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ABSTRACT
With the exponential growth of automotive security research, new
security vulnerabilities and a�acks have been revealed and new
challenges have emerged. In recent years, various a�acks ranging
from replay a�acks, through false information injection, to Denial
of Service (DoS), have shown how fragile automotive security is.
As a result, a number of security solutions have been proposed
that rely on techniques like encryption and �rewalls. However,
most proposals require performance and computational overheads
that would become an additional burden rather than a solution.
In this paper, we propose a new automotive network algorithm,
called ID-Hopping, that aims to prevent targeted DoS a�acks in
which a�ackers target certain functions by injecting special frames
that would prevent a car’s normal operations. We aim to raise
the bar for a�ackers by randomizing the expected pa�erns in the
automotive network. Such randomization hinders the a�acker’s
ability to launch targeted DoS a�acks. We built a testing platform
and implemented the randomization mechanism to evaluate the
algorithm’s e�ectiveness. Based on the evaluation, the algorithm
holds a promising solution for targeted DoS, and even reverse
engineering, which automotive networks are most vulnerable to.
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1 INTRODUCTION
Nowadays, smart cars are more intelligent than ever before. Manu-
facturers embed numerous microcomputers to enhance the cars’
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safety, comfort, and entertainment features. Examples are collision
avoidance systems, and active trace control (safety features); re-
mote start and parking assistance systems (comfort features); and
on-board Internet and satellite radio (entertainment features).

�e recent advancements in smart cars, however, also introduced
new security issues that car manufacturers have not anticipated.
Numerous reports and research papers have shown the inadequacy
of security in smart cars [1, 9, 13]. �ese security issues are conse-
quences of the unexpected behaviors that result from the interac-
tions between the many heterogeneous components every smart car
consists of [2, 7]. �is includes Commercial-O�-�e-Shelf (COTS)
products and components implemented by third parties. In addi-
tion, the increased wireless channels exposed the two-decades-old
unconnected cars to numerous security problems.

With complex cyber-physical interactions, as well as increased
communication channels, security a�acks become imminent. �ere-
fore, security solutions have been proposed to add security layers to
smart cars. For example, cryptography-based solutions have been
proposed to provide authentication, con�dentiality, and integrity
measures [17, 21–23, 25]. Intrusion Detection Systems (IDS) have
been proposed to detect internal a�acks [10, 11, 15, 16, 18, 20] and
protection solutions against external a�acks [3, 4, 19, 24].

Although these solutions improve security in smart cars, there
is a very li�le a�ention given to DoS a�acks. Automotive networks
typically deploy a network protocol called Controller Area Network
(CAN). �is protocol has inherent security weaknesses such as the
lack of authentication and con�dentiality, weakness of integrity
checking, and lack of nodes’ identi�cation. Network nodes, called
Electronic Control Units (ECUs), cannot identify each other. Instead,
each frame has a unique ID, called arbitration ID, that signi�es
what the frame means and what priority it has. Due to the lack of
security measures, an a�acker can easily �ood the network with a
high priority ID to constantly dominate the network and prevent
legitimate ECUs from using it. �is is considered a DoS a�ack
because ECUs cannot use the network. In addition, an a�acker can
easily use any ID and spoof other ECUs with illegitimate frames
carrying an ID belonging to a legitimate ECU.

In this paper, we consider a special type of DoS where an a�acker
targets a certain ECU, or a set of ECUs, to prevent it from sending
particular frames. For example, when the Anti-Brake Systems (ABS)
sends a sensing data frame that is needed to mitigate a potential
accident, an a�acker would send a frame, or a set of frames, to
ensure that the ABS’s frame cannot use the network, and therefore
the ABS fails. �is scenario is safety-critical and proper solutions
must be proposed.

We propose the ID-Hopping algorithm where we design a mech-
anism that hinders an a�acker’s ability to send malicious frames
that would make targeted DoS a�acks possible. In addition to pre-
vention, if an a�ack is a�empted, our mechanism detects it and
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reacts immediately. �e mechanism generates a set of alternative
IDs that each ECU should use when an a�ack is detected. Our pro-
posal is similar to Identity-Anonymized CAN (IA-CAN) proposed
by Han et. al. [5], where they propose a mechanism that requires
all communicating ECUs to calculate anonymous IDs before an
ID is sent or received. Our proposal is di�erent in that we only
require communicating ECUs to share a carefully calculated value
(o�set) such that it can be used when an a�ack occurs so the IDs
are changed based on that value.

We evaluated the ID-Hopping mechanism by simulating the
process of generating alternative IDs from the o�set. Two critical
conditions our proposal ensures when alternative IDs are generated:
1) alternative IDs are unique to the original IDs and 2) IDs priorities
are not compromised.

We believe that the ID-Hopping mechanism holds a promising
solution to a variety of DoS a�acks. In addition, if we deploy the
mechanism to work natively in the network, we believe it should
prevent reverse engineering a�acks on IDs.

2 BACKGROUND
All ECUs are connected to a bus-topology network that has several
subnetworks. Each subnetwork consists of a number of intercon-
nected ECUs that perform certain functions. �e most common
protocol is Controller Area Network (CAN), which is a typical
bus network through which ECUs can intercommunicate, monitor
sensors, and control actuators.

2.1 CAN Protocol
CAN is the most common protocol because it has been mandated
to be deployed in all cars in the US since 2008 [9]. CAN protocol
mainly provides two services: 1) at the physical layer, it allows
the transmission of frames as voltages that do not get in�uenced
by interfering magnetic �elds, and 2) at the data link layer, each
frame is forma�ed in a well-de�ned format so ECUs can exchange
messages in a meaningful manner. A�er that, a higher level protocol
is needed to handle the data contained in the frames and deal with
the semantics. �ese layers are speci�ed by ISO 11898-1 through
11898-5.

2.1.1 CAN Subnetworks. Typically, CAN networks are divided
into three subnetworks: 1) powertrain, 2) comfort, and 3) infotain-
ment. �e powertrain subnetwork consists of ECUs that monitor
and control operations related to the engine, brakes, and other crit-
ical operations. Whereas the comfort subnetwork consists of ECUs
that open/close windows, control HVAC, and adjust seats, to name
a few.

In addition to the in-car bus network, smart cars have a number
of wireless interfaces that are of two kinds: short-range (Bluetooth,
Remote Keyless Entry, Tire Pressure Monitoring System, and RIFD
keys) and long-range (cellular channels) [1]. Fig. 1 shows a typical
example of CAN network consisting of three subnetworks. If an
ECU in network 1 wants to communicate with another ECU in
network 2, the central gateway forwards the message.

2.1.2 Arbitration IDs. CAN protocol has a special approach to
handle addresses of senders/recipients of messages. �ere is not
an IP-like addressing. Instead, the protocol uses an 11-bit �eld, and

Figure 1: Overview of a Modern In-Vehicle Network

could be extended to 29 bits, that is called arbitration ID. Each CAN
frame starts with an ID that determines the frame’s purpose and
priority. �e purpose is what the frame means to ECUs, whereas the
priority determines the frame’s ability to win arbitration over using
the network when another frame collides with it in the bus. �e
frame with the lower value ID will get higher priority and therefore
dominate the network. All frames must have unique IDs in order
to avoid errors caused by two frames transmi�ing simultaneously
as a result of dominating the bus because of their identical IDs.

A frame gets the right to access the bus if the ID has the lowest
value. When a frame occupies the bus, all ECUs receive it and only
the interested ECUs accept it. An ECU only accepts frames that
it is con�gured to accept by recognizing their IDs. �e choice of
arbitration IDs is proprietary and di�ers from an Original Equip-
ment Manufacturer (OEM) to another. In addition, an arbitration
ID is not the sender or the recipient’s address. Rather, it is only an
indicator of a message’s content and purpose.

2.2 ECUs
Each ECU is composed of three components: a microcontroller,
CAN controller, and CAN transceiver. �e microcontroller is re-
sponsible for high-level functions such as calculating the speed,
sending an airbag command, and warning the driver about oil
pressure. Whereas the CAN controller is responsible for outgo-
ing/incoming CAN frames to/from the CAN bus. �e CAN transceiver
converts the frames to/from physical-level bits.

Typically, each ECU is con�gured to use a certain set of IDs for
its outgoing frames that would make sense for certain ECUs, and
another set for incoming frames from other ECUs. For example,
in Table.1, ECU1 broadcasts a frame with an ID 0x002. ECU2 is
con�gured to accept frames with the ID 0x002.

3 DOS ATTACKS
Due to the way ID arbitration works in CAN networks, DoS is
very feasible. �ere are a number of DoS reported a�acks. For
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ECU1 ECU2
Send Receive Send Receive
0x002 0x005 0x005 0x002
0x003 0x006 0x006 0x009
0x004 0x007 0x007 0x011

Table 1: IDs in ECUs 1 and 2

example, Koscher et al. [9] disabled CAN communication to and
from the Body Control Module (BCM) which resulted in a sudden
drop from 40 to 0 MPH on the speedometer. In addition, this a�ack
also resulted in freezing the whole Instrument Panel Cluster (IPC)
in its current state. For example, if the speedometer was at 60 MPH
before the a�ack, and the driver increases the speed, there will
be no change in the speedometer. Hoppe et al. [6] demonstrated
other forms of DoS a�acks. One of which is where the a�ack
prevents passengers from closing any opened window. Another is
to disable the warning lights. �e authors also performed another
DoS a�ack on the the� alarm system, so that it will not go o�
during a burglary. DoS a�acks can take on di�erent forms whose
impacts vary in safety-criticality such as traditional DoS, random
DoS, and targeted DoS.

3.1 Types of DoS
3.1.1 Traditional DoS. An a�acker could simply �ood the net-

work with frames that have the lowest IDs, i.e., 0x000, such that
their dominance of the network is guaranteed. Solving this kind of
DoS is not possible at the data-link and application layers. Rather,
a physical design modi�cation is needed so that extra checks could
be introduced before a high priority frame continuously dominates
the network. In addition, the detection of this traditional DoS is not
di�cult. When ECUs are not able to transmit nor receive frames,
they could revert to fail-safe mode as a safety feature in CAN [5].
Our proposal is designed towards a selective class of DoS a�acks
that is subtler and more di�cult to detect.

3.1.2 Random DoS. �e a�acker in this type of DoS does not
target a speci�c ECU, rather he would randomly send frames with
randomly selected IDs aiming to disturb ECUs’ normal operations.
Although fuzzing the network with random IDs might result in
unintentional DoS, the a�ack is not targeted against a particular
ECU.

3.1.3 Targeted DoS. An a�acker could be interested in sabotag-
ing certain ECUs for di�erent reasons. For example, an a�acker
could target the airbag system to fail when a collision occurs. �is
could cause life-threating consequences to the driver and passen-
gers. Targeted DoS is a subtle a�ack and challenging to detect, let
alone prevent. �erefore, targeted DoS is the focus of this paper.

3.2 Attacker Model
In this paper, we consider a variant of DoS a�acks where an a�acker
targets a certain ECU and aims to prevent its frames from using the
network and eventually from arriving to the desired destinations.
For example, in Fig.2, the engine’s ECU (ECU2) sends its periodic
CAN frame containing some information to be displayed to the

Figure 2: Scenario of a targeted DoS attack

driver, such as speed and temperature. �e frame has an arbitration
ID with a value of 0x006.

At the time ECU2 is sending this frame, it has the highest priority
in CAN network 1. �erefore it should successfully occupy the bus
and get transmi�ed to the gateway, which in turn forwards the
information to the instrument panel cluster’s ECU in another CAN
network.

However, an a�acker is assumed to have compromised ECU3
and con�gured its controllers to monitor the network. ECU3 gets
triggered and �oods the network with a frame whose ID has a
lower value such as 0x005 whenever a frame with the ID 0x006 is
observed in the network. �is a�ack scenario could miss the �rst
frame with the ID 0x006, but the remaining frames are going to
be a�ected. �is will force ECU2 to retract from sending 0x006
frame due to the network’s occupancy with a higher priority ID,
i.e., 0x005. �e la�er frame has higher priority as it has the lowest
value, and thus can dominate the bus. �is a�ack ensures that
ECU2 cannot use the bus resulting in an unfair usage of resources
by other ECUs, in particular, the a�acker’s. �is a�ack is o�en
called fairness/starvation a�ack.

4 ID-HOPPING MECHANISM
4.1 Requirements
�e mechanism should satisfy the following requirements:

(1) No modi�cations needed for current CAN protocol.
(2) �e mechanism must preserve the same level of priority

for current IDs con�gured by OEMs.
(3) Minimum to no performance overhead on the network.

4.2 Overview
When an ECU becomes target of a DoS a�ack, it should detect that
it is under a�ack and then switch its frames’ ID to the proposed
ID-Hopping mechanism. We propose con�guring ECUs with two
types of IDs: 1) IDs used during normal operations and 2) IDs used
when an ECU or more is under a targeted DoS a�ack. �e �rst type
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is currently deployed in all cars, whereas the la�er is our proposal
towards thwarting targeted DoS a�acks against certain ECUs.

For the sake of simplicity, let’s say that ECU1 is sending a frame
with ID 0x002. An a�acker immediately �oods the network with a
frame that has 0x001 ID in order to win the arbitration and cause
the 0x002 frame to retract. A�er a few a�empts sending the 0x002
frame, ECU1 notices that the frame loses the arbitration repeatedly
due to the existence of a higher ID. Also, a host-based or gateway-
based mechanism should be implemented to recognize that the
frame with 0x001 ID only gets triggered whenever ECU1 sends
0x002 ID. We assume that one or both of these two pa�erns are to
be detected through a trained detection mechanism for DoS a�acks.
Details of this mechanism should be further demonstrated in our
future work.

To overcome the DoS a�ack, ECU1 should switch to ID-Hopping
mode where it uses an alternative set of IDs in order to confuse the
a�acker. Now, ECU1 sends a frame with 0x009 ID which carries the
same data as the previous frame, except that it uses a di�erent ID
as shown in Table 2. �is should thwart the a�acker from targeting
the ECUs until he learns the alternative set of IDs. �e a�acker
needs close monitoring and reverse engineering in order to uncover
the alternative IDs. When this happens, another DoS a�ack could
be launched during the ID-Hopping mode. �erefore, the gateway
and ECUs are already prepared to hop to a new set of alternative
IDs that have been already generated.

ID Alt ID Receive Alt ID
0x002 0x102 0x005 0x105
0x003 0x103 0x006 0x106
0x004 0x104 0x007 0x107

Table 2: ECU1 IDs

ECUs that receive frames from ECU1 need to be aware of the
alternative IDs in order for the car to function normally. We achieve
that by having the alternative IDs in every ECUs’ lookup table as
long as the ECU is con�gured to receive the original ID before an
a�ack takes place. Each ECU calculates alternative IDs with the
o�set sent by the gateway. For example, Table 3 shows that ECU2
has the alternative ID 0x00C as well as the original ID 0x005.

Finally, when ECUs switch to the ID-Hopping mode, the alterna-
tive IDs must not compromise the original priorities of the original
IDs. ID-Hopping mode must preserve the overall priority across
all IDs. In other words, each original ID will have an equivalent
alternative ID in terms of priority. So if two original IDs 0x100
and 0x101 are used in the alternative mode, they will be 0x111 and
0x112. Hence, the priority is still preserved even though di�erent
IDs are used. �is can be achieved when all ECUs, including the
gateway, use the alternative IDs when an ECU or more are under
a�ack. If at least one ECU does not switch to the ID-Hopping mode,
this requirement is violated. �erefore, the gateway needs to en-
sure that all ECUs are in the ID-Hopping mode to avoid priority
violations.

4.3 �e Algorithm
In the gateway, the ID-Hopping algorithm takes a list of used IDs
as input to generate the alternative IDs. Each resulting ID is unique

ID Alt ID Receive Alt ID
0x005 0x105 0x002 0x102
0x006 0x106 0x003 0x103
0x007 0x107 0x04 0x104

Table 3: ECU2 IDs

Figure 3: Overview of the network before and a�er the ID-
Hopping takes place

and not used by any ECU in the network. �is generation is the
result of adding a carefully selected o�set to the currently used
IDs resulting in a new list of IDs that preserve the same level of
priority as their original counterparts. �en each ECU receives the
o�set, in a secure way, and then adds it to every original ID it has,
resulting in an alternative ID corresponding to each original ID.
Finally, when an ECU detects a targeted DoS a�ack, ID-Hopping is
activated and all ECUs switch to the alternative IDs. We assume
that ECUs share a secret key with the gateway so it can broadcast
the o�set securely.

4.3.1 Phase One: IDs Generation. When an a�ack is detected,
either by the gateway or an ECU, the ID-Hopping mode gets acti-
vated. �e gateway calculates a randomly generated o�set and uses
it for generating an alternative ID for every used ID. �e assigned
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Figure 4: Alternative IDs’ Generation: Case 1

IDs will not compromise the existing priorities con�gured by the
car’s manufacturer. In the deployed algorithm, the basic idea is
to shi� the values of current IDs by a random o�set. �e o�set
itself must satisfy three conditions: 1) o�set ≥ 0x001, 2) o�set +
maximum ≤ 0x7FF, and 3) usedIDi + o�set , usedID.

�ese three conditions ensure that no alternative ID results in
an out-of-bound value, i.e., more than 0x7FF, which is upper bound
for an 11-bit ID. Once the random o�set is generated, each ECU
generates the alternative IDs by adding this o�set to each of the
original IDs. �e o�set is added even with IDs that are not targeted
in order to maintain the overall posture of priorities across the
network that the manufacturer has intended.

Before adding the o�set to the original IDs, we check whether
the value of the highest ID is 0x7FF . If it is not, we proceed with
the described procedure above as shown in Fig.4. However, if the
maximum ID is indeed 0x7FF, this means there will be at least an
alternative ID out-of-bound and will have more than 11-bit value.
�erefore, the algorithm makes some additional steps before gener-
ating the alternative IDs as shown in the pseudocode of Algorithm
1.

Firstly, we take the lowest available set of IDs and add the ran-
dom o�set to each one. Although it could be enough to use these
low value available IDs as the alternative ID, we need to avoid de-
tectable pa�erns in the alternative IDs such as consecutive numbers.
�is is the case because our algorithm deals with IDs that have
already been assigned by the manufacturer in a proprietary manner.
�erefore, we cannot predict how they have been assigned. �ere is
one case though where the resulting alternative IDs are in sequence.
Such pa�ern is expected if the value of the highest original ID is
0x7FE, which is the upper bound 0x7FF − 1. �e algorithm can
only generate o f f set = 1 because it is the only available number
that satis�es the two conditions discussed above. �is can easily
be changed with the o�set requirements to ensure it has a value
greater than one.

4.3.2 Phase Two: IDs Assignment. When the gateway generates
the alternative IDs, all ECUs need to know about the alternatives of
their IDs before an a�ack takes place. We considered two potential
methods to distribute the alternative IDs: 1) sending a list of the
corresponding alternative IDs to each individual ECU or 2) send-
ing the generated o�set instead, and then each ECU calculates the
alternative IDs by adding the o�set to each original ID. �e �rst

Figure 5: Alternative IDs’ Generation: Case 2

Algorithm 1 Phase 1 of ID-Hopping algorithm
�e RandomGen function computes the o�set based on the used
IDs.
�e getMax function returns the highest ID in the passed list.
�e getLowestIDs function returns the available IDs with the
lowest values.
�e getO�set function returns the o�set that is: 1) o�set ≥ 1, 2)
o�set +max ≤ 0x7FF and 3) IDi + o�set , usedIDi
Input: usedIDs: a list of all used IDs by the ECUs.
Output: o�set: the value to be sent to ECUs
Variables: max: the highest value of the used IDs, altIDs: a
list of the alternative IDs, rand: a random integer, lowIDs: a list
containing the lowest available IDs

RandomGen(usedIDs):
1: ids ← usedIDs
2: max ← дetMax(ids)
3: if max = 0x7FF then
4: lowIDs ← дetLowestIDs(ids)
5: ids ← lowIDs
6: go to 2
7: else
8: o�set← getO�set(ids)
9: end if

10: return o�set

approach takes n transmissions, where n is the number of alterna-
tive IDs to be sent to each ECU. �e la�er approach only requires
one transmission because the gateway broadcasts the o�set and all
ECUs receive it simultaneously. �erefore, we chose the la�er as it
signi�cantly requires less network usage.

One might ask how the o�set is sent to ECUs. What if an a�acker
pretends to be a legitimate ECU, which could potentially allow him
to receive the o�set and easily deduce the alternative IDs of the
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targeted original IDs? One of the most straightforward ways is
to establish a secure connection between the gateway and ECUs.
�e encryption could be asymmetric, i.e., with a public/private key
pair, or symmetric, i.e., with a shared secret key. �e la�er is a
more e�cient approach that does not introduce network overhead,
especially if the encryption is only used for sending the o�set.
�erefore, we assume that an encryption mechanism is in place for
sending the o�set.

Because encryption operations are relatively expensive and could
add network overhead, we limit the encryption to only this opera-
tion, i.e., sending the o�set to ECUs once every time alternative IDs
are generated. �is operation is required at least once when the car
starts, and once again when an a�ack is detected. �erefore, when
each ECU receives the encrypted o�set, encryption is no longer
needed and the network should not su�er from any overhead.

4.3.3 Phase Three: ID-Hopping Mode. When an ECU detects
that one (or more) of its IDs is no longer able to occupy the network,
the ECU assumes that it is under a targeted DoS a�ack. �erefore,
it resorts to the ID-Hopping mode where only alternative IDs are
used. Receiving ECUs and the gateway will receive the same frame
but with an alternative ID. As a result, they notice that an alterna-
tive ID is used, and hence they switch to ID-Hopping mode as well.
�e gateway broadcasts a message to all ECUs, including the unaf-
fected ones, telling them to switch. �e message is encrypted and
containing a �ag that indicates that ID-Hopping mode is activated.
�erefore, all receiving ECUs switch to the ID-Hopping mode. �e
reason we force all ECUs in the network to switch is to preserve
the IDs’ priorities assigned by the car’s manufacturer. If we only
allow one alternative ID to be used, the overall IDs’ priority order
might become compromised.

5 SECURITY ANALYSIS
5.1 Attack Prevention
We implemented a targeted DoS a�ack with the testing platform
explained in Sec.6 and the ID-Hopping successfully detected the
a�ack and made all ECUs switch to their alternative IDs and the
network behaved normally. �e mechanism proved its e�ectiveness
to prevent targeted DoS a�acks.

5.2 Collision-Free
Our evaluation showed that when all ECUs switch to the alternative
IDs, the network is collision-free. �is is because the ID-Hopping
mechanism guarantees that there is no case where two ECUs have
the same alternative IDs unless they had the same original ID
assigned by the OEM.

5.3 Priority Preservation
ID-Hopping successfully maintains the priorities given to the as-
signed original IDs as long as all ECUs switch to the alternative
IDs mode. �is is because the mechanism is designed to carefully
calculate an o�set that guarantees two conditions: 1) original IDs
priorities are preserved and 2) alternative IDs are unique.

5.4 Protocol-Independent
Compared to Han et al.’s work [5] which needs to be con�gured
di�erently across di�erent CAN variants, ID-Hopping is indepen-
dent of the deployed CAN variants because it takes all bits of the
ID �eld as the priority bits.

5.5 Limitations
5.5.1 Original Frames are intact, except their IDs. One limitation

in the ID-Hopping mechanism is that when ECUs switch to the ID-
Hopping mode, the original frames remain with no modi�cations.
In other words, the only change is in the IDs. �is poses a risk for
the a�acker to cross match the contents of the frames and infer
the alternative ID for the a�acked frame. A possible solution is to
modify the contents of the original frame, as well as the ID, possibly
by shi�ing the values by the same o�set used for IDs.

5.5.2 A�acker retrieves the o�set. It could be possible for an
a�acker to compromise an ECU and gain access to the encrypted
o�set. We assume that such an a�ack needs physical access to the
ECU in order to succeed. To prevent such an a�ack we need to rely
on tamper-proof ECUs that are physically-protected. Furthermore,
since the original IDs hop once every time the nodes switch to the
ID-Hopping mode, it is possible to deduce the o�set from analyzing
the change pa�ern in the alternative IDs.

5.5.3 Potential limited CAN ID space. Because free CAN ID
space is only known for OEMs, our mechanism might fall short
when implemented in a network with li�le or no free CAN ID space.
A potential solution that could be considered is the use extended
CAN frames, where we can use 29-bit IDs rather than 11-bit. Be�er
yet, we could improve our design to use 11-bit IDs by default, and
29-bit IDs when space is limited. �erefore, the mechanism can
scale when free ID space is limited or the number of ECUs is large.

6 EVALUATION
Our evaluation objectives are twofold. First, to evaluate the o�set
generation and distribution phases and how the gateway and ECUs
calculate the alternative IDs. Second, to evaluate the e�ectiveness
of the ID-Hopping during an a�ack.

Fig. 6 shows our test platform which consists of �ve Beagle-
Bone Black (BBB) microcontrollers, �ve CAN Capes, a breadboard,
a switch, a multimeter, and an external LED. Four of the BBBs
simulate regular ECUs, and the ��h simulates a gateway. �e
communication between the microcontrollers is realized by the
simulated CAN bus in the breadboard. �e switch is not relevant
to smart cars. Rather it is only used for accessing and con�guring
the BBBs for our test scenarios. �e implementation has been done
using python-can1, the python implementation of SocketCAN [8].

�e evaluation shows that the algorithm successfully generates
alternative IDs that substitute the original IDs. Also, the gateway
and ECUs successfully switched to the ID-Hopping mode when an
a�ack was detected. Furthermore, the alternative IDs maintain the
same priority level as in the original IDs. �e current version of
ID-Hopping is designed for a single CAN network and the size of
IDs is 11 bits. We plan to perform a more realistic evaluation on a
testing bench and test the mechanism with the extended 29-bit ID.
1h�p://python-can.readthedocs.io/en/latest/index.html
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Figure 6: Testing Platform

7 RELATEDWORK
Solutions that rely on cryptography have been proposed to provide
authentication, con�dentiality, and integrity measures [17, 21–23,
25]. In addition, IDS also have been proposed such as in [10, 11,
15, 16, 18, 20]. Furthermore, controls preventing a�acks initiated
from external devices have been introduced in [3, 4, 19, 24]. Most of
the proposed solutions require ECUs to verify each arriving frame
before deciding to accept it for further processing or drop it. �is
in itself poses ECUs to DoS a�acks when an a�acker �oods the
network with frames that have certain IDs but incorrect data. When
this happens, a receiving ECU would check the ID �rst and then
verify other measures such as the authenticity and integrity of the
frame. �is adds an unnecessary overhead in terms of the number
of operations needed at the receiving side.

�e most relevant work to ID-Hopping mechanism is the Identity-
Anonymized CAN (IA-CAN) that Han et. al. have proposed [5].
�ey introduce a solution that provides authentication with mini-
mal overhead as opposed to other CAN-based authentication ap-
proaches, e.g., [21, 22, 25], that require relatively more overhead.

�erefore, Han et. al. [5] propose an ID-anonymization approach
that lets ECUs only accept legitimate frames based on their anony-
mous IDs. �e IA-CAN anonymizes IDs in the sense that they have
no meaning for an eavesdropper. With some reverse engineering
skills and patience, an a�acker could infer CAN IDs and then launch
various a�acks such as sending false information and safety-critical
command injection. IA-CAN prevents such inference because the
IDs are changed randomly, from the a�acker’s viewpoint, so that
only legitimate ECUs can send and receive frames using IDs that
only they can know.

IA-CAN works in three stages: 1) an ID is generated for each
frame before it is sent and uses the shared secret key between
the sender and receiver, 2) each receiving ECU has already pre-
computed the ID, 3) when a frame with the expected ID arrives, the
receiving ECU simply �lters it using an XOR operation. Each ID is
used only once, which prevents replay a�acks. �e authors have

four assumptions in order for their mechanism to work: 1) they
assume there is only one CAN network where an a�acker exists, 2)
ECUs share a secret key before the communication takes place, 3)
keys are securely pre-stored in a tamper-proof hardware, 4) there
is a time ECU for synchronization.

In addition, an important feature in IA-CAN is ID priority preser-
vation. �e authors maintain the priority bits intact in the arbi-
tration �eld, and anonymize/randomize the remaining bits. �e
arbitration bits vary depending on the deployed standard. For exam-
ple, SAE J1939 uses the �rst 3 bits of the 29-bit ID. In our proposal,
we maintain the priority by considering all bits in the ID �eld. In
other words, we treat the whole ID as priority bits. �erefore, re-
gardless of the used variant of CAN protocol, ID-Hopping should
be applicable.

Using the same IDs across a large number of cars that use the
same platform exposes them to large-scale a�acks that might af-
fect a signi�cant number of cars. As a ma�er of fact, Miller and
Valasek [14] had the capability of a�acking any car in the US that
belongs to a certain �eet of cars that uses the same platform. �ey
were able to uncover a vulnerability in a car that allowed them to
take remote control over it by exploiting its cellular communica-
tion channel. Once they got into the car’s internal network, they
could inject CAN frames with IDs that they have already reverse
engineered and know what their purposes are. Because all cars of
this �eet use the same set of IDs in their CAN network, the a�ack
was possible to be launched on more than a million cars across the
US.

�erefore, another work along the lines of IDs randomization is
proposed by Lukasiewycz et. al. [12]. �ey introduce an approach,
called Security-aware Obfuscated Priority Assignment, that would
prevent large-scale a�acks on a �eet of cars that use the same
platform and hence the same CAN IDs. Unlike our proposal and
IA-CAN, this mechanism is aimed at a �eet of cars instead of an
individual car. In addition, the IDs’ priority assignment will be �xed
in each car from the time it is manufactured. �is might protect
against large-scale a�acks, but not a targeted a�ack on one car.
�ey use �adratically Constrained �adratic Program (QCQP)
solving to generate obfuscated CAN IDs across di�erent cars using
the same platform. Unlike Lukasiewycz’s et. al. [12] proposal,
our ID-Hopping mechanism does not need to be integrated during
the design phase. Instead, we claim that it should be applicable
to existing CAN networks with fewer modi�cations, namely the
shared secret key between ECUs and the central gateway in order
to authenticate whenever IDs need to be changed.

8 FUTUREWORK
Our future plans include improving ID-Hopping to work with 29-
bit CAN IDs and tackling multiple simultaneously targeted DoS
against single/multiple ECUs. In addition, the current version of ID-
Hopping performs a single hop every time an a�ack is detected. We
plan to improve the mechanism to handle multiple hops. We would
design more a�ack scenarios so that an a�acker would be able
to prevent non-periodic frames (we used a periodic speed update
frame in our scenario) and inject false data to render the targeted
ECU unavailable.
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Further work needs to be done to ensure the synchronization of
the gateway and ECUs so that they are all aware of the ID-Hopping
mode. In addition, we need to investigate the possible collateral
damage that could a�ect ECUs other than the targeted one.

9 CONCLUSIONS
While CAN is prone to various a�acks due to the lack of security
measures, smart cars are increasingly exposed to new communi-
cation channels. �is makes it critical to design short-term and
long-term security solutions. Our work serves as a short-term solu-
tion that works with current CAN networks so that only minimal
modi�cation is needed to the current infrastructure deployed in
today’s smart cars. Long-term solutions take time to be adopted
and require security considerations from early design phases.

In this paper, we propose ID-Hopping mechanism to defend
against targeted DoS on CAN networks. We design the algorithm to
provide ECUs with an e�cient approach to generate alternative IDs
that can be used when a DoS takes place. Of particular signi�cance
is that these alternative IDs maintain the same priorities of the
original IDs regardless of the CAN variant used. In addition, the
gateway only needs to send a single frame containing an o�set that
is carefully calculated to ECUs so they can calculate their alternative
IDs.

We evaluated ID-Hopping with a testing platform consisting of
�ve microcontrollers, simulating ECUs and a gateway, and a bread-
board, simulating the CAN bus. �e evaluation shows successful
alternative ID generation, DoS detection, and prevention.
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