evaluations, we have come
to two major findings: first, multi-view techniques generally
outperform single-view techniques in the qualities of
detected circles; second, our modified multi-view clustering
technique outperforms the standardmulti-view technique.

The second observation raises our particular interest, as it
suggests more careful interpretation and treatment of the
sparse ego-net structures. Indeed, we have observed that 1)
some views of an ego-net structure are very sparse and 2) our
modified multi-view technique that selectively transfers
information from sparse views to other views outperforms
the standard multi-view technique that fully transfers infor-
mation across views. Our conjecture for the co-occurrence of
both phenomena is that the sparse ego-net structures may in
fact be interpreted as incomplete structures (e.g., due to the
limited time for data collection), and standard clustering tech-
niques that ignore such ’hidden’ incompleteness may output
a result which deviates significantly from the optimal one.
Note we are not blaming the sparseness for the performance
degeneration, but the incompleteness that induces the spar-
sity. To better understand the issue, we also derive a perfor-
mance deviation upper bound by integrating theories of
spectral clustering and matrix perturbation, and discuss how
it may be affected by several network characteristics. The
obtained implications are supported in simulations.

In summary, the contributions of this paper2 are
unfolded in two phases. First, we propose to effectively
leverage multiple views of the network structure for better
automatic social circle detection in ego-nets. To that end, we
introduce multi-view spectral clustering techniques and
demonstrate they superior circle detection performance, as
compared with common single-view clustering techniques.
Second, we propose to interpret the sparseness of ego-net
structure as incompleteness, and conjecture the ignorance
of such hidden incompleteness may result in performance
bias. To that end, we first derive an upper bound for the
performance bias, with implications supported in simula-
tions; we then propose a modified multi-view clustering
technique which selectively transfers information from
sparse views, and demonstrate its superior circle detection
performance as compared with the standard multi-view
clustering technique which fully transfers information
across views. Finally, extensive experimental evaluations
are done based on the ego-nets we crawled from Twitter.

The rest of this paper is organized as follows: Section 2
introduces the notations and problem setting; Section 3
introduces the multi-view ego-net structure we modeled;
Section 4 presents the examined multi-view spectral cluster-
ing techniques as well as our interpretation of the network
sparseness; Section 5 presents the experimental evaluations;
related works are reviewed in section 6 and discussions in
Section 7; Section 8 concludes the studies.

2 NOTATIONS AND PROBLEM SETTING

For a matrix M, let Mij be its entry at row i and column j,
M:j be its jth column and Mi: be its ith row; let MT be its
transpose, jjMjj be its operator norm and jjMjjF be its Frobe-
nius norm; when M is associated with view t, we denote it
by MðtÞ. Let I be an identity matrix properly sized by the
context. For two matricesM;M 0 (of the same size), let � and
� be the Loewner partial orders such that M � M 0 if
M �M 0 is positive semi-definite and M � M 0 if M �M 0 is
positive definite; let M �M 0 be their Hadamard product.
Finally, define ½‘� :¼ f1; 2; . . . ; ‘g for an integer ‘ > 0.

Recall the structure of an ego-net could be described
from multiple views, where each view corresponds to one
type of connections between network nodes (i.e., alters). We
characterize the view t of an ego-net structure by a similar-
ity matrix KðtÞ, such that K

ðtÞ
ij is some pre-defined similarity

between alter i and alter j. (When referring to an arbitrary
view, however, as we do in theoretical analysis, the super-
script tmay be omitted in notation.)

Now, given an ego-net consisting of n alters and charac-
terized by multiple views fKðtÞgwhere t 2 ½T �, our task is to
automatically detect social circles based solely on fKðtÞg.

3 A MULTI-VIEW EGO-NET STRUCTURE

3.1 A Motivating Example
An advantage of considering multiple views of the ego-net
structure is that different views may provide complemen-
tary information for more effective discovery of hidden
social circles. Fig. 1 shows a sub-sample of the ego-net struc-
ture we crawled from Twitter, which consists of six alters
(denoted by A, B, C, D, E, F respectively) and described
from five views—(a) shows two relation views indicating
the friend relations between alters and their common friend
numbers; (b) shows two interaction views indicating the
numbers of replies and retweets between alters; (c) shows a
content view indicating similarities between alters’ posts.

We see different types of views are partly consistent in
suggesting the alters similarities, e.g., alters A and B not
only have strong connections in the relation view, but also
interact frequently based on the interaction view; on the
other hand, although alters C and D are not friend (yet), it
may still be helpful to group them since they have many
friends in common and highly similar posts (i.e., they may
still find a lot to talk with each other and thus promote the
network information flow).

3.2 View Modeling
In this study, we crawl data from Twitter and employ clas-
sic techniques to model six views of its ego-net structures.
These models are explained as below.

Friendship. This view characterizes the friend relation
between alters by a similarity matrix Kð1Þ, where K

ð1Þ
ij =1 if

alters i and j follow each other on Twitter and K
ð1Þ
ij =0 other-

wise. It is a most common view for social circle detection.
Common Friend. This view characterizes the number of

common friends between alters by a similarity matrix Kð2Þ,
where K

ð2Þ
ij ¼ m if alters i and j have m friends in common

(excluding the alters i and j themselves).
Reply. This view characterizes the reply frequency

between alters by a similarity matrix Kð3Þ, where K
ð3Þ
ij ¼ m

if alters i and j reply to one or another bym times in total.2. This paper is a journal extension of our previous study [65].

1682 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 29, NO. 8, AUGUST 2017



Co-Reply. This view characterizes the co-reply fre-
quency of alters by a similarity matrix Kð4Þ, where
K

ð4Þ
ij ¼ m if alters i and j co-reply to m posts on Twitter.
Re-Tweet. This view characterizes the re-tweet frequency

between alters by a similarity matrix Kð5Þ, where K
ð5Þ
ij ¼ m

if alters i and j retweet each other form times in total.
Topic. This view characterizes the post similarity between

alters by a similarity matrix Kð6Þ, where K
ð6Þ
ij is the cosine

similarity between the normalized topic vectors of alter i
and alter j. These vectors are obtained by first getting a topic
vector for each alter by uploading his/her posts to the
online annotation tool TagMe [18], and then normalizing
the returned vectors by the TF-IDF technique.

3.3 Cluster Assumption
Our cluster assumption is similar to [40] but extended from
its single view setting to a multi-view setting. Specifically,
we assume alters in the same social circles should have high
similarity (as compared with alters in different circles) from
multiple views. This means within-circle alters are more
likely to be friends, to share more common friends, to
retweet or reply to each other more often, to co-reply to
more posts and to post more similarity tweets.

4 CLUSTERING ON MULTI-VIEW EGO-NET

Based on the multi-view ego-net structure presented in the
previous section, we propose to detect social circles by
multi-view spectral clustering techniques (e.g., [29], [31]),
which have been shown effective in clustering multi-view
graphs.3 Specifically, we employ co-trained spectral cluster-
ing [29], which is briefly reviewed in Section 4.1.

During investigation, however, we noticed some views
of the crawled ego-nets were extremely sparse, picturing
very scarce connections between alters. This had raised our
attention, because if we simply took these views as what
they appeared and threw them into a standard multi-view
clustering algorithm that fully transfers information across
views, we may end up finding too few circles (to be useful)
as strong connections in dense views may be largely sup-
pressed by weak connections in sparse views. This has moti-
vated us to consider a variant of the standard technique
which could selectively transfer information across views, as
we develop and present in Section 4.2.

What makes things more interesting is we later realized
the above problem might be much deeper than it appeared
– if an ego-net is indeed intrinsically sparse, there should be

nothing wrong with detecting few social circles. But how to
explain that our modified technique (which assumes graphs
are not sparse but inherently incomplete) did show perfor-
mance improvement over the standard technique (which
assumes graphs are sparse by nature)? This has motivated
us to probe a deeper question: is the ego-net truly sparse by
nature, or is it just inherently incomplete4 which induces its
sparseness? and how bad could it be when one clusters a
graph while ignoring its inherent incompleteness (as done
by most studies)? We discuss these issues in Section 4.3.

The discussions in this section involve a number of new
notations. In Table 1, we summarize the major notations for
an arbitrarily fixed view.

4.1 Co-Trained Spectral Clustering: A Brief Review
This section briefly reviews co-trained spectral clustering [29],
a popular multi-view spectral clustering technique we pro-
pose to apply for social circle detection.

Spectral clustering [45] is a classic technique to group
nodes of a graph based solely on the graph topology. The
topology is usually characterized by a node similarity
matrix, from which a graph Laplacian matrix is constructed.
It is shown eigen-vectors of this Laplacian matrix contain
discriminative information for node clustering, and spectral
clustering uses these vectors as latent node features on
which standard attribute-based clustering techniques such
as K-means are performed to group nodes.

In general, multi-view spectral clustering is an extension
of the classic spectral clustering from the single-view setting
to a multi-view setting, where clustering information in one
view is used to modify the clustering tasks in other views so
that different views would reach some consistency in
results. The co-trained spectral clustering technique [29]
alternately uses eigen-vectors of an examined view to refine
similarity matrices of other views, by first projecting and
then reconstructing those matrices in a new space spanned
by eigen-vectors of the examined view. Take view t for
example, U

ðtÞ
:½k� be a matrix whose columns are the k principal

eigen-vectors of the normalized Laplacian matrix of KðtÞ.
Then, the similarity matrix of another view t0 is refined by

Kðt0Þ ¼ U
ðtÞ
:½k� U

ðtÞ
:½k�

� �T
Kðt0Þ: (1)

Authors showed (1) could encourage consistent clustering
across views, by throwing away grouping information
within each cluster in each view. Finally, when the alternate

Fig. 1. A Real-World Online Social Sub Ego-Net. In (a), a solid line indicates the connected alters are friends, while a dash line indicates they are not
friends; the line labelm indicates the two alters have m common friends. In (b), a line labeled by ðm;nÞ indicates the connected alters have m replies
and n re-tweets to each other in total. In (c), a line labeled by p indicates the connected alters have their posts similar by degree p (as explained in
section 3.2), and we only show connections with label greater than 0.0065.

3. In this paper, a network (structure) is viewed as a graph and these
two terms are used interchangeably.

4. By ’inherently incomplete’, we mean one does not really know
whether a graph is incomplete or not, nor does he know which part is
incomplete (as assumed known in most studies on incomplete graphs).
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update converges, eigen-vectors of all views (or, some dom-
inant view) are concatenated to form latent node features
on which standard K-means is performed to group nodes.

4.2 Selective Co-Trained Spectral Clustering
While the standard co-trained spectral clustering has been
shown effective for graph clustering, it ignores the inherent
incompleteness of different ego-net views. This means
results on sparse views may not be very reliable (in a sense
that alters assigned to different groups may not be truly dis-
tance in relations), and fully transferring them to other
views may mislead their clustering performance. Since we
do not know whether a sparse view is incomplete or not, a
safe strategy is to only transfer its assignments on pairs of
alters whose connections are observed.

In this section, we present a heuristic which modifies co-
trained spectral clustering so that clustering results in sparse
views are selectively transferred to refine other views. The
heuristic is twofold: a view is considered incomplete if its
fraction of observed connections is below some threshold,
and (in an incomplete view) alters are considered to have
observed connections if their similarities are non-zero.

The algorithm of our proposed technique is presented in
Algorithm 1, where the involved functions are defined as:

� eigðK; kÞ returns an n-by-k matrix whose columns
are the k principal eigen-vectors of the normalized
Laplacian of the (similarity) matrixK.

� clustðU; kÞ returns an n-by-n matrix C obtained by
performing k-means clustering on sample matrix U
(where each row is one example), such that Cij=1 if
examples i and j are assigned to the same group and
Cij=�1 otherwise.

� updateðtÞ is defined for view t as

updateðtÞ ¼ exp
X

t02½T �;t0 6¼t

Cðt0Þ � ð1fKðt0Þ 6¼ 0gÞdt0 ; (2)

where Cðt0Þ is the output matrix of clustðUðt0Þ; kÞ, 0 is a
matrix of zeros same sized as Kðt0Þ, 1 is an element-
wise indicator function, and dt0 is a binary function
outputting 1 ifKðt0Þ is sufficiently sparse (i.e., its frac-
tion of observed entries is below some threshold)
and 0 otherwise.

The core of our modified algorithm is updateðtÞ, which is
used to update the similarity matrix of view t based on
information selectively transferred from other views. We

slightly elaborate its design in the following, assuming the
case of two-view clustering:

Algorithm 1. Selective Co-Trained Spectral Clustering

Input: Similarity matrices of T viewsK1;K2; . . . ;KT

Initialize: 8 2 ½T �, U ðtÞ ¼ eigðKðtÞ; kÞ, CðtÞ ¼ clustðU ðtÞ; kÞ
for i ¼ 1 to rounds do
for t 2 ½T � do
2: Refine similarity matrixKðtÞ ¼ updateðtÞ �KðtÞ

3: Update U ðtÞ ¼ eigðKðtÞ; kÞ
4: Update CðtÞ ¼ clustðU ðtÞ; kÞ

end for
end for
Output: apply K-means on the concatenated feature matrix
U ¼ ½U ðk1Þ; . . . ; U ðk‘Þ� of dominant views k1; . . . ; k‘.

For Cðt0Þ. if alters i; j are assigned to the same group in
view t0, we have C

ðt0Þ
ij ¼ 1. This could result in updateðtÞij > 1

and consequently the increase of these two alters’ similarity
in view t through K

ðtÞ
ij ¼ K

ðtÞ
ij � updateðtÞij. Note, however,

C
ðt0Þ
ij ¼ 1 does not guarantee the increase of K

ðtÞ
ij , because in

order to get updateðtÞij > 1, we also need the indicator func-
tion to output 1 if view t is incomplete (i.e., the connection
between two alters needs to be observed in view t).

For Kðt0Þ. if alters i and j have observed connection, we

haveK
ðt0Þ
ij 6¼ 0 and thus ð1fKðt0Þ 6¼ 0gÞij ¼ 1. This could allow

their clustering result C
ðt0Þ
ij be transferred to other views

through updateðtÞ (specifically, C
ðt0Þ
ij � ð1fKðt0Þ 6¼ 0gÞdt0ij ). Of

course, the whole selective mechanism is valid only when
view t0 is considered incomplete (i.e., dt0 ¼ 1).

For dt0 . if view t0 is considered incomplete, we have
dt0 ¼ 1. This will activate the selective mechanism for Kðt0Þ

(as we described above); otherwise, the selective mechanism
is de-activated and all clustering results in view t0 will be
transferred to modify view t through updateðtÞ.

The following example demonstrates how the proposed
algorithm may leverage the clustering result in one view to
refine another other view. Suppose the result in view one is

Cð1Þ ¼
1 �1 1

�1 1 �1
1 �1 1

24 35; (3)

which indicates alters 1 and 3 are grouped whereas 2 and 3
are separated. Suppose the similarity matrix of view two is

Kð2Þ ¼
1 0:4 0:1
0:4 1 0:6
0:1 0:6 1

24 35: (4)

The algorithm will refine Kð2Þ using Cð1Þ through updateð1Þ
and, when results are fully transferred, we have an update

Kð2Þ ¼
2:7 0:2 0:3
0:2 2:7 0:2
0:3 0:2 2:7

24 35: (5)

In the updated Kð2Þ, it is clear similarities between alters
grouped in view one are increased and vice versa. Note,
however, that grouping in view one does not necessarily
lead to grouping in view two – for instance, alters 1 and 3 still
have low similarity even though they were grouped in one
view—the updated matrix is a compromise between results
in other views and observations in the current view. When

TABLE 1
Major Notations (of an Arbitrary View)

Notation Interpretation

K similarity matrix (of an arbitrarily fixed view)
D diagonal matrix withDii ¼

P
j Kij

sk kth principal eigenvalue ofD
L normalized Laplacian matrix ofK by (6)
�k kth principal eigenvalue of L
U matrix with each column an eigenvector of L
P orthogonal projection onto U’s range space of
C matrix of a clustering result, with Cij ¼ 1

if alters i; j are grouped and Cij ¼ 0 otherwise
V matrix of a clustering result, with Vik ¼ 1

if alter i is assigned to cluster
k and Vik ¼ 0 otherwise
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results are selectively transferred, we expect the algorithm
would converge faster as less consistency needs to be com-
promised between views. This seems indeed the case as
is evident from our experimental studies. Finally, note since
Cð1Þ is symmetric,Kð2Þ would remain symmetric after update
(and thus its corresponding Laplacian matrix remains posi-
tive semi-definite which admits positive eigenvalues).

4.3 When Ego-Net is Inherently Incomplete

As we mentioned before, a sparse ego-net may be inherently
incomplete. Such incompleteness distinguishes itself from
most previous studies on incomplete graphs which assume
prior knowledge on whether the graph is indeed incomplete
and which part of the graph is incomplete. None of these is
known, however, for an inherently incomplete graph. Then,
what could we say about clustering such a graph?

This section is an attempt to answer the above question
through the derivation and discussion of an upper bound on
the possible performance bias when one performs standard
clustering on an inherently incomplete graph while ignoring
its potential incompleteness (as most studies do). To derive
the bound, we integrate a classic spectral clustering theory
[26] with a recent result in matrix perturbation theory [66],
and employ several properties of the Loewner partial orders
(e.g., [23, Chapter 7]). We then discuss the implications of
our bound, with a focus on how it could be affected by vari-
ous ego-net characteristics; the implications seem supported
in later simulations. Our discussion will focus on single-
view clustering as it is the backbone of multi-view clustering
techniques (e.g., co-trained spectral clustering could be
regarded as single-view spectral clustering on a dominant
viewwhich has been refined by other views).

4.3.1 Preliminaries

First, we make a free-approximation assumption to simplify
discussion. It is well known that spectral clustering is an
approximated solution to the optimal normalized cut prob-
lem, and there is a rich literature studying the approxima-
tion error (e.g., [51], [67]). Although we apply spectral
clustering and evaluate results under the optimal cut frame-
work, such approximation is not our focus. We thus assume
the approximation error is zero, which could be satisfied if
the k principal eigen-vectors of the graph Laplacian matrix
are piece-wise constant with respect to the optimal normal-
ized cut result on the graph [26]; when the assumption is
not satisfied, our analysis could be generalized by simply
adding an error term for the approximation.

Next, recall we have an ego-net consisting of n alters and
characterized by multiple n-by-n similarities matrices
fKðtÞg, each representing one view of the ego-net structure.
Since all analysis in this section applies to an arbitrary single
view, the superscript t (i.e., view index) will be omitted.

Consider the task of k-partitioning the n alters based on a
complete ego-net characterized by similarity matrixK. Let

L ¼ D�1=2KD�1=2; (6)

be the normalized Laplacian matrix,5 where D is an n-by-n

diagonal matrix where Dii ¼
P

j2½n�Kij. Let sk and �k be the

kth principal eigenvalues ofD and L respectively.

Let ~K denote an inherently incomplete observation of K,
with observed entries indexed by set V, such that ~Kij ¼ Kij

if ði; jÞ 2 V and ~Kij ¼ 0 otherwise. Note ~Kij ¼ 0 may imply
Kij is unobserved orKij is observed but has value 0. Similar
to L, let ~L ¼ ~D�1=2 ~K ~D�1=2 be the normalized Laplacian of
~K, where ~D is diagonal matrix with ~Dii ¼

P
j2½n�

~Kij.
The resulted k-partition of n alters based on K is repre-

sented as an n-by-k matrix V, defined as Vij ¼ 1 if alter i is
assigned to cluster j and Vij ¼ 0 otherwise. Similarly, the
partition result based on ~K is represented as matrix ~V. We
then evaluate the difference between these two results using
the metric employed in [26, Formula (2)], i.e.,

dðV; ~VÞ ¼ 1

2

X
j2½k�

V :jðV :jÞT

ðV :jÞTV :j

�
X
j02½k�

~V :j0 ð~V :j0 ÞT

ð~V :j0 ÞT ~V :j0

������
������
2

F

: (7)

Intuitively, metric (7) counts the pairs of alters assigned to
different clusters in two results, each weighted by the corre-
sponding cluster size. Indeed, note ðV :jðV :jÞT Þi1i2 equals 1 if
alters i1 and i2 are both assigned to cluster j and equals 0
otherwise; and ðV :jÞTVj is the size of cluster j. Also note the
metric is bounded when each cluster contains at least one
alter, which could be easily guaranteed by proper algorithm
design. Finally, it is generally hard to give a threshold under
which a bias dðV; ~VÞ could be considered acceptable, as it
depends on the cluster sizes and the applications. Neverthe-
less, one could get more sense through simple calculations:
for example, suppose n nodes are equally partitioned into k
clusters, and results based on complete and incomplete
graphs differ on p fraction of node pairs, then dðV; ~VÞ ¼ k2p.

4.3.2 A Bias Bound and Its Implications

Based on notations introduced in the previous section, our
derived bias bound is stated as follows.

Proposition 1. Let V; ~V be the k-partitioning result matrices of

the optimal normalized cuts based on K; ~K respectively. Let ~s1

be the principal eigenvalue of D� ðD ~DÞ1=2 and denote
~D ¼ L� ~L. Then

dðV; ~VÞ 	 s1

sn

~s1

sn
þ 2 minf

ffiffiffi
k

p
jj~Djj2; jj~DjjFg

�k � �kþ1

 !
: (8)

The bound has several implications.
First, note s1; sn; �k; �kþ1 are constants when an (underly-

ing and complete) ego-net is given. Their impacts on the
bias bound could be interpreted as follows. For s1 and sn,
note they respectively describe the overall behaviors of the
most and least active alters6 in the ego-net, since they are
respectively the largest and smallest row sums of K. Since
s1=sn 
 1 in (8), we see standard spectral clustering (which
ignores the potential graph incompleteness) may suffer less
performance bias if alters are equally active in the ego-net
(in which case s1=sn would be close to 1).

Second, the bound suggests ways of choosing k to lower
the risk of performance bias. Based on the term

ffiffiffi
k

p
in (8),

we see detecting fewer social circles could generally reduce

5. A classic definition is L ¼ I �D�1=2KD�1=2. Ours is from [45],
which admits the same eigen-vectors but facilitates discussion.

6. The notion of ’active’ is open to interpretation: in an interaction
view, for example, an active alter is someone who interacts frequently
with others; while in a relation view, an active alter is someone who
has a lot of friends (an indicator of his active socialization).
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the risk of suffering performance bias; based on �k � �kþ1,
on the other hand, we see one may choose k at the ‘steepest’
place of the graph spectrum. For instance, when alters have
equally active (normalized) behaviors, the graph spectrum
is flat and we may choose a large k to maximize �k � �kþ1.

Finally, the bound sheds light on how bias may decrease
as more connections are observed on the ego-net: as observa-
tions increase, it is clear that ~K ! K7 and thus ~D ! D and
~L ! L. The latter further implies ~s1 ! 0 and D ! 0, which
based on (8) implies a small bias bound. In particular, if the
ego-net is fully observed, we have ~s1 ¼ 0 and D ¼ 0, which
results in a zero bias bound and hence no performance bias.

4.3.3 Proof of Proposition 1

Notations. First, recall K is an n-by-n similarity matrix with
an associated Laplacian L and a diagonal D, and �k; sk are
the kth principal eigenvalues of L;D respectively. The k-par-
titioning result is stored in an n-by-kmatrix V.

Let L ¼ ULUT be the eigen-decomposition of L such that
L is an n-by-n diagonal matrix with Lii=�i (�1 
 �2 
 :::)
and U is an n-by-n unitary matrix where U:i is the eigenvec-
tor for �i. Let U½k� be an n-by-k sub-matrix of U where
ðU½k�Þ:i ¼ U:i for i ¼ 1; . . . ; k. Since U½k� is orthonormal, we
have Pk ¼ U½k�U

T
½k� as the orthogonal projection onto the range

space of U½k� (e.g.,[22, Chapter 2]).
All the above notations apply to ~K and its associated var-

iables, yet capped with notation ‘�’. For instance, ~Pk is the
orthogonal projection onto the range space of ~U½k�, which
contains the k principal eigenvectors of the Laplacian ~L.

Finally, let �;� be the Loewner partial orders such that
A � B if A�B is positive semi-definite (PSD) and A � B if
A�B is positive definite. Note A � 0 implies A is PSD.

Proof Sketch. The strategy of our proof is as follows: we
first bound dðV; ~VÞ by two new terms using the triangu-
lar inequality; then we bound the first term using a
recent result in perturbation theory [66], and bound the
second term using several Loewner partial order prop-
erties (e.g., [23, Chapter 7]); we also borrow some
results from [26]. tu

Step 1: bound dðV; ~V Þ. By [2, Formula (3)] we have

dðV; ~VÞ 	 s1

sn
� dðD1=2V; D1=2 ~VÞ: (9)

Further, by triangular inequality it follows

dðD1=2V; D1=2 ~VÞ 	 dwðV; ~VÞ þ dð ~D1=2 ~V; D1=2 ~VÞ; (10)

where we define dwðV; ~VÞ ¼ dðD1=2V; ~D1=2 ~VÞ.
Step 2: bound dwðV; ~VÞ. It is known that spectral clustering

is a relaxation of the optimal normalized cut problem. In [2,
Formula (1)], the relaxation error is measured by the differ-
ence between the orthogonal projections for the two prob-
lems. In our context, these two projections (associated with
matrixK) are Pk and

Pk :¼
X

j2½k�D
1=2VjVT

j D
1=2=ðVT

j DVjÞ: (11)

Then, our free-approximation assumption implies Pk ¼ Pk.
Similarly, the orthogonal projections associated with ~K

are ~Pk and ~Pk :¼
P

j2½k�
~D1=2 ~Vj

~VT
j
~D1=2=ð~VT

j
~D~VjÞ, and that

~Pk ¼ ~Pk. Since by definition dwðV; ~VÞ ¼ jjPk � ~Pkjj2F , we have

dwðV; ~VÞ ¼ jjPk � ~Pkjj2F : (12)

Now, our task becomes bounding jjPk � ~Pkjj2F instead. A
classic technique is the Davis-Kahan theorem (e.g.,[66, Theo-
rem 1]), which would give

jjPk � ~PkjjF 	 jjDjjF
k

; (13)

where k ¼ inffj�i � ~�jj; 1 	 i 	 k; k < j 	 ng8. While this
bound is seminal, it contains an implicit dependency on D
(through parameter ~�), whereas we prefer a bound that has
more explicit dependency on D (for easier interpretation).
To this end, we employ a recent generalization of the Davis-
Kahan theorem, which is stated as follows.

Theorem 1 ([66, Theorem 2]). Let L; ~L 2 Rn�n be two sym-
metric matrices with eigenvalues �1 
 . . . 
 �n and ~�1 
 . . . 

~�n respectively. Fix 1 	 r 	 s 	 n and assume minf�r�1 � �r;
�s � �sþ1g > 0, where �0 :¼ 1 and �nþ1 :¼ �1. Let d :¼
s� rþ 1, and let Uk ¼ ½ur; urþ1; . . . ; us� 2 Rn�d and ~Ud ¼
½~ur; ~urþ1; . . . ; ~us� 2 Rn�k have orthonormal columns satisfying
Luj ¼ �juj and ~L~uj ¼ �j~uj for j ¼ r; rþ 1; . . . ; s. Then

jjPk � ~PkjjF 	 2 minð
ffiffiffi
d

p
jjDjj2; jjDjjF Þ

minf�r�1 � �r; �s � �sþ1g
: (14)

By (12) and Theorem 1 (with r ¼ 1 and s ¼ k), we have

dwðV; ~VÞ 	
4 minð

ffiffiffi
k

p
jjDjj22; jjDjj

2
F Þ

ð�k � �kþ1Þ2
: (15)

Step 3: bound dþ :¼ dð ~D1=2 ~V; D1=2 ~VÞ. First, it is easy to ver-
ify the following lemma by algebraic arguments.

Lemma 1. For any orthogonal matrixM 2 Rn�p,X
j2½p�M:jM

T
:j =ðMT

:jM:jÞ ¼ MðMTMÞ�1MT: (16)

Note D1=2 ~V and ~D1=2 ~V are orthogonal. Then, jointly
applying Lemma 1 and the alternative expression in [2,
Page 6] for jjMðMTMÞ�1MT � ~Mð ~MT ~MÞ�1 ~MT jj2F , we have

dþ ¼ trfT �1=2ðT � ~NÞT �1=2g; (17)

where T ¼ ~VTD~V and

~N ¼ ~VT ðD ~DÞ1=2 ~Vð~VT ~D~VÞ�1 ~VT ð ~DDÞ1=2 ~V: (18)

It the sequel, we bound T �1=2 and T � ~N separately.

Note ~V and D1=2 ~V have linearly independent columns
(since ~V indicates a partition of alters and D1=2 does not
change such indication). Then, by [23, Theorem 7.2.10]

T ¼ ~VTD~V � 0 and ~VT ~V � 0: (19)

Further, since sn is the smallest diagonal entry of D, it is
easy to verifyD � snI. This implies

7. Notation A ! Bmeans A� B approaches zero matrix.

8. The original theorem bounds the angles between subspaces,
which equals the difference of their orthogonal projectors, e.g., [15,
Page 10].
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T � sn
~VT ~V: (20)

Based on (19) and (20), by [23, Corollary 7.7.4] we have

s�1=2
n ð~VT ~VÞ�1=2 � T �1=2: (21)

To bound T � ~N , notice ðD ~DÞ1=2 � ~D, which implies

ð~VT ~D~VÞ�1 � ð~VT ðD ~DÞ1=2 ~VÞ�1: (22)

Plugging (22) in (18), we have

~N � ~VT ðD ~DÞ1=2 ~V: (23)

Combining (23) and (19), we have

~s1
~VT ~V � ~VT ðD� ðD ~DÞ1=2Þ~V � T � ~N ; (24)

where ~s1 is the largest diagonal entry of D� ðD ~DÞ1=2. Fur-
ther combining (21) and (24) gives

s�1
n ~s1I � T �1=2ðT � ~NÞT �1=2; (25)

and taking trace on both sides yields

s�1
n ~s1 
 dþ: (26)

Step 4. Combining ((9), (10), (15), (26)) proves the
proposition.

5 EXPERIMENTAL STUDY

In this section, we perform extensive experimental evalua-
tions, with a focus on examining our set of hypotheses that
better social circles in ego-nets could be detected (1) based
on multiple views of the ego-net structure (as opposed to
current studies that consider only a single view), and (2) by
applying multi-view spectral clustering (as opposed to
single-view clustering), and (3) by selectively transferring
information from sparse views to others in multi-view clus-
tering (as opposed to standard multi-view techniques that
fully transfer those information). Implications obtained
from the bias bound are also examined.

5.1 Data Preparation

Wewill experiment on Twitter, which is one of themost pop-
ular online social network platforms. To this end, we first
implemented a crawler to collect Twitter data using its API,
which can return any user’s profile, follower/following lists
and tweets. The user profile consists of user name, screen
name, user id, profile create time, description (a personal
statement), location and time zone. The tweets information
consists of tweet id, post time, tweet location, in-reply-to
user id, in-reply-to status id, list of re-tweets (user id and
tweet id) and tweet content. For each user, we only collected
his/her most recent 2,000 tweets due to many constraints. It
is also noted not all the attributes are available and accurate
for all users—user location in user profiles is self-generated
textual description, where we have seen “Worldwide” and
“Coming Soon Everywhere” etc; meanwhile, tweet locations
are accurate latitudes and longitudes, but they are missing
from most of the tweets; besides, Twitter has enforced man-
datory limits on the crawling rate, especially for crawling
account-specific information. Finally, we have collected 92
data sets—92 seed users and all their friends. In our data set,
each seed user has 245 friends on average. In total, we have

collected information of more than 22 K users, with approxi-
mately 3 million friendship links, and more than 27 million
tweet messages. It should be mentioned the seed users were
collected following the standard random walk sampling
technique, which has demonstrated both efficiency and
effectiveness in analyzing online social networks [38], [46].
(We notice this technique also falls into the category of snow-
ball sampling, which has been reported as one major sam-
pling approach on Twitter [19].)

A crawled Twitter ego-net structure was modeled by six
views, as introduced in Section 3.2. Specifically, each view
was implemented as follows: for the friendship view, two
alters were marked as friend if each is in both the follower
and following lists of the other, and the common friend view
counted the number of such friends shared by alters; for the
reply view, the reply number from alter Nancy to alter Bob
was obtained by scanning through Bob’s tweets and count-
ing the replies from Nancy, and vice versa; for the co-reply
view, the co-reply number of two alters was obtained by
scanning through all tweets in the crawled ego-net and
counting those they both replied; for the re-tweet view, the re-
tweet number from alter Nancy by alter Bobwas obtained by
scanning through Nancy’s tweets and counting those re-
tweeted by Bob; for the content view, we first obtained a topic
vector for each alter by uploading her tweets and profile to
TagMe [18], removed those returned topics whose relevance
scores are below 0.2 (between ½0; 1�) by the Pareto principle,
and normalized all topic vectors by TF-IDF.9

5.2 Experimented Techniques
In experiment, we examined the performance of four clus-
tering techniques that rely only on the ego-net structure.

SCAN [63] is a classic and popular clustering technique
designed to detect social circles based solely on the friend-
ship view of the network structure. We employed it as a
representative single-view clustering technique for social
circle detection in experiments.

Spectral Clustering (sc) [45] is a classic single-view clus-
tering technique which groups instances based solely on
their similarities. Although spectral clustering has not been
specifically applied for social circle detection, we employed
it in experiments as another representative of the single-
view clustering techniques. Specifically, we first separately
applied this technique on dominant views to learn their
latent feature matrices U ðtÞ’s (i.e., eigenvectors of the
normalized Laplacian matrix of each view), and then
concatenated these matrices in a column-wise manner to
form an integrated latent feature matrix on which standard
k-means clustering was applied to obtain the final grouping
result. This approach could be interpreted as the standard
multi-view spectral clustering but without cross-view infor-
mation transfer, a common design to evaluate the effective-
ness of multi-view learning techniques.

Co-Trained Spectral Clustering (CSC). [29] is a popular
multi-view spectral clustering technique which we have
reviewed in Section 4.1 and employed in experiments as a

9. After a similarity matrix is obtained, we normalize it into ½0; 1� by
dividing all entries by the maximum entry and fix diagonal entries to 1,
indicating self-similarity is always the largest. Note when the maxi-
mum entry is zero, we do not perform normalization. (This, however,
rarely occurred in experiments.) Also note the normalization may
slightly change the interpretation of a similarity matrix, but should ide-
ally not affect the clustering result based on it.
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representative of the multi-view clustering technique. Simi-
lar to the previous application of (single-view) spectral clus-
tering, when the co-trained spectral clustering algorithm
converged, we concatenated the obtained latent feature
matrices of dominant views to form an integrated feature
matrix, on which K-means was performed to cluster alters.

Selective Co-Trained Spectral Clustering (scsc). is the modi-
fied multi-view spectral clustering algorithm we proposed
in Algorithm 1, which selectively transfers clustering results
in sparse views to refine other views.

It should be mentioned we considered the friendship, com-
mon friend and topic as three dominant views, not only
because they were generally denser (hence more complete)
but also because they demonstrated stable and better per-
formance in experiments. Note, however, although the non-
dominant views were not directly used (as part of the inte-
grated latent feature matrices) for clustering, they were
helpful in that their information had been transferred to the
dominant views by the multi-view algorithms. In addition,
we fixed k ¼ 5 for examined techniques (except SCAN
which automatically determines k), since we had observed
similar trends in their performance as k increased from 3 to
10. Hyper-parameters of SCAN were set as default.

5.3 Evaluation 1: Cluster Compactness
We first evaluated the quality of detected clusters based on
its compactness, which is a most common measurement.

5.3.1 Evaluation Metric

In our problem, the unavailability of both cluster ground
truth and alter feature matrix has precluded the use of most
standard cluster evaluation metrics, including both external
ones such as the random index and F-measure and internal
ones such as the Davies-Bouldin index and Dunn index. We
hence presented and used the following metric to evaluate
the compactness of a clustering result (recall in Section 4.2
we introduced an n-by-n indicator matrix C to represent the
result such that Cij ¼ 1 if alters i and j are grouped and
Cij ¼ 0 otherwise):

g ¼
X

t
SðtÞ
w

� �
=
X

t
S
ðtÞ
b

� �
; (27)

where t 2 ½T � (as there are T views in total),

SðtÞ
w ¼

P
ði;jÞ K

ðtÞ
ij � 1fCij > 0gP

ði;jÞ 1fCij > 0g ; (28)

and

S
ðtÞ
b ¼

P
ði;jÞ K

ðtÞ
ij � 1fCij < 0gP

ði;jÞ 1fCij < 0g : (29)

where ði; jÞ 2 ½n� � ½n� (as there are n alters in the ego-net).
Taking spirit from the classic discriminant analysis (e.g., [4,

Formula (4)]), we name (27) the total similarity ratio, where SðtÞ
w

is thewithin-circle similarity that measures the average similar-
ity between clustered alters in view t andS

ðtÞ
b is the between-cir-

cle similarity that measures the average similarity between
separate alters in view t. It is clear a compact set of clusters
should have high within-cluster similarity yet low between-
cluster similarity (thus a large total similarity ratio), consistent
with a common argument that alters within a circle should
have high similarities and vice versa. Finally, to evaluate
results for a single view,we usemetric

gðtÞ ¼ SðtÞ
w =S

ðtÞ
b ; (30)

and when S
ðtÞ
b ¼ 0 (as is often the case when view t is very

sparse), we add a small constant to it in the metric.
While by design ourmetric is an echo of the Fisher ratio in

classic discriminant analysis, it finds itself connected to sev-
eral cluster quality metrics in the literature. For instance, SðtÞ

w

and S
ðtÞ
b could be interpreted as the homogeneity index and sep-

aration index in [50] respectively, exceptwe directly have alter
similarities instead of computing them using alter finger-
prints; their ratio is also related to the weighted inter-intra
index [56] and Calinski-Harabasz index [6], in a sense that for
equally sized clusters SðtÞ

w =S
ðtÞ
b differs from these indices

mainly by constants (depending on the cluster size and sam-
ple size). These connections could be easily verified, and
would largely remain valid for clusters of different sizes
(e.g., by relaxing it to the case of equally-sized clusters).

5.3.2 Results and Discussions

To better understand the performance of spectral clustering
techniques, we first experimented on one single ego-net,
which contains 386 alters. Recall the techniques are single-
view spectral cluster (sc), co-trained spectral clustering (csc)
and selective co-trained spectral clustering (scsc). For csc
and scsc, we updated their view refinements for 20 rounds
(by which both were observed converged generally) and
reported the similarity ratios of their clustering results on
each view in Fig. 2. We saw csc generally improved with
more rounds of update, which is consistent with the spirit
of co-trained style learning algorithms. However, its conver-
gence rate was slow (as compared with that of scsc), and its
performance improvements over sc were not significant on
the topic and reply views and were little on the friendship
and co-reply views. As we explained before, this may be
due to the ignorance of csc on the inherent incompleteness
of sparse ego-net views. Comparatively, our proposed scsc
converged fast (usually within one or two rounds of update)
and improved sc consistently and significantly on all views.

Next, we examined the sizes of clusters output by differ-
ent spectral clustering techniques on an ego-net with 102
alters. For csc and scsc, these sizes were reported at the
update rounds where they respectively achieved their best
clustering performance (i.e., the highest total similarity
ratios). The statistics were summarized in Table 2. It
appears csc encouraged more balanced clusters, while both
sc and scsc output a big cluster. This may be because csc
enforced stronger view consistency so that a sparse view,
for instance, could require a dense (dominant) view to
’break down’ its inherently big clusters. It should be pointed
out imbalanced clusters make sense in many practices, e.g.,
a family circle is usually much smaller than a friend circle.

Then, we examined the cluster qualities of sc, csc and scsc
over 92 ego-nets we crawled from Twitter. The total similar-
ity ratio of each technique on each ego-net is shown in Fig. 3.
We saw scsc consistently outperformed the other two techni-
ques, and standard csc had the worst performance. These
were consistent with our previous observations in Fig. 2, and
our earlier discussions on the limitation of csc: as it bindly
transfers results on an inherently incomplete view to other
views, the clustering tasks on those viewsmay bemisled.

Finally, on the same 92 ego-nets we compared the cluster
qualities of all examined techniques on the friendship view
(as SCAN was designed based specifically on this view).
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Since SCAN would remove outliers and reported results
based solely on the remaining alters, for fair comparison we
also reported performance of other techniques based on the
same set of remaining alters on each ego-net. These results
were shown in Fig. 4. We saw results similar to the previous
examination, and that SCAN performed similarly to sc but
not as good as scsc. This results suggest that neither single-
view clustering or multi-view clustering with improper
(full) cross-view information transfer is sufficient for detect-
ing high quality clusters.

5.4 Evaluation 2: Quality of Boundary Alters
In this experiment, we manually evaluated the qualities of
detected circles, with a focus on the performance of scsc on
boundary alters, that is, alters that are most distant from the
centroids of their assigned clusters. (We focused on these
alters because they were most likely to be mis-clustered,
and it was too expensive to manually evaluate all alters).

Given a clustering result, our general idea is to let human
evaluator (without any information on this result) assign a
boundary alter to one of the following two detected circles:
(1) its actual assigned circle and (2) its nearest neighbor cir-
cle, defined as the circle (not assigned for the alter) whose
members have the smallest distance to the alter on average.
To be specific, for each boundary alter we first selected
10 tested alters, with 5 randomly from its assigned circle
and another 5 randomly from its nearest neighbor circle.
Then, a human evaluator would score from 1 to 5 on how
much he/she agreed the boundary alter should be clustered
with each of these tested alters (based on their profiles and
tweets) – 1 for strongly disagree, 2 for somewhat disagree,
3 for neutral, 4 for somewhat agree and 5 for strongly
agree—and the two scores averaged over both tested alters
from the assigned circle and tested alters from the neighbor
circle were separately reported.

We had summarized the above two scores for 60 ran-
domly selected boundary alters, and found the averaged
results were 2.63 for alters from the actually assigned circles
and 2.52 for alters from the nearest neighbor circles. This
suggested the performance of scsc is relatively consistent
with human—it managed to assign boundary alters to
circles where they had tighter connections. The observation
that both scores were low, on the other hand, suggested the
intrinsic difficulty of social circles detection—it could be
circles were generated based on less visible profiles, or they
overlapped by nature which confused human evaluator.

5.5 Evaluation 3: Keywords of Detected Clusters
To better interpret the detected social circles, we extracted
and examined their related tags (as returned by the TagMe
tool) in this experiment. Our examination focused on tags
that were discriminative across circles and, most importantly,
representative of the content posted in each circle.

The representative tags for each circle were extracted
as follows. Let Ti be the set of tags returned by TagMe for
alter i, and tfði; tÞ be the frequency of tag t appeared in
the posts of alter i. The representativeness of tag t for a
circle S (which is an index set of its assigned alters) was
measured by

PrftjSg ¼ 1

jSj
X
i2S

etfði; tÞ; (31)

where etfði; tÞ ¼ tfði; tÞ= maxftfði; tÞjt 2 Tigð Þ: (32)

TABLE 2
The Size of Five Social Circles Detected

by Different Spectral Clustering Techniques

Cluster 1 2 3 4 5 std

SC 8 12 13 25 44 14.6
CSC 16 17 20 24 25 4.04
SCSC 10 10 13 15 54 18.9

std is the standard deviation of the sizes over five circles.

Fig. 3. The total similarity ratios of different spectral clustering techni-
ques on 92 Twitter ego-nets. The ratios averaged over these ego-nets
are: 108.8 for sc, 24.8 for csc, and 187.4 for scsc.

Fig. 2. The similarity ratios of examined spectral clustering techniques on six views of a Twitter ego-net. In each figure, the vertical axis represents the
similarity ratio 30 and the horizontal axis represents the round of algorithm updates. The blue and dotted lines represent the performance of sc, the
green and dash lines represent that of csc, and the red and solid lines represent that of the proposed scsc.
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Roughly speaking, PrftjSg is the averaged frequency of tag
t appeared in circle S. Then, tags with largest PrftjSg were
deemed most representative and extracted for examination.

The discriminative tags across circles were extracted as
follows. Let Sk be the circle indexed by k, and K ¼ fkg be
the set of all circle indices. The discriminative degree of a
tag t for circle kwas measured as the KL-divergence

DðtÞ ¼
X
k2K

P ðt; kÞ lnP ðt; kÞ
Qðt; kÞ

� �
; (33)

where

P ðt; kÞ ¼ PrftjSkg=
X
k2K

PrftjSkg
 !

; (34)

and

Qðt; kÞ ¼ 1=jKj: (35)

Intuitively, both P ðt; kÞ and Qðt; kÞ could be interpreted as
the probability mass of tag t in circle k (as over all detected
circles) – P ðt; kÞ was the actually mass and Qðt; kÞ was an
ideal mass when t was uniformly distributed; then, DðtÞ
said how much the actual distribution of tag t deviated
from the uniform (thus non-informative) distribution. In
our experiment, tags with the highest DðtÞ were deemed
most discriminative and selected for examination.

The two types of tags extracted from circles detected by
scsc on a randomly selected ego-net were summarized in
Table 3. They were obtained by first applying (33) to extract
most discriminative tags over all circles, and then applying
(31) among these tags to extract most representative ones for
each circle. It was clear different circles had different seman-
tic focuses: for instance, circle 2 had more interest in enter-
tainment, while circle 4 seemed more concerned about
health care and circle 5 talked about technology frequently.
(We also skimmed through the tweets posted in these circles
and had consistent findings.) This suggested circles detected
by scsc could be pretty interpretable in terms of topics.

5.6 Evaluation 4: Cluster Inherently
Incomplete Graph

In this section, we examined several implications obtained
from Proposition 1. Since in reality it is impossible to know
whether a social network has been fully observed, we pre-
sented simulations for examination.

Consider a set of 200 nodes partitioned into k groups,
each containing b200=kc nodes. (The last group also con-
tains the residual nodes.) We constructed a binary graph by
building an edge between each pair of nodes, with probably
p if they were from the same group and with probability
1� p otherwise. The resulted graph was considered as the
underlying complete graph. Note this graph ccould be fully
characterized by its adjacent matrix K 2 R200�200 such that
Kij ¼ 1 with probability p if nodes i and j were from the
same group and with probability 1� p otherwise.

To simulate inherently incomplete observations of the
graph, we randomly hid a portion of its edges by flipping a
portion of entry 1’s to 0’s in K (without recording which
entries were flipped). Let d be the portion of un-flipped 1’s
and ~K be the resulted adjacent matrix. Then, we applied the
standard spectral clustering (e.g., [45]) on both K and ~K
and evaluated the difference of their performance based
on metric (7). To minimize the performance variation of the
K-means clustering method (mostly induced from its selec-
tion of initial cluster centers), we fixed one node for each
group to form the initial centers.

In Fig. 5, we showed the performance deviation as the
observations increase with k ¼ 5. It is clear the deviation
decreases as more observations are obtained, which is con-
sistent with the implication of our bound.

In Fig. 6, we showed the performance deviation under dif-
ferent numbers of detected clusters, which was controlled by

Fig. 4. The similarity ratios of all examined clustering techniques on the
friendship view on 92 Twitter ego-nets. The ratios averaged over these
ego-nets are: 71.9 for SCAN, 79.5 for cs, 20.9 for csc, and 100.6 for scsc.

TABLE 3
Representative Tags for Detected Circles in an Ego-Net

Circle Representative Tags

S1 Human, Sleep
S2 Valentine’s Day, Dance, Sport
S3 Ireland, Beer, Coffee
S4 Social media, Health, Cancer
S5 Yahoo!, WHATS’On (Software), Android

Fig. 5. Performance deviation based on graph K and its inherently
incomplete observation ~K under metric (7).

Fig. 6. Performance deviation under different number of clusters.
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parameter k in (8). For each choice, the initial cluster centers
were chosen by a standard ‘cluster’ setting in Matlab (i.e.,
10 percent of the nodes were randomly sampled to perform
clustering first, and centers of the resulted clusters were
used as the initial centers for the final clustering algorithm).
It is clear that smaller choice of k suffers smaller performance
deviation, and this is consistent with the implication of our
bias bound in (8) which decreases as k decreases.

Finally, we examined the impact of coefficient s1=sn on
performance deviation. To this end, we first fixed k ¼ 5,
k ¼ 5 and d ¼ 30 percent so the graph contained 5 clusters
by nature. The edge-generation probability remained
largely the same as before, except for the firs cluster we
used another probability p0 which varied from 0.1 to 0.9
with step size 0.1. Note different choices of p0 would gener-
ate different graphs, and for each choice we applied spectral
clustering on both its generatedK; ~K and evaluated the per-
formance deviation. Meanwhile, we recorded the coefficient
s1=sn for each K. Finally, the deviation-coefficient pair for
each choice of p0 was plotted as point in Fig. 7.

We had three major observations from the figure. First, in
general a larger coefficient s1=sn corresponded to larger per-
formance deviation, which was consistent with the implica-
tion of our bound. Second, the relation between the
coefficient and deviationwas roughly linear, which also coin-
cided with our result. It was noted, however, such relation
did not cross the origin as suggested by the bound; instead, it
was biased by nearly a constant factor. We believed such bias
was reasonable and should largely corresponded to the
approximation error of ignored for spectral clustering. (Recall
this error was ignored by the free-approximation assump-
tion.) We hence do not claim the bound tight. However, its
multiple implications were verified and may still provide
useful insights for algorithmdesigns.

6 RELATED WORK

6.1 Social Circle Clustering
A social circle is a group of people with certain type of
social intimacy. Identifying social circles in a user’s online
social network provides an important way for the user to
exert appropriate access control over his/her information
dissemination [14], [53]. However, manual identification
is usually tedious and exhausting, which triggered the
study of automatic social circle identification [20], [25].
The idea is to algorithmically cluster people into groups

so that those in the same group are similar under proper
metric [1], [43].

Existing social circle detection techniques can be roughly
categorized into graph-based and content-based. Graph-
based detection methods use only topological structure or
linkage information of the social network, including graph
partitioning [27], hierarchical clustering [43], likelihood
maximization [44] and matrix factorization [68]. On the
other hand, content-based detection methods use semantic
information on social network such as email, tweet mes-
sages and documents [9], [37], [58], [69], [70]. In addition,
user interaction on social network has also been used for
detection [47], as well as user profiles [40], [54]. It should be
mentioned, however, these techniques focused on a single
view of the network structure in social circle identification.

6.2 Multi-View Spectral Clustering
Multi-view spectral clustering is a framework that effec-
tively combines information from multiple sources under
the view consistency idea. It has demonstrated superior per-
formance in many applications such as document categori-
zation, digit classification and image annotation (see [62]
and reference therein). However, to our knowledge this
framework has not been applied for detecting social circles,
and our work is the first effort in this direction.

In this paper, we have employed the co-trained spectral
clustering algorithm [29], but also realized its potential limi-
tation of ignoring the inherent incompleteness of sparse
views. The modified algorithm we presented in this paper
is an attempt to lift this limitation and we demonstrated its
advantage in experiments.

6.3 Clustering on Incomplete Graph
Clustering on incomplete graphs is not a new topic. See
studies in [10], [34], [49], [57] for example. Most of these
works provided only algorithmic solutions and a few theo-
retical studies assumed prior knowledge on which part of
the graph is missing. However, none of them address our
concern on the performance deviation between clustering a
graph and its incomplete observation.

A work more related to ours is [26], which analyzes how
much the spectral clustering solution on a complete graph
may deviate from the optimal normalized cut solution. Our
analysis focuses on a fundamentally different problem, i.e.,
how much would two spectral clustering solutions deviate,
with one based on a complete graph and the other based on
its incomplete observation. Technically, we use the same
evaluation metric as [26] and borrow some of its results,
while additionally introducing perturbation theories to
incorporate the incomplete observation.

Another related work is [24], which analyzes the effect of
graph perturbation on spectral clustering. We study the
same research question, but our analysis is fundamentally
different from theirs in at least three aspects. First, the prob-
lem settings are different: they study only bi-partitioning
based on the second principal eigen-vector, while we study
multi-partitioning based on the k learning eigen-vectors.
Second, the evaluation metrics are different: their metric
does not consider the cluster sizes while ours does. Third,
the proving techniques are different: they use a water-filling
argument whereas we largely rely on the fundamental
properties of Loewner partial orders; we also borrow a lat-
est perturbation result from [66] and some results in [26].

Fig. 7. Performance deviation versus coefficient s1=sn under different
choices of edge-generation probability p0 for one group of clusters.

LAN ETAL.: LEARNING SOCIAL CIRCLES IN EGO-NETWORKS BASED ON MULTI-VIEW NETWORK STRUCTURE 1691



7 DISCUSSIONS

While this paper has focused on initiating and verifying the
idea that one could exploit multiple views of the ego-net
structure (e.g., by multi-view spectral clustering techniques)
for better social circle detection in ego-nets, we have realized
certain orthogonal directions that could further the study.

7.1 Problem Setting
The presented study focused on detecting disjoint social
circles based solely on network structure, while we had men-
tioned other studies that focused on detecting overlapping
circles and using alter profiles.

Detecting disjoint social circles is a common setting in the
literature (e.g., [21], [42]). Here, our adoption was particularly
motivated from a user privacy protection perspective – a
major proposal in the privacy research community is to pro-
tect user privacy by drawing and controlling information
boundaries in online social networks, so that an ego’s posts
are spread only within designated circles [55]; in this case, if
an alter is assigned to multiple circles, then her re-actions
(e.g., ‘like’ or ‘re-tweet’) in assigned designated circles may be
easily observed in other assigned non-designated circles. We
admit, however, social circles may overlap in reality. In that
case, first notice the two settings are convertible—two over-
lapping circles S1 and S2 generally admit three disjoint circles
S1 \ S2, S1 n S2 and S2 n S1; and three disjoint circles C1; C2
and C3 could be merged into two overlapping ones C1 [ C2
and C1 [ C3. This allows a direct technical extension of our
study for the case of overlapping circles. In addition, one
could also extend more sophisticated techniques (e.g.,[40])
from their single-view settings to multi-view settings. While
the technical extensions may not be particularly difficult, a
more challenging question is how to balance circle overlap-
ping and privacy protection (aswementioned above).

Using network structure to detect social circle is also a
common setting [63], and our adoption was again motivated
by privacy protection—that alters may be reluctant to share
or even fill in their true profiles on online social networks
due to privacy concerns. When this is not a serious concern,
however, and alter profiles are largely available, our study
could be directly extended by building an extra view on the
profile similarities between alters (e.g., similarity between
two alters is the inner product of their profile vectors).

7.2 Network Modeling
The network modeling techniques presented in this paper
were largely based on classic techniques and where chosen
for their simplicity or based on our experience.

As one example, the interaction similarity between two
alters was obtained by summarizing their similarities in
both directions (e.g., the reply number between Bob and
Nancy was obtained by adding the number of replies from
Bob to Nancy and that from Nancy to Bob). This is a classic
technique that symmetrizes directed social networks into
un-directed ones for analysis (e.g., [39], [41], [48]), but
ignores the directional information which may be integrated
in a finer manner for further performance improvement. In
particular, how to effectively integrate direction modeling
with multi-view learning remains an open challenge. (For
instance, one may think of modeling each direction as one
view but would suffer more sparsity in each new view.)

As another example, the topic view was normalized by
the classic TF-IDF technique to highlight the importance of
tags for each alter. We chose this pre-processing technique

for it had been successfully applied in a similar study [47]
as well as other tasks of social network analysis based on
our own experience (e.g.,[11], [17]). However, the technique
itself is not without any limitation—in our application, for
instance, it may assign a low TF-IDF weight to an alter’s
truly interested topic if she only connects with people who
talk about that topic. It then remains an open question that
whether and how such lower weights may have adverse
impact on social circle detection (in particular, under the
multi-view clustering framework presented in this paper).

7.3 Circle Clustering
The major social circle detection techniques examined in
this paper belong to the family of multi-view spectral clus-
tering (e.g.,[29], [31]). We chose this family for it is a union
of spectral clustering [45] and multi-view learning [5], two
ancestors with high reputations. It is noted, however, each
ancestor has its own challenges which could have been
inherited by multi-view spectral clustering.

As one example, standard spectral clustering [45] eventu-
ally groups instances by directly applying K-means, which is
a tremendously popular data clustering technique. How-
ever, K-means has a well-known challenge in manually
choosing a proper group number [28], which is passed down
to spectral clustering and now to the multi-view spectral
clustering techniques we applied for social circle detection.
One could clearly address the problem from the very origin,
say, by applying new K-means [28] that could automatically
determine the group number. However, it would perhaps be
more interesting to integrate such determination with multi-
view learning in the context of social circle detection.

As another example, the multi-view learning family has
been largely built on the view-consensus assumption, i.e., the
label assignments on different instance views should largely
agree [62], which has been a key to theoretically justify its
success and sample efficiency (e.g., [3], [32]). However, the
assumption may not always hold, say, due the presence of
noise (e.g.,[13]), in which case enforcing view consistency
may result in performance degradation—an effect usually
referred as negative transfer. Negative transfer has been
broadly studied in multi-task learning and collective matrix
factorization (e.g., [30], [33]), but its discussion in multi-
view learning seems scarce. The selective transfer mecha-
nism presented in this paper was an attempt to mitigate the
problem, but we believe there remains spaces for improve-
ments. For instance, we have ignored results on noisy obser-
vations during while transferring information across views,
and it remains an open question how noisy observations
may be leveraged to improve performance.

7.4 Application
A potential application of social circle is to draw informa-
tion boundary between different circles, so that a message
could be delivered only to designated circles (e.g., [54],
[55]). Note the final social circle construction does not have
to be entirely automatic, and the ego may manually modify
the detected groups. In this case, circle detection still signifi-
cantly reduces the effort of human labeling. Another issue
is the information boundaries may not be completely secure
if the social networking sites allows breaches in privacy pro-
tection (e.g., alters could ‘re-share’ their received private
posts). These are, however, beyond the scope of the paper.

The discovered social circles could also be used to
improve the efficiency of ad delivery, targeted advertising,
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and opinion mining in social groups. (See [40] for more dis-
cussions.) Social circles could also be used to study users’
socialization behavior and social network information flow.
When the temporal information of data is available, our
methods may be further extended to detect circles in evolv-
ing ego-nets. (See some latest progress on dynamic social net-
work analysis in [59], [60] for instance.) In addition, when
information of the ego-net is available from other domains
(e.g., [36], [61]), it is possible to further improve our work by
considering cross-domain cross-view social circle detection.

8 CONCLUSION

In this paper, we proposed to automatically detect social
circles of an ego-net based on its multi-view network struc-
ture.We crawled andmodeled Twitter ego-nets by six views,
and showed multi-view spectral clustering outperformed
the commonly adopted single-view clustering on these ego-
nets. We also showed, by treating sparse views as inherently
incomplete ones and selectively transferring information
across views, our modified multi-view clustering technique
outperformed the standard multi-view clustering technique.
The performance bias of standard clustering on inherently
incomplete networkswas briefly studied.
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