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Abstract

The paper proposes a semantic clustering based deduction learning by mim-

icking the learning and thinking process of human brains. Human beings can

make judgments based on experience and cognition, and as a result, no one

would recognize an unknown animal as a car. Inspired by this observation, we

propose to train deep learning models using the clustering prior that can guide

the models to learn with the ability of semantic deducing and summarizing

from classification attributes, such as a cat belonging to animals while a car

pertaining to vehicles. The proposed approach realizes the high-level cluster-

ing in the semantic space, enabling the model to deduce the relations among

various classes during the learning process. In addition, the paper introduces

a semantic prior based random search for the opposite labels to ensure the

smooth distribution of the clustering and the robustness of the classifiers. The

proposed approach is supported theoretically and empirically through extensive

experiments. We compare the performance across state-of-the-art classifiers on

popular benchmarks, and the generalization ability is verified by adding noisy

labeling to the datasets. Experimental results demonstrate the superiority of

the proposed approach.
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Figure 1: The deduction progress of semantic clustering. Prior and Guide works as the

prior information that is combined with the labels as the labeling input data. The Learning

Timeline is the same as the normal classification learning process, but our model provides

the possibility of doing high-level semantic clustering by the deduction progress as the aid for

the classification task. The model, at the end of the learning timeline, is expected to provide

better classification accuracy.

semantic clustering.

1. Introduction

The powerful ability for feature expression and semantic extraction of deep

Convolutional Neural Networks (CNNs) has dramatically pushed the flourishing

development of computer vision [1] [2] [3]. At the same time, large-scale labeled

data samples ensure the effectiveness of supervised learning, which enables the5

deep learning models to efficiently extract abstract but highly-semantic informa-

tion for complicated vision tasks [4] [5] [6]. Undoubtedly, future learning models

should be complex, robust, knowledge-driven, and cognition-based [7] [8]. This

defines them with the cognitive ability of self-enhancing, synthesizing knowledge

from multiple sources, and deducing based on knowledge and experiences [7].10

Some complementary and weak supervision information has been exploited

to boost the learning performance of models [9] [10]. Such complementary super-

vision includes early side information[11], privileged information [12], and weak

supervision based on semi-supervised data [13] [14], noisy labeled data [15] [16],

and complementary labels [17] [18] [19]. Most of these methods supplement ex-15

tra direct labeling information or replace expensive accurate labels with cheap
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labeling information. These complementary labels, in fact, increase the labeling

cost as a direct mapping from label space to sample space, named as “hard label-

ing” in the later sections. Most importantly, these methods are unable to equip

deep models with the ability of self-enhancement, synthesis, and deduction.20

In this paper, we leverage the wide-applied but fundamental supervised im-

age classification and propose deduction learning by semantic clustering. We

introduce semantic prior, high-level clustering information, represented by dif-

ferent colors in Figure 1, although no names are given for each color. For

example, we expect the model know the cat and the dog should be closed to25

each other, though the model would never know they should be called “animal”.

Semantic prior (Prior and Guide to Label Space in Figure 1) is thus introduced

into the classification learning models, guiding them to form effective semantic

clustering so that they are able to deduce high-level semantic expression (e.g.

Same color cells go attached together in Figure 1), as shown in Figure 1.30

Inspired by the idea of negative learning [19] [18], we propose to guide the

classifier to learn the opposite class that does not belong to the same cluster

with the accurate label. For example, if a sample is labeled by “cat”, then our

algorithm will tell the classifier that the image is not “car” or any other random

label that belongs to a different cluster other than “cat”, during one learning35

shot.

This random search for the opposite label is in accordance with the semantic

prior that is fed into the model along with other inputs that specifically refer

to the images and their corresponding labels in this work. Statistically, the

opposite semantic labels corresponding to a certain accurate label should be40

chosen with equal probability given the number of learning periods (epochs) is

large enough. Theoretically, this proposed method enables a smooth clustering

in the semantic space and an effective deduction, which makes the model able

to deduce that “cat” should be one element of an abstract cluster, although the

model would never know it can be called “animal”, as shown in the second stage45

of Figure 1, where the colors “Green, Grey, Yellow”, each represents a higher

hierarchical category. Each specific class, like the cat, would be learning that
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if it belongs to “Green”, then it is totally on the opposite side of other classes

that belong to “Yellow” and “Grey”.

Finally, it is noticed that the proposed method does not give up the conven-50

tional label learning by introducing one composite loss function. This ensures

the label learning and the semantic clustering in the same timeline during the

learning process. It conforms to the requirement of cognition learning [7]. By

this setting, the model could finish high-level semantic expressions, capturing

the concepts, similar to “animal”, “vehicle”, “buildings”, etc., as shown in the55

third stage in Figure 1, where sample classes accomplish clusters.

The major contributions of this paper are summarized below:

• Semantic Clustering: We propose a high-level semantic mapping within

semantic space, enhancing the semantic expression and providing a cer-

tain level of independence for overcoming the limitation of convolution60

operation at the pixel level. It is realized by introducing a semantic prior

which could guide the model to find the opposite semantic label that is

not from the same semantic colony with the given true label.

• Deduction Learning: Deduction learning is realized by the semantic prior

and the proposed random search for opposite semantic, which ensures the65

smoothness of semantic clustering and the robustness of classification. It

could be implemented as a plug-in module that could play in arbitrary

classification models by introducing a composite loss function.

• Robust Improvement: We achieved stable convergence and robust classifi-

cation performance on mainstream classification models. It is also verified70

by working on noisy data environment where there exists a certain ratio

of incorrect labels.

• Wide Applicability: In the proposed method, label learning and semantic

clustering follow the same learning timeline, equipping the model with the

ability of deduction and cognition. It can be taken as a plug-in module75

for broad deep learning applications, such as few-shot learning, zero-shot
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learning or even semi-supervised learning.

The functional source code of the paper can be accessed from the link

https://github.com/rucv/deduction-learning.

2. Related Work80

2.1. Hierarchical Semantic Information

At first, the research in this field focuses on exploring or utilizing the in-

herent relations among label classes, or looking for the intermediate represen-

tations between classes. [20] formed a label-embedding problem where each

class is embedded in the space of attribute vectors so that the attributes act85

as intermediate representations that enable parameter sharing between classes.

Another research in [21] uses a label relation graph to encode flexible relations

between class labels by building the rich structure of real-world labels. The idea

of incremental learning by hierarchical label training has been explored recently

by a few other papers. Progressive Neural Networks [22] learn to solve com-90

plex sequences of task by leveraging prior knowledge with lateral connections.

“iCaRL” allows learning in a class incremental way: only the training data for

a small number of classes is present at the same time and new classes can be

added progressively [23]. Tree-CNN [24], proposes training root network by gen-

eral classes and then learning the fine classes by corresponding growth-network95

(mainly learned by leaf structure of the network). While this research direction

solves hierarchical semantic learning based on an independent timeline for each

stage. Our proposed idea shares the same timeline with the normal classifica-

tion task throughout the entire learning process which works as an exploration

towards cognitive learning. At the same time, the methods above directly pro-100

vide concrete class relation structure on the basis of the original class labels for

training, without exploring the deduction ability of the networks.

Learning with real, concrete complementary labeling information was pro-

posed by [17] for the image classification task. It was based on an assumption

that the transition probability for complementary labels is equal to each other.105
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It modified the traditional one-versus-all (OVA) and pairwise-comparison (PC)

losses so that it is suitable for the uniform probability distribution, working as

an unbiased estimator for the expected risk of true-labeled classification. Later

on, the work [18] argued that there are two unsolved problems in the previous

work. The first one lies in the fact that the complementary labels tend to be110

affected by annotators’ experience and limited cognition. The other one is the

proposed modified OVA and PC losses can not be generalized to more popular

losses, such as the cross-entropy loss. Thus, they proposed the transition matrix

setting to fix the bias from the biased complementary labels. At the same time,

they provided intensive mathematical analysis to prove their proposed setting115

can be generalized to many losses which directly provides an unbiased estimator

for minimizing expectation risk. These works expect better semantic learning

by introducing intensive complementary labeling while they do not explore the

deduction ability of the networks themselves as well. They are essentially reg-

ular label learning. The work in [19] automatically generated complementary120

labels from the given noisy labels and utilized them for the proposed negative

learning, incorporating the complementary labeling into noisy label learning.

2.2. Semantic Labeling in Noisy Cases

Some researchers attempt to aid learning in noisy cases by introducing ef-

fective semantic label learning. Some attempt to create noise-robust losses by125

introducing transition probabilities to the field of classification and transfer

learning [25] [26]. Some propose to use the transition layer to modify deep

neural network [27]. In other studies, researchers try to re-weight the training

sample based on the reliability of the given label [28] [29]. Some other ap-

proaches try to prune the correct samples from the softmax outputs [30] [31].130

Different from them, this paper dedicates to the research on how self-clustering

and deduction learning ability of networks would influence the robustness in

noisy labeling cases.

This paper tries to explore the self-deduction ability of networks in the se-

mantic space and focuses on guiding the models to fetch effective hierarchical135
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semantic information in a self-learning way by semantic clustering and cogni-

tive accumulation. First, it could completely free the confinement problem of

transition probabilities. The proposed semantic prior based random search for

opposite semantic ensures the equal probability, providing the mapping inde-

pendence in semantic space. Second, the semantic clustering boosts positive140

label learning. For example, if the sample “cat” has a low classification prob-

ability, the semantic clustering could help enhance this confidence by guiding

this model to realize that the object is at least an animal, not a “car”. Third,

our proposed method shares the same timeline with conventional label learn-

ing, enabling effective cognitive accumulation. Moreover, there is no need for145

specifically defining loss functions for the proposed models. Following the loss

formations of the original label learning in specific models is all we need, poten-

tially leading to better generalization.

3. Problem Setup

People can make deduction independent of the actual vision behavior. Thus,150

in deep learning, we expect the model with similar independence to ensure the

realization of high-level mapping in semantic space.

Semantic Space for Image Classification. Semantic space is originally proposed

in the natural language domain, aiming to create representations of natural

language that are capable of capturing meanings [32]. In computer vision, the155

concept of semantic space is much more abstract. Current semantic extraction

is limited both by spatial size and by the individual data sample. However, it

should aim to overcome the limitations of convolution-based or receptive-field

based approaches operating at the pixel level. Convolution-based deep learning

models are fixed at the pixel level and are poor for generalization, which would160

easily break down if the individual image differs from or is strange to those in the

training materials used for the statistical models. Compared to spatial feature

learning that performs at the pixel level, semantic learning should be a relatively

independent process that works on the semantic element, which is the common
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description for a class of objects. Moreover, the semantic expression could165

have multi-levels that describe the relevant or diverging characters of semantic

elements. For example, the “cat” as a semantic element could be clustered to

the high-level semantic expression, something similar to an “animal”.

Definition 1 (Semantic Space). Without loss of generality, let C be the semantic

space, c ∈ Z+ be the semantic element in C that appears as one semantic label

indicating a specific object class. The semantic relation of different c is defined

by r. [c] = {1,...,c} signifies the set of semantic labels. Then, we have

C def= 〈[c], r〉 (1)

where element c is uniformly sampled from C. Tuple 〈[c], r〉 expresses the fact

that semantic elements c ∈ [c] are linked to each other by the relation r, forming170

the abstract spatial distribution in C.

Semantic Cell. In order to better describe the abstract relation distribution in

C, we propose Semantic Cell as the semantic unit that could label a group of

objects that have similar features in feature space X , which corresponds to the

element c ∈ [c] in Definition 1. It realizes a multi-to-one mapping that bridges175

the link between feature space X and semantic space C.

Definition 2 (Semantic Mapping). Let g(x) be the mapping function of a given

multi-class classification learning model that estimates the classification proba-

bilities based on the input sample x in feature space X . f(x) predicts the classi-

fication label y based on the maximum probability principle, mapping the feature

sample x to the corresponding semantic cell c in C.

f(x)
def
= arg max

i∈[c]
gi(x) (2)

where f : X → C, the maximum probability of g and f(x) ∈ C. gi(x) realizes

the estimation towards P (y = i|x).

Semantic Colony. Semantic Colony θ takes semantic cell c as individual sample.

It clusters c ∈ C that hold related semantic information as θ. Based on which, it180

8



defines the intra-class relation and inner-class differentiation to realize clustering

in semantic space C with high-order semantic expression.

Definition 3 (Semantic Clustering). Without loss of generality, let Θ be the

distribution of semantic colonies θ in C. H conducts clustering for semantic cell

c ∈ C into semantic colony θ ∼ Θ. c is the vector with the elements of semantic

cells c ∈ [c]. Then, we have

θ
def
= H(c, rc) (3)

where H : [c] → Θ, c consists of semantic cells c in [c] that are semantically

related, and H maps c to θ ∼ Θ in accordance with the corresponding semantic

relation rc.185

4. Methodology

In this section, we first introduce the general approach that deep neural

networks learn optimal classification with hard labels. Then, we discuss the

learning with semantic deduction and propose corresponding training and test

model.190

4.1. Conventional Classification Learning

In multi-class classification, we aim to learn a classifier f(x) that predicts the

classification label y for a given observation sample x. Typically, the classifier

directly maps x into the label space Y by the following function:

f(x) = arg max
i∈Y

WT
i x (4)

where f : X → Y and Wi refers to the learning parameters of the classifier f ,

with the estimation of P (y = i|x).

In supervised learning, loss functions are proposed to measure the expecta-

tion of the predicting f(x) for y [33]. It is typically defined as the expected risk

[18] for various loss functions.

R(g) = Ex,y∼P (x,y)[`(f(x), y)] (5)
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A well-trained classifier f∗ minimizes this expected risk R(g),

f∗ = arg min
f∈F

R(f) (6)

where F is the distribution space of f .

4.2. Learning with Semantic Deduction195

In semantic space, the description of hard labels towards objects is lim-

ited. To better describe an object or a scene, people usually enumerate related

features and associate their prior cognition and experience for a reasonable de-

duction. Current deep learning models realize feature sensing and learning but

lack the proper deduction that could enrich the description of objects. Our pre-200

vious analysis shows that hard labels in semantic space could potentially build

more links, as the discussion in Section 2.1. We introduce the semantic prior,

guiding the model to learn the semantic links by deduction. The overview of our

method is depicted in Figure 2. The overall inputs include training sample im-

ages, corresponding labels, and the semantic prior information which provides205

the high-level semantic hierarchy of current classification labels. The classi-

fication model is trained in the same way as the original network. For the

green part in Figure 2, given label y, the model finds the corresponding op-

posite semantic label for the sample image according to the semantic prior by

an equal-probability random search, shown as the yellow block. Then both the210

true label and the opposite semantic label are fed into the composite loss we

defined. The output of the proposed method is expected of better classification

performance in the way of classification accuracy.

First, the semantic prior works as the criterion for colonies’ formation in

semantic space C. For example, a cat labeled by ci ∈ [c] should be grouped215

into “animal” colony, if denoted by θm. Similarly, a car labeled by cj could

be grouped into the “vehicle” colony θn. Second, the semantic deduction is

fully performed in semantic space C, instead of defining complementary labels

as weak supervision. Thus, we do not need any tedious and laborious labeling

work, which would avoid labeling bias from human beings’ bias [18], and the220
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Figure 2: An overview of the proposed method. We use semantic prior based random search

to produce opposite semantic so as to form the composite loss function, guiding the model to

form semantic colonies.

problem that the complementary labeling is essentially non-uniformly selected

from the c− 1 classes other than the true label class (c > 2).

4.3. Equal-Probability Search for Opposite Semantic.

We assume that the variables (x, c, θ) are defined in the space (X × [c]×Θ),

with the joint probability measure P (x, c, θ).225

Given a sample (x, c, θ) ∈ (X × [c] × Θ), its opposite classification label c̄

is randomly selected from [c]\θ. When the sampling frequency in a complete

learning period is greatly larger than the class number n[c], the probability for

each c̄ ∈ [c]\θ that indicates how likely it is selected can be expressed as

Pi(Ȳ = c̄|X = x, Y = c) =
1

n([c]\θ)
(7)

where n([c]\θ) is the number of semantic cells in [c]\θ. This conclusion verifies

that the proposed semantic-prior based random search method for the opposite

semantic label c̄ is statistically consistent, and it realizes the independency of c̄

with respective to feature space X conditioned on c and θ. Thus we have,

P (Ȳ = c̄|X = x, Y = c) = P (Ȳ = c̄|Y = c) (8)
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The optimal classifier can be found under the uniform assumption, which

has been proven in previous work [17]. Meanwhile, the uniform selection means

equal probability, ensuring the smooth clustering and the stability and ro-

bustness of the learning process. While for man-made complementary labels,230

they are confined by the fact that Ȳ is assumed to be independent of feature

X [18] [17].

Based on the exist of independence, the complete mapping from x to ȳ can

be set up as the following formula, ∀i, j ∈ [c],

P (ȳ|x) =
∑

i∈θi,j /∈θi

P (ȳ = j, y = i|x)

=
∑

i∈θi,j /∈θi

P (ȳ = j|y = i,x)P (y = i|x)

=
∑

i∈θi,j /∈θi

P (ȳ = j|y = i)P (y = i|x)

(9)

4.4. Learning with Smooth Semantic Clustering

Conventionally, the classifier is trained to learn that the input image belongs

to a specific, single class label. Let x ∈ X be the input image, y ∈ [c] denotes its

label. f(x,W ) maps the input x to the score space: X → Rc, as equation (4)

shows. The training process is guided by the cross entropy loss (most popular

classification cost function) of f as

LP(f, y) = −
c∑

m=1

ym log pm (10)

where y ∈ {0, 1}c is the one-hot vector form of y. pm is the mth element

of probability vector p. The conventional learning process is to optimize the

probability pm according to the given exact label ym so that pm → 1. Based

on which, we propose a learning algorithm with smooth high-level clustering by

guiding f to learn the semantic prior from the opposite label. Inspired by [19],

the opposite semantic should push f to optimize the corresponding classification

probability p̄m → 0.

LO(f, y) = −
c∑

m=1

ȳm log(1− p̄m) (11)

12



where ym ∈ θm, ȳm ∈ [c] and ȳm /∈ θm. p̄m is the corresponding classification

possibility of label ȳm in vector p. Thus, the random selection of ȳm comes235

from [c]\θ in every iteration during the training process, shown in Algorithm 1.

Algorithm 1 Smooth Semantic Clustering

Input: Training label y ∈ Y = [c], semantic prior θ̂ ∼ Θ̂

1: while iteration do

2: if y ∈ θ̂i then

3: ȳ = Select randomly from [c]\θ̂i

4: There exists another semantic colony θj

5: if ȳ ∈ θj then

6: y /∈ θj

Output: Opposite semantic label ȳ and the learned semantic colony θ ∼ Θ

From Algorithm 1, we can observe that the learning for clustering in the

semantic space C is synchronous with image classification. Thus, we can define

a composite loss function for an end-to-end semantic clustering classifier.

L = α1LP + α2LO

= −α1

c∑
m=1

ym log pm − α2

c∑
m=1

ȳm log(1− p̄m)
(12)

where α1 and α2 are weights defining the ratio of LP and LO respectively.

For a specific input image, there is not only a semantic label y but also

other semantic description θ ∼ Θ, and θ is the high-level semantic expression240

corresponding to y, which builds a new semantic attribute with a larger range.

Since the opposite semantic is randomly selected with equal probability, the

clustering hyperplane in C can be smooth.

4.5. Optimal Learning

In the case of L, we define the expected risk R̄(f) with the mapping f : X →245

{[c],Θ}. If we can find an optimal f∗ such that f∗ = P (Y = i|X),∀i ∈ [c], then

13



in theory, we expect that we can find the optimal f̄∗ such that f̄∗ = P (Ȳ =

i|X),∀i ∈ [c], where P (Ȳ |X) =
∑
i∈θi,j /∈θi P (Ȳ = j, Y = i|X) according to

equation (9). If the above idea can be proved, with sufficient training samples,

the proposed algorithm with R̄(f) is capable of simultaneously learning a good250

classification and clustering for (X,Y, θ).

Following [18], we will prove that the proposed semantic clustering learning

with its corresponding loss function L is able to identify the optimal classifier.

First, we introduce the following assumption [18],

Assumption 1. The optimal learning with mapping f∗ satisfies f∗i (X) =255

P (Y = i|X),∀i ∈ [c] by minimizing the expected risk R(f).

Based on this assumption, we are able to prove that f̄∗ = f∗ following the

theorem below [18].

Theorem 1. Suppose that Assumption 1 is satisfied, then the minimum solution

f̄∗ of R̄(f) is also the minimum solution f∗ of R(f), i.e., f̄∗=f∗.260

Proof. Based on Assumption 1, loss function L, and function (9) for the learning

in the proposed smooth semantic clustering, we have

f∗i (X) = P (Ȳ = j|X)

=
∑
i∈θi

P (Ȳ = j, Y = i|X),∀i, j ∈ [c], j /∈ θi
(13)

Let s̄(X) = [P (Ȳ = 1|X), · · · , P (Ȳ = c)|X)] and s(X) = [P (Y = 1|X), · · · , P (Y =

c)|X)]. According to the discussion of [18], we rewrite R̄(f) as

R̄(f) =

∫
X

c∑
j=1

P (Ȳ = j)P (X|Ȳ = j)L(f(X), Ȳ = j)dX

=

c∑
j=1

P (Ȳ = j)

∫
X

P (X|Ȳ = j)L(f(X), Ȳ = j)dX

=

c∑
j=1

P (Ȳ = j)R̄j(f)

(14)

where P (Ȳ = j) is given when we have Y = i, distributed as P (Ȳ = j|Y = i)

according to Algorithm 1. R̄j(f) =
∫
X
P (X|Ȳ = j)L(f(X), Ȳ = j)dX. Thus,

14



if we use C to denote the operation form of P (Ȳ = j|Y = i), according to

function (9) and the above convergence analysis, we have

s̄(X) = CT s(X) (15)

where P (Ȳ = j|Y = i) is realized based on the random search with semantic

prior. Equation (15) ensures that

f̄∗(X) = arg max
i

CT si(X) = CT arg max
i

si(X) = CT f∗(X) (16)

where i ∈ [1, c]. Thus, we have f̄∗ ⇐⇒ f∗. The proof is completed.

5. Experiment

In this section, we study the impact of the proposed semantic deduction al-

gorithm on popular image classifiers using mainstream benchmark datasets. In

order to show that our algorithm is able to generalize to complex or disordered265

data environment with better robustness, we follow each specific experimen-

tal setting of the baseline methods, and only vary the data environment by

producing noisy labels at certain ratios.

Learning Scenarios. To identify the gain of the proposed deduction learning

algorithm, we design fairly comparable learning scenarios where only the de-270

duction related hyper-parameters are changed from the default original setting

while keeping all the rest unchanged. The assignment for the weights of α1 and

α2 in equation12 is based on the experiment performance. We introduce the

most core algorithm idea of the current state-of-the-art works of complemen-

tary supervision information designed for various fields [19] [18] [17] into our275

experiment setting as one of the baselines. Details are listed below:

• Default Setting (OT): In this setting, we train the original baseline clas-

sification models and keep all the hyper-parameters unchanged as in the

corresponding published papers and public code. We take both classical

and state-of-the-art CNN classifier networks into consideration, includ-280

ing Multilayer Perceptron (MLP)[34], VGG [34], ResNet[2], DenseNet [1],

15



Wresnet [35], ResNext[36]. All of them are trained and compared with

our proposed methods fairly.

• Random Opposite Semantic (RT): Under this setting, we exploit the op-

posite semantic label ȳ ∈ [c] that corresponds to the original accurate label285

y ∈ [c], satisfying ȳ 6= y. We use random search for the opposite label in

the label pools [c] [19] instead of hard labeling so as to avoid bias [18] [19].

Thus, this setting does not refer to the semantic prior when looking for the

opposite semantic label ȳ. All other settings follow the Default Setting.

• Semantic Deduction (SD): We implement the proposed deduction learning290

by semantic clustering. The opposite semantic label ȳ is randomly selected

from [c]\θ̂i, where [c] is the set of semantic labels. θ̂i is the i th semantic

colony (details in Algorithm 1). Thus, it naturally satisfies ȳ 6= y, y

referring to the original accurate label y ∈ [c]. It strictly follows the

training setting with the identical hyper-parameters to those in the Default295

Setting.

Data Sets.

• Fashion-MNIST: Fashion-MNIST is a new image classification benchmark

with different data classes of clothing[37]. The dataset has an image size

of 28×28, input channels of 1, and the number of classes of 10. In our300

SD setting, we provide the semantic prior for it to group the 10 classes

fashion clothing into three groups: “clothes”, “shoes”, and “bags”.

• CIFAR10: CIFAR10 consists of 50, 000 training images and 10, 000 test

images of dimension 32 × 32. It has a total of 10 general classes[38]. In

the SD setting, we group the 10 classes into two groups, “vehicles” and305

“animals”.

• CIFAR100: CIFAR100 has 50, 000 training images and 10, 000 test im-

ages of the resolution of 32 × 32. It has a total of 100 classes, with

500 training images in each class [38]. For the SD setting, we provide
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Figure 3: Convergence performance of different models by training loss on CIFAR10.

two schemes, “SD v1” and “SD v2. The former one divides classes into310

“7” groups, including “people”, “animal”, “man-made stuff”, “transporta-

tion”, “plants”, “building”, and “nature”. The latter contains 8 groups:

“people”, “animal”, “life appliances”, “transportation”, “food”, “plants”,

“building”, and “nature”, isolating “food” from the “man-made” as an

independent expression.315

5.1. Results in Original Data Environment

We first evaluate our proposed algorithm in the original data environment,

directly using the images from the data sources. From the mathematical analysis

in Section 4, the identification of optimal learning depends on stable convergence

performance. Thus, we summarize the learning behaviors of each approach on320

CIFAR10 and CIFAR100 in Figure 3 and Figure 4, respectively.
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Figure 4: Convergence performance comparison by training loss on CIFAR100.

Convergence Performance. To obtain a fair comparison, we normalize the loss

distribution to [0, 1] for all scenarios. (a) Our algorithm generally shows con-

sistent convergence with different classifiers, as shown in the red or yellow solid

lines in Figure 3 and 4. We can see that SD usually converges faster than RT325

as the black arrows shown in almost every case. This consistent performance

verifies that the proposed self-clustering learning process helps speed up con-

vergence, assisting the classifier to execute the right decision, although there

is no additional labeling information fed into these models. (b) From all the

sub-figures in both Figure 3 and 4, although SD converges a little bit slower330

than the original baseline (solid blue line) at the first stage, they finally obtain

similar stability. This is due to the introduction of the additional learning pro-

cess, semantic clustering. (c) Although we design two semantic prior schemes,

SD v1 and SD v2, they both show very consistent convergence, where the red

and black solid lines even overlap with each other in Figure 4. (d) The fluctu-335
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Method Solver α1 α2 OT RT SD(ours)

MLP-3[34] adam 1 0.5 91.5 91.77 91.78

VGG8b [34] adam 1 0.3 95.45 95.47 95.53

VGG8b(multi=2.0) [34] adam 1 0.3 95.33 95.52 95.54

Table 1: Classification accuracy on FashionMNIST.

Method Solver α1 α2 OT RT SD(ours)

VGG8b [34] adam 1 0.5 94.12 94.14 94.32

ResNet18[2] adam 1 0.5 93.45 93.57 93.62

DenseNet-40-12 [1] sgd 1 0.5 94.68 94.79 94.92

Wresnet-28-10 [35] sgd 1 0.5 94.52 94.58 94.80

ResNext [36] sgd 1 0.5 96.16 96.26 96.30

Table 2: Classification accuracy on CIFAR10.

ation in ResNext is due to the non-averaged loss value in the original code for

each epoch. From the above observation, it is evident that the introduction of

semantic clustering achieves stable and fast convergence, theoretically qualified

to yield an optimal classification mapping.

Classification Accuracy. We summarize the classification accuracy in Table 1, 2,340

and 3. (a) Generally, SD obtains almost the highest classification accuracy

across the three benchmarks for all the compared classifiers. These classifiers

include two mainstream solvers, adam [39] and sgd [40], but SD leads the per-

formances in both situations. (b) Although the improvement brought by SD is

limited for Fashion MNIST, this is mainly due to the relatively simple classifi-345

cation task and the limited number of classes. When it comes to CIFAR100 as

shown in Table 3, SD always yields 1-3% increase in accuracy compared with

OT. (c) We can observe that RT in some special situations achieves high per-

formance, such as RT winning SD in the case of Wresnet-28-10. However, its

performance is not as stable as SD, which even yields lower classification accu-350

racy than OT, such as that in the case of ResNet101. These observations imply
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Method Solver α1 α2 OT RT SD v1 SD v2

VGG8b [34] adam 1 0.5 73.85 74.78 74.95 74.83

ResNet50 [2] sgd 1 0.5 73.78 76.36 75.59 76.64

DenseNet-40-12 [1] sgd 1 0.5 74.89 75.82 76.26 75.73

Wresnet-28-10 [35] sgd 1 0.5 76.98 77.62 77.54 77.59

ResNet101 [2] sgd 1 0.5 75.3 74.45 75.51 76.29

ResNet152 [2] sgd 1 0.3 72.21 73.25 74.38 74.40

Table 3: Classification accuracy on CIFAR100.

that the proposed smooth semantic clustering algorithm can effectively enhance

the performance of state-of-the-art classifiers, preserving a very stable learning

state at the same time, potentially leading to its broader applicability.

Compared with the recent publication [24], which proposes a network learn-355

ing algorithm that organizes the incrementally learning data into feature-driven

super-class and improves upon existing hierarchical CNN models by introducing

the capability of self-growth, so that the finer classification is done. This idea,

to a certain degree, shares a similar concept with our idea, except that we do

not need to label data with super-class and keep the same hierarchical structure360

during the learning process. We compare its results with ours in Table 4 and

Table 5, respectively. It can be seen from them that, although the Tree-CNN

models provide a competitive accuracy with its base network VGG-11, it shows

no advantages over our SD models. SD models obtain a more than 4% ad-

vantage over incremental learning methods (VGG11 and Tree-CNN in Table 4)365

on CIFAR 10 and averagely 5% higher than incremental learning methods on

CIFAR100 considering the test classification accuracy. It demonstrates that our

proposed high-level semantic clustering algorithm, in a direct supervised learn-

ing, could further improve the adaptive ability towards data, and keep a stable

learning process, which is further verified in the following sections. Most im-370

portantly, we focus on the exploration towards the self-deducing ability of CNN

models, which is different from all the above-mentioned ideas.
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Model VGG11 Tree-CNN VGG8b ResNet18-SD DenseNet-SD WresNet-SD

Test Accuracy 90.51 86.24 94.32 93.62 94.92 94.80

Table 4: Comparison with Tree-CNN on Cifar10, where SD refers to models that are applied

with our proposed algorithm. VGG11 and Tree-CNN are trained by ”old” and ”new” data in

an incremental way [24].

Model VGG11 Tree-CNN5 Tree-CNN10 Tree-CNN20 VGG8b-SD Wresnet-28-10-SD

Test-Acc 72.23 69.85 69.53 68.49 74.95 77.54

Table 5: Comparison with Tree-CNN on Cifar100, where Test-Acc stands for the Test Accu-

racy. SD refers to the corresponding models that are applied with our proposed algorithm.

VGG11 and Tree-CNN are trained by ”old” and ”new” data in an incremental way [24].

5.2. Results in Noisy Data Environment

In this section, we evaluate the proposed algorithm in noisy data environ-

ments. We produce a noisy data environment by adding noise labels to the375

original data sources. Specifically, we implement this operation on CIFAR10

and CIFAR100, where 10% of the training data in each data set are randomly

labeled by incorrect labels that belong to the same colony with the correct labels.

For example, if the image is labeled correctly by “cat”, then we randomly search

another class label in the “animal” cluster such as “dog” as the replacement of380

the label “cat”.

Convergence Performance. The comparative results are shown in Figures 3 and

4, from which we can see that (a) SD maintains the same learning stability as

that in original environment. It even surpasses the baseline OT by convergence

speed in some cases, such as DenseNet-40-12 and Wresnet-28-10 on CIFAR10.385

(b) SD generally converges faster than RT, especially in the case of Wresnet-

28-10. It shows SD works better assisting the classifier to execute reasonable

classification decisions in noisy situations, which exhibits good robustness of the

proposed algorithm. (c) SD with the composite loss function “L” shows perfect

robustness across both shallow and deep networks. Thus, SD is expected to390
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Method Solver α1 α2 OT RT SD(ours)

VGG8b [34] adam 1 0.3 89.71 90.52 90.33

ResNet18 [2] adam 1 0.3 89.22 90.71 90.32

DenseNet-40-12 [1] sgd 1 0.5 91.47 92.16 92.25

wresnet-28-10[35] sgd 1 0.5 89.07 87.67 89.21

ResNext[36] sgd 1 0.3 91.29 92.17 92.53

Table 6: Classification on CIFAR10 with noisy labels.

Method Solver α1 α2 OT RT SD v1 SD v2

VGG8b [34] adam 1 0.5 67.68 68.72 68.89 68.95

ResNext [2] sgd 1 0.5 75.48 74.51 75.03 75.65

DenseNet-40-12 [1] sgd 1 0.5 70.25 72.80 72.61 72.09

wresnet-28-10 [35] sgd 1 0.5 71.42 71.79 71.60 72.59

ResNet101[2] sgd 1 0.5 68.93 67.97 68.71 69.75

Table 7: Classification on CIFAR100 with noisy labels.

identify the optimal classification theoretically.

Classification Accuracy. The comparative results are shown in Tables 6 and 7.

We can observe that (a) SD, in general, surpasses OT by 1-2%. (b) Although

RT surpasses SD in some cases, their results are very close. SD is always con-

sistent for all the compared models. (c) RT is less robust than SD for its395

poor performance in some cases with much lower accuracy than OT, such as

Wresnet-28-10 on CIFAR10, and ResNext and ResNet101 on CIFAR100.

These observations indicate that the proposed deduction learning by seman-

tic clustering not only enhances the classification performance but also improves

the generalization for a given classifier. From the above experiments, it is evident400

that the proposed semantic clustering method can help the model achieve more

accurate classification decisions. Although the semantic prior-based opposite la-

bel search provides rough information, it can aid the model to deduce high-level

semantic expression along with the entire learning process, realizing the experi-

22



ence accumulation and basic cognitive learning. Thus, it could be an excellent405

plug-in module that could be applied in other supervised learning, few-shot

learning, zero-shot learning, or even semi-supervised learning where each learn-

ing stage could be a better fit, generalized, and becoming much more robust.

In the meanwhile, from the perspective of calculation, the proposed mechanism

of deduction learning by the opposite semantic constraint only introduces one410

more loss item, which is only the tenth level of the order of magnitudes. Com-

pared with matrix multiplication of any two layers during the training process

which has the million level of the order of magnitudes, our proposed model is

capable of keeping the time complexity of calculation, while its superior stability

and robustness make it easy to be generalized to other computer vision tasks.415

6. Conclusion

In this paper, we have proposed a deduction learning approach to boost the

gain of high-level semantic clustering. We have demonstrated that if a classifier

can perform further independent mapping in the semantic space, it will help the

model achieve higher classification performance with better generalization abil-420

ity and robustness. The proposed smooth semantic clustering algorithm ensures

label learning and semantic deduction being processed in the same timeline so

as to form a basic cognition. Extensive experiments across various classifiers on

different datasets demonstrate the superiority of the proposed method toward

further enhancing state-of-the-art classification performance.425
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