
Protecting Mobile Devices from Physical Memory Attacks with
Targeted Encryption

Le Guan
University of Georgia, USA

leguan@cs.uga.edu

Chen Cao
Sencun Zhu

Pennsylvania State University, USA
{cuc96,sxz16}@psu.edu

Jingqiang Lin
Data Assurance and Communication
Security Research Center, China

IIE, CAS, China
linjingqiang@iie.ac.cn

Peng Liu
Pennsylvania State University, USA

pxl20@psu.edu

Yubin Xia
Shanghai Jiao Tong University, China

xiayubin@sjtu.edu.cn

Bo Luo
University of Kansas, USA

bluo@ku.edu

ABSTRACT
Sensitive data in a process could be scattered over the memory of
a computer system for a prolonged period of time. Unfortunately,
DRAM chips were proven insecure in previous studies. The prob-
lem becomes worse in the mobile environment, in which users’
smartphones are easily lost or stolen. The powered-on phones may
contain sensitive data in the vulnerable DRAM chips. In this paper,
we propose MemVault, a mechanism to protect sensitive data in
Android devices against physical memory attacks. MemVault keeps
track of the propagation of well-marked sensitive data sources,
and selectively encrypts tainted sensitive memory contents in the
DRAM chip. When a tainted object is accessed, MemVault redirects
the access to the internal RAM (iRAM), where the cipher-text ob-
ject is decrypted transparently. iRAM is a system-on-chip (SoC)
component which is by nature immune to physical memory ex-
ploits. We have implemented a MemVault prototype system, and
have evaluated it with extensive experiments. Our results validate
that MemVault effectively eliminates the occurrences of clear-text
sensitive objects in DRAM chips, and imposes acceptable overheads.

CCS CONCEPTS
• Security and privacy→ Systems security;Mobile and wireless
security.

KEYWORDS
memory encryption, taint analysis, physical attack

ACM Reference Format:
Le Guan, Chen Cao, Sencun Zhu, Jingqiang Lin, Peng Liu, Yubin Xia, and Bo
Luo. 2019. Protecting Mobile Devices from Physical Memory Attacks with
Targeted Encryption. In 12th ACM Conference on Security and Privacy in
Wireless and Mobile Networks (WiSec ’19), May 15–17, 2019, Miami, FL, USA.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3317549.3319721

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WiSec ’19, May 15–17, 2019, Miami, FL, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6726-4/19/05. . . $15.00
https://doi.org/10.1145/3317549.3319721

1 INTRODUCTION
In computer systems, application data are first loaded into memory
and then processed by the processor. Memory is implemented as
DRAM chips in commodity systems, and these data could be scat-
tered over the DRAM chips for a prolonged period of time, even
days after a process has been terminated [6]. Unfortunately, DRAM
chips are vulnerable to physical memory attacks [17], which render
all data in the DRAM chips, either active or residual, unsafe.

This problem becomes worse on mobile devices, which are sel-
dom rebooted and are easily stolen or lost. Sensitive data on mobile
devices, such as email contents, bank accounts and passwords, per-
sists as clear-text in memory or on storage even after 10 minutes
of suspension [31]. Meanwhile, it was reported that 2.1 million
Americans had phones stolen in 2014 [9], and one out of ten smart-
phone owners were victims of phone theft [24]. In 2014, 3.1 million
phones were lost [9]. This is particularly disconcerting for smart-
phone users who have to store sensitive data on their phones.

With full physical access to the stolen/lost phones, the attackers
are able to launch inexpensive yet powerful attacks to access data
in the DRAM chips, such as cold boot attacks [26] and bus moni-
toring attacks [11, 12]. Through such attacks, memory data in the
smartphones will be extracted, resulting in private data leakage
and even digital identity forgery.

The aforementioned physical memory attacks exploit the vulner-
abilities of DRAM chips. In order to tackle these threats, existing
solutions eliminate/limit clear-text sensitive data in DRAM chips,
by encrypting them or isolating them. For example, Intel and AMD
have their own memory encryption engines to transparently en-
crypt/decrypt memory transactions between the processor and the
DRAM chip [21, 25]. However, we are not aware of any similar
designs applicable for mobile devices. Isolation is often achieved
by a secure vault implemented locally or remotely. Specifically, in
a hardware security module (HSM), a dedicated hardware device
is connected to or plugged into a computer to execute codes in-
volving sensitive data. However, this solution requires hardware
modification and is not suitable or available for mobile devices.
Cloud-assisted approaches [31, 33] offload the code handling sensi-
tive data to a remote cloud server. Therefore, they all suffer from
the fundamental drawback in usability. The phones must always
be connected to the Internet and the communication overhead

34

https://doi.org/10.1145/3317549.3319721
https://doi.org/10.1145/3317549.3319721

WiSec ’19, May 15–17, 2019, Miami, FL, USA Le Guan, et al.

also introduces additional cost. In intermittent or poor network
environment, the users will not be able to utilize this approach.

In this paper, we explore an alternative approach – software-
basedmemory encryption, which encrypts the entire DRAMchip [14,
29] or parts of a process [8, 18, 28]. Compared with aforementioned
approaches, software-based memory encryption requires no modifi-
cation to existing hardware, and are general to different computing
workloads. However, it faces the hard trade-off between perfor-
mance and usability. In particular, Encryption at coarse granularity
typically requires no modification to exiting programs, but it in-
troduces significant overhead because many nonsensitive data are
unnecessarily encrypted. On the contrary, fine-grained encryption
only spends CPU cycles to protect sensitive data, but it needs con-
siderable efforts to reconstruct the program.

For example, Sentry [8] encrypts the address space of an An-
droid app on a per-page basis without any modification to the app.
However, more than double the overhead is observed. To alleviate
the performance degradation, Sentry only activates memory en-
cryption when the phone enters locked mode. However, protecting
unlocked phone is equally important. We discuss this in Section 7.1.

To avoid wasting CPU cycles on the protection of nonsensitive
data, Papadopoulos et. al [28] suggested selective memory encryp-
tion, in which the developers mark the sensitive static variables in
source code, and invoke dedicated functions to allocate dynamic
memory for sensitive data. However, this requires the developers
to have a profound understanding of the program, and to pinpoint
all the occurrences of sensitive data manually.

In this paper, we attempt to find a practical balance between
performance and usability. Specifically, we introduce MemVault,
a new mechanism for Android to encrypt sensitive user data in
DRAM chips. MemVault features targeted encryption that selec-
tively encrypts sensitive data objects, and at the same time requires
minimal programmer involvement. To achieve this, MemVault lever-
ages existing taint analysis tools to keep track of the propagation of
well-marked sensitive data sources, and encrypts the tainted mem-
ory contents in the DRAM chip automatically. As such, a developer
is only required to mark the sources of sensitive data with the
provided Application Programming Interface (API). This typically
brings in less than four lines of code insertion based on our evalua-
tion with several popular open source apps. When a tainted object
is accessed, MemVault redirects the access to a small non-DRAM
memory vault, where our intermediate memory layer transparently
decrypts the accessed object. Throughout the execution, only a
small subset of sensitive data appear in clear-text inside the pro-
tected memory vault. Because the vault has limited capacity, to
avoid frequent cryptographic operations, we use the Least Recently
Used (LRU) algorithm to keep the most frequently used objects in
the vault. The evicted cold objects are encrypted when they are
synchronized to the DRAM.

The protection to the memory vault is two-fold. First, we explic-
itly erase the vault when an app is terminated. In this sense, we
provide “private sessions” for security-critical apps. Note that our
memory zeroization is independent of OS level zeroization, which
was found to be ineffective [6]. Second, we hold the memory vault
in a System-on-Chip (SoC) component (iRAM), which significantly
raises the effective bar for physical exploits [8]. As a result, sensitive
data in clear-text are also protected against physical attacks.

In summary, the contributions of our solution are three-fold:

• We present a new mechanism for Android virtual machine
to control the propagation of clear-text sensitive user data
with minimal efforts by programmers.
• We propose targeted encryption, which advances the state-
of-the-art by only encrypting sensitive data that are worth
protection. This ismade possible by leveraging TaintDroid [10],
a widely adopted dynamic taint analysis tool.
• We implement and evaluate the proposed system for the
Android system. Our evaluation results show that MemVault
effectively protects data on mobile devices from physical at-
tacks, and imposes acceptable performance overhead (37.2%
compared with 18.8% in TaintDroid alone).

2 BACKGROUND
2.1 Physical Attacks on Smartphones
Given that smartphones are frequently lost or stolen, it has become
a major concern for smartphone users who need to process their
private data on the phone. Such threats are particularly relevant for
government or military users who frequently process classified data.
When attackers have physical access to the devices, they can launch
several inexpensive attacks, bypassing all the existing protection
mechanisms, including OS-level access control.

A trivial way of retrieving user data is dumping the flashmemory
of a smartphone. However, since version 4.4, Android has begun
to support Full Disk Encryption (FDE) [20]. As a result, by reading
the flash memory one can only obtain encrypted data. A persis-
tent attacker may further exploit the DRAM chip to launch more
sophisticated attacks. For example, in a cold boot attack [17], the
attacker is able to utilize the FROST forensic tool [26] to recover
the entire DRAM content of a smartphone. Specifically, the attacker
first fully charges and freezes the device. Then he swiftly unplugs
the battery of the device to reboot the device. During this short
time, the memory content is retained due to the remanence effect
of DRAM [17]. When the device is booting, the attacker presses a
key combination to enter the Fastboot mode, in which the FROST
image is flashed into the recovery partition. Finally, the attacker
selects the Recovery Mode from the phone’s menu to boot the
FROST forensic tool, which reads the DRAM contents.

In a bus monitoring attack, an attacker may attach a bus mon-
itoring tool [11, 12] to the memory bus to intercept the memory
transactions. Bus monitoring also facilitates side channel attacks.
For example, an attacker can deduce the cryptographic keys by
merely observing memory access patterns [32]. In DMA (Direct
Memory Access) attacks, an attacker can also utilize the debugging
port of an UART controller [8] to issue DMA read requests to the
phone, bypassing security checks performed by the processor. This
is because the DMA engine is independent of the processor, and
can directly communicate with the DRAM chip.

2.2 SoC Components
Different from DRAM, SoC components are integrated into the
chip. Therefore, they can exhibit better resilience to physical ex-
ploits. Utilizing cache [8, 35] or internal RAM [8, 18], many defense
systems have been proposed.

35

Protecting Mobile Devices from Physical Memory Attacks with Targeted Encryption WiSec ’19, May 15–17, 2019, Miami, FL, USA

CPU cache is a small amount of static RAM that sits in-between
the processor and the DRAM. When a processor loses power, all
the cache contents become invalid. As a result, cache is inherently
immune to cold boot attack. Since cache data never appear on the
memory bus, and DMA transfers data directly from DRAM without
passing through cache, cache is also immune to bus monitoring
and DMA attacks.

Internal RAM (iRAM) or on-chip RAM (OCRAM)1 is another stan-
dard SoC component equipped in most ARM processors. It is a small
static RAM that is tightly coupled with other system components.
Typically, iRAM does not need to be initialized to work. Therefore,
during device boot, most ARM devices first load their proprietary
ROM to the iRAM to get executed. The ROM is responsible for ini-
tializing other system components, including DRAM. iRAM does
not lose its contents inherently following a power loss. Instead,
the device’s ROM explicitly zeroes out its iRAM upon booting [8],
rendering cold boot attacks against iRAM ineffective. In addition,
as iRAM is encapsulated inside the SoC and has a dedicated data
interface to the processor, it is extremely difficult to launch bus mon-
itoring attacks to iRAM. Finally, TrustZone [2] and System Memory
Management Unit (SMMU) [4] could be utilized to enforce memory
protection of iRAM and to defeat DMA attacks.

To exploit cache for data storage, existing solutions lock a por-
tion of the cache to prevent the data from being evicted into the
DRAM [8, 35]. However, cache lockdown is an obsoleted feature, as
indicated in the official technical reference manual of ARM’s latest
processors (Chapter 6.1 and 7.1 in [3]). Moreover, monopolizing
a portion of cache causes system-wide performance impact. We
consider it sub-optimal to exploit cache for data storage, and instead
choose iRAM as our memory vault.

2.3 Android and TaintDroid

Android Design. Android is an open-source Linux-based mobile
OS developed by Google. It is specifically optimized and tuned
for resource constrained mobile devices. Each app runs in its own
instance of virtual machine (VM) under a unique user ID. Thus,
apps are essentially sandboxed, preventing their direct interference
with the OS and other apps. Android apps are written with the Java
programming language, which are compiled into a customized byte
code format named Dalvik EXecutable (DEX).

In a VM, byte code is loaded into the memory along with core
libraries, which include the framework libraries and those facilitat-
ing user interface building, graphic drawing, and database access,
etc. The core libraries are implemented in either Java or C/C++ to
improve performance. Besides, the Android OS starts a set of system
services during booting. These services are system processes that
are tied to lower-level device functionality and management of the
system. The app interferes with these system processes through
the Binder IPC mechanism to get services from the OS. Finally, ap-
plications can communicate and collaborate with each other, which
is also enabled by the Binder interface.

An interpreter is responsible for translating DEX instructions
into the machine’s native instructions. Before version 4.4, the de-
fault Android interpreter is Dalvik, while its successor is called

1The naming varies depending on the manufactures.

Android Runtime (ART). Among others, ART introduces a new
Ahead-Of-Time (AOT) compilation technique, but reuses the DEX
bytecode format to keep compatibility.

The DEX byte code is register-based, indicating that it has rich
semantics, and requires fewer memory references during execution.
A DEX method has a fixed number of registers determined during
compilation time. Each local variable in a Javamethod is represented
by a DEX method register. The Dalvik VM maintains an internal
downwards-growing interpreter stack, which stores method frames,
including method arguments, local variables, and return values, etc.
A variable can either be a primitive type such as long, int, and
double, or a reference to a Java object, which is essentially a pointer
to a C++ data structure stored in the internal interpreter heap.

TaintDroid. TaintDroid [10] is a system-wide dynamic taint track-
ing and analysis tool developed for realtime privacy monitoring on
Android phones. In a nutshell, it marks the sensitive data (i.e., taint
source) when they are generated by the system services or Android
APIs. If a tainted data is involved in a computation, the result will
also be tainted (i.e., taint track). Finally, if any tainted data leaves
the device into the network (i.e., taint sink), a system alert is issued.

To enable system-wide tracking, TaintDroid employs a multi-
level approach. At variable-level, taking advantage of the rich se-
mantics of each instruction, the interpreter is instrumented so that
the involved destination variables can be tainted based on source
variables. For local variables and method arguments, the taint tags
are stored following the corresponding variables/arguments in the
interpreter stack (see Figure 2). For object fields, a taint tag is stored
with the actual field value in the interpreter heap. Note that for an
array object, a single taint tag is associated with the entire array
to save memory usage. To track propagation across applications,
TaintDroid implements message-level tracking. To support taint
tracking in system-provided native libraries and to retain taint
information across app invocations, TaintDroid also implements
method-level tracking and file-level tracking, respectively.

3 ASSUMPTIONS AND THREATS-IN-SCOPE
This work focuses on memory protection, and assume that data
files stored in the flash are encrypted. Since version 4.4, Android
has supported Full Disk Encryption (FDE), and this feature was
enabled by default in version 5.0 [20]. Since the key used to encrypt
the disk is also stored in memory, we assume exiting solutions such
as ARMORED [16] to protect this key.

MemVault leverages TaintDroid, thus inherits all its security as-
sumptions. Among others, we assume that the Android firmware is
trusted. This include the kernel, native libraries, java DEX code, as
well as app code (native and DEX). This assumption is supported
by many security mechanisms developed by Google and the open
source community. For example, the system partition of Android is
protected by the dm-verity kernel mechanism, and the underlying
Linux kernel has already been proactively protected in commercial
products [5]. In TaintDroid, to track information flow in native
code, each native method is instrumented manually based on its
parameters. We also assume the apps in the smartphone do not
intentionally leak user data. We do not assume the presence of se-
cure deallocation techniques at OS level [7]. In MemVault, sensitive
pages are managed within the Dalvik virtual machine.

36

WiSec ’19, May 15–17, 2019, Miami, FL, USA Le Guan, et al.

We consider local attackers who have physical access to victims’
smartphones. They can launch passive physical attacks which get a
read-only copy of the phone’s DRAM. This can be achieved by cold
boot attacks [17, 26] and bus monitoring attacks [11, 12]. MemVault
does not directly tackle DMA attacks, but relies on orthogonal
approaches based on ARM TrustZone [2] or SMMU [4] to deal with
DMA attacks.

4 SYSTEM DESIGN
4.1 Architecture Overview

Design Challenges. MemVault keeps track of sensitive user data,
and eliminates their occurrences in the DRAM by encrypting them.
One possible approach is to encrypt sensitive objects in situ. The
benefit is that we do not need to change the memory layout of an
app. However, to access an object, it has to be decrypted in the
DRAM chip first. This unfortunately exposes them in clear-text
in the vulnerable DRAM. Another approach is to move the entire
memory segment to the iRAM. However, the capacity of the iRAM is
usually restricted.

In our design, we encrypt all the sensitive data objects in the
DRAM, and access their clear-text copies in the iRAM. We call the
memory regions backed by iRAM asmemory vaults. We encountered
the following technical challenges when designing our system.

• Sensitive data can be stored in both primitive variables and
data objects, which appear in the stack and heap of an app,
respectively. Since stack and heap exhibit different charac-
teristics in terms of memory management, we must adopt
different strategies to regulate sensitive data stored in them.
• In Android, an object can be accessed by both interpreted
code and native code. By instrumenting the Dalvik VM, we
can implement a unified redirection layer that handles en-
crypted object accesses. Unfortunately, native code can ac-
cess an object arbitrarily. It bypasses the redirection layer
and directly accesses the encrypted objects in the DRAM,
causing program crash.
• An object may contain references to other objects. When
such an object is encrypted, garbage collection (GC) cannot
access reference information without first decrypting it. If
we frequently decrypt and encrypt objects for GC, significant
overhead could occur.

Overview. Figure 1 shows an overview of the memory manage-
ment with and without MemVault protection. We utilize Taint-
Droid [10] to track the propagation of the taint sources. The tainted
contents, marked in red, appear in two locations. Tainted prim-
itive variables are stored in the downwards-growing interpreter
stack, together with other local variables and stack frame informa-
tion. Tainted data objects appear in the interpreter heap. Without
MemVault, all of them appear as clear-text in the DRAM chip (left
half in Figure 1).

With MemVault, only a small working set of sensitive data appear
as clear-text in a memory vault (i.e., iRAM in our design), while the
DRAM chip only stores encrypted sensitive data. In particular, when
a primitive variable is to be tainted, MemVault copies the current
stack frame to a peer stack in the memory vault, and then works on

DRAM

Tainted
Object

Taint
Source

Stack
Frames

Dummy
Stack Frame

Encrypted
Object

DRAM iRAM Vault

T2
S

T1T1

S
T2

S
T2

Untainted
Object

Figure 1: Data objects and stack frames in anAndroid app. In
an unprotected Android app (left), all the data objects and
stack frames appear in the DRAM. With MemVault protec-
tion (right), tainted data objects are encrypted in the DRAM
(shown in shade), and tainted stacks in theDRAMcontainno
sensitive variables. The interpreter accesses the clear-text
copies in the iRAM vault.

St
ac

k
Fr

am
e

0
St

ac
k

Fr
am

e
1

St
ac

k
Fr

am
e

1

Current Frame Pointer (FP)

G
ro

w
 D

ow
nw

ar
ds

0x00000000

0xFFFFFFFF

Figure 2: Stack memory layout. Red circled ‘T’ marks a
tainted variable. Note that the current frame pointer points
to the copy in the iRAM vault.

the new stack, leaving a dummy and nonsensitive stack frame in
the DRAM. To save memory, MemVault switches back to the normal
stack in the DRAMwhenever all the taints are cleared in the current
stack frame, or a newmethod without tainted arguments is invoked.

When an object is to be tainted, MemVault allocates a memory
region of equal size in an iRAM heap, copies the object to the newly
allocated memory, and then redirects the reference to the object. Be-
cause the size of the iRAM is limited, we employ the LRU algorithm
to manage objects in the vault. Only the “hottest” objects are kept in
clear-text in the vault. The “cold” objects are encrypted and evicted
to the normal DRAM heap. For native methods needing access to
the tainted objects, we manually instrument them to access the
correct object copies.

When an app is started (i.e., onCreate()), an encryption key is
randomly generated. It is also kept in the iRAM to defeat physical
attacks. Then the interpreter allocates a heap in iRAM shared by
all the threads of the process. On the contrary, a stack in the iRAM
is allocated on demand – a new iRAM stack is allocated only if a
thread has a tainted stack frame. Finally, when the app is terminated
(i.e., onDestroy()), the encryption key is discarded and all the
associated iRAM resources are erased and reclaimed.

37

Protecting Mobile Devices from Physical Memory Attacks with Targeted Encryption WiSec ’19, May 15–17, 2019, Miami, FL, USA

4.2 Stack Protection
As described in Section 2.3, primitive variables such as long and int
are stored in the downwards-growing interpreter stack. TaintDroid
tracks the taint propagation to the method arguments and local
variables.

The left side of Figure 2 depicts the memory layout of a typical
stack in Android with TaintDroid. In the figure, two methods are
invoked, represented by two stack frames. During execution, some
variables in stack frame 1 are tainted. To prevent sensitive data from
appearing in the DRAM, we have two straightforward approaches.
First, we may move the entire stack to the memory vault. However,
copying such a large data structure (16KB in TaintDroid) is time-
consuming; in addition, a lot of nonsensitive data are kept in the
valuable iRAM. Second, we may encrypt primitive variables in situ.
However, then we would need to maintain a data structure for
dereferencing each encrypted variable, which is costly because the
maintained data structure is larger than the variable itself.

In MemVault, we maintain a mirror stack in the vault, which only
stores tainted stack frames. The stack in the vault is only activated
when the current stack frame is tainted. As shown on the right
side of Figure 2, the stack frame 1 is mirrored in the vault, which
contains the real sensitive data.

Next, we explain how we maintain this “dual” stack. When a
variable is to be tainted, MemVault allocates a mirroring stack frame
in the vault, copies the contents of the current stack frame to the
vault stack, updates the current frame pointer to the new stack
frame, and finally resumes the app execution. Note that the “store”
instruction leading to taint propagation is never operated on the
corresponding variable in the DRAM stack. The stack frame in
the vault contains method variables and their taint tags, plus a
pointer to the corresponding stack frame in the DRAM (represented
by dram_fp). The stack maintenance information (represented by
vm_goop), such as the pointer to the previous stack frame, is only
kept in the DRAM stack. Before executing code that triggers stack
maintenance (e.g., method invocation/return), MemVault restores
the current frame pointer to the value stored in dram_fp. Therefore,
existing Android code can utilize vm_goop tomanage the interpreter
stack. This keeps our modification to the stock Android system
minimal.

Because the capacity of iRAM is limited, MemVault minimizes
vault memory usage. Specifically, vault stacks are only assigned to
the threads that handle tainted data. In our experiments, it turns
out that for a typical Android app, among more than 10 auxiliary
system threads, there is only one main thread that processes tainted
data.

4.3 Heap Protection
Compared with variables in the stack, data objects are much larger
and are scattered in the heap. We protect tainted objects on the
DRAMwith in-situ encryption, and maintain a dedicated data struc-
ture, Trampoline, for dereferencing encrypted objects. As shown
in Figure 3, the Trampoline data structure is pointed to by an added
trampoline field in the corresponding C++ data object.

Specifically, an additional heap in the memory vault is shared
among all the threads of an app. Only the “hottest” tainted objects
are stored in clear-text in this vault heap. When the interpreter

Object in the DRAM Trampoline Object in the iRAM

Figure 3: Objects on heap. Data in shade are encrypted.

accesses an object, it first queries the trampoline field of that object.
A null trampoline field indicates that the object is not tainted,
and accordingly the interpreter accesses the DRAM object normally.
Otherwise, the object is tainted and encrypted in the DRAM heap,
and the added Trampoline data structure is queried to further
dereference the object. In particular, the status field indicates
whether the object is hot or not (i.e., whether there is clear-text
copy of that object in the vault heap). If so, the access is redirected to
the corresponding copy referenced by the iramObj field. Otherwise,
according to the LRU algorithm, MemVault evicts certain cold data
objects in the vault heap (if the vault is full), allocates a newmemory
region in the vault heap, and decrypts the DRAM copy (referenced
by dramObj) to the vault heap. Note that the next and previous
fields in the Trampoline data structure are used to maintain a
double-linked list that facilitates the implementation of the LRU
algorithm.

Key Management. Since the size of an object varies and may
not align to 16 bytes, we utilize the AES cryptographic algorithm
in counter mode (CTR) as stream cipher. The key is randomly
generated by the built-in OpenSSL random number generator when
the app is started. It is stored in a reserved iRAM page, along with
other intermediate key schedule materials. Note that each key is
only effective in the life-cycle of a process. Each app invocation
generates a different key. The initialization vector (IV) is chosen as
the virtual address of the object in the DRAM. In this way, MemVault
does not need to store an IV for every tainted object while still being
able to ensure a different IV for each object. Note that cross-app
attack is not considered in this paper, therefore there is no security
violation of using the same set of IV for two different apps.

In the following, we present the problems raised by native code
and garbage collection, and describe how we deal with them.

Dealing with Native Code. In Dalvik, a String is implemented
as a fixed-length object with a char array reference. Because a
String object itself does not contain any data, we never encrypt
it. A tainted String object is indicated by the taint tag in the ref-
erenced char array. If all the methods of the String class are im-
plemented solely by Java code, by instrumenting the interpreter,
MemVault can correctly locate the correct char array and redirect
the access as explained before. Unfortunately, to improve efficiency,
the Dalvik virtual machine optimizes the implementation of the
String class with a great deal of native code. Without awareness

38

WiSec ’19, May 15–17, 2019, Miami, FL, USA Le Guan, et al.

of the redirection layer in the interpreter, the native code would
mistakenly access the encrypted copy of the tainted char array.

We address this issue by manually instrumenting these native
methods. In particular, for all the native methods that operate on
the raw char arrays, we manually insert a redirection code to locate
the correct array. In Listing 1, we list a code snippet showing the
modificationswemake to the String.charAtmethod implemented
in native code. Note that the line 3 (in green) overwrites the pointer
of the char object.

1 offset = dvmGetFieldInt ((Object*) arg0 , STRING_FIELDOFF_OFFSET);

2 chars = (ArrayObject *) dvmGetFieldObject ((Object*)arg0 ,

STRING_FIELDOFF_VALUE);

3 + chars = String_getRealValue(chars);

4 pResult ->i = ((const u2*)(void*)chars ->contents)[arg1 + offset];

Listing 1: Manually inserting redirection code for the
String.charAt native method.

Apart from native methods in the String class, other native
methods involving primitive arrays also need manual instrumen-
tation. In our prototype, we found these methods mostly located
in the classes Charsets (e.g., toUtf8Bytes method) and System
(e.g., arraycopy method). In total, we patched seven methods for
Android 4.4.3. As a result, the evaluated apps do not crash.

Dealing with Garbage Collection. Garbage collection (GC) peri-
odically scans for live objects, and deallocates the dead objects. To
be able to mark all the live objects, the Dalvik virtual machine needs
to traverse through all the object references, starting with the GC
roots. Unfortunately, such traversals cannot pass through encrypted
objects, because the references in encrypted objects are opaque. To
address this issue, one option is to incorporate the redirection code
into GC, and decrypt the involved objects for GC traversing. How-
ever, this necessitates decrypting all the tainted objects for each
GC invocation, leading to a considerable performance overhead.

In MemVault, we follow a different approach that avoids the
aforementioned overhead. In particular, in the Trampoline data
structure, we maintain an array of clear-text object references con-
tained in the corresponding data object, as shown in Figure 3. These
references are updated whenever a reference field is overwritten in
the actual object. When a garbage collection occurs, we only need
to supply it with this references array. Note that references are not
sensitive themselves. In the sweeping phase, the dead objects in
the vault heap are cleared and freed, along with the DRAM copies.

4.4 Memory Vault Protection
We have shown how MemVault constrains sensitive data within the
memory vaults. This section explains how we secure the memory
vaults themselves.

First, the memory vault is backed by an SoC component – the
iRAM chip in our prototype. We have explained how iRAM defeats
physical memory attacks in Section 2.2. Because the vulnerable
DRAM chip never stores clear-text sensitive data, and the SoC
iRAM that stores decrypted sensitive objects is resistant to physical
attacks, the entire smartphone is protected from physical attacks.

Second, in the Linux kernel, we set the VM_IO flag for the virtual
memory regions backed by iRAM. As a result, the Linux OS regards
the vaults as memory-mapped I/O regions, which are excluded from

the core dump image when a crash occurs. Therefore, the attack
targeting core dump [22] is prevented.

Third, when an app is terminated or suspended, MemVault explic-
itly erases the associated memory vaults. Since sensitive data only
appear in the vault, this is a VM-wide erasion. Note that our erasion
is independent of OS-level secure deallocation [7], which makes our
system tolerant to OS vulnerabilities that reuse uncleared pages [6].

5 IMPLEMENTATION
We have implemented a MemVault prototype for Android 4.4.3. The
prototype runs on an i.MX 6Quad SABRE experiment board, which
features a four-core ARM Cortex-A9 processor, with 1 GB DDR3
DRAM and 256 KB iRAM. The iRAM is temporarily used by the
device ROM to initialize other SoC components during system
bootup. After that, the OS is free to use all the iRAM.

5.1 iRAMManagement
The iRAM chip is an SoC component with very limited capacity. In
our experimental board, we can only use 256 KB or 64 pages in
iRAM. Our implementation maximizes its usage.

The mirrored stack in the memory vault has four pages, which
is the same as the DRAM stack in TaintDroid [10]. The rationality
here is that the size of the stack in the vault can never exceed that
of a normal stack in the DRAM. The vault heap, which holds hot
objects, also occupies four pages and is further maintained by the
dlmalloc allocator [23]. As a result, we can readily use the popular
malloc/free interfaces to allocate and reclaim the memory for
tainted objects. When a malloc invocation fails, the least used
object in the vault heap is evicted. The eviction continues until
there is enough space for the new allocation request.

At a low level, a Linux driver is responsible for handling requests
of iRAM memory issued by the interpreter. In particular, to request
a virtual memory region backed by the iRAM, the interpreter opens
a special device iram, and calls the mmap system call to associate
the newly returned virtual memory with a region in the iRAM. The
Linux driver calls the vm_iomap_memory internal kernel function
to build page tables for the new virtual memory area (vma). By
default, the resulting vma is marked with the VM_IO flag, which
tells the OS that the corresponding area is a memory-mapped I/O
region.

5.2 Virtual Machine Instrumentation
MemVault is implemented as a modified Dalvik VM. Table 1 lists
the instrumentations we made to the semantics of the involved
DEX bytecode instructions. In the table, R and E stand for return
and exception variables, respectively, which are maintained by the
interpreter. ⊗ stands for an opcode. For a detailed explanation of
the DEX bytecode instructions, we recommend readers to refer to
the online DEX bytecode documentation [13] and TaintDroid [10].
In the bottom of the table, we have explained the meanings of the
newly added instrumentations.

Here we explain some instrumentations that are not straightfor-
ward to understand. Instructions (unary-op vA vB), (binary-op vA
vB), (binary-op vA vB vC), and (binary-op vA vB C) do not have the
S_VS instrumentation that appears in many others. This is because

39

Protecting Mobile Devices from Physical Memory Attacks with Targeted Encryption WiSec ’19, May 15–17, 2019, Miami, FL, USA

Instruction Format Instruction Semantics Instrumentation

const -op vA C vA← C S_DS
move -op vA vB vA ← vB ∅

move -op-R vA vA ← R S_DS & S_VS
r eturn-op vA R ← vA ∅

move -op-E vA vA ← E S_DS & S_VS
throw -op vA E ← vA ∅

unary-op vA vB vA ← ⊗vB S_DS
binary-op vA vB vC vA ← vB ⊗ vC S_DS
binary-op vA vB vA ← vA ⊗ vB ∅

binary-op vA vB C vA ← vB ⊗ C S_DS
aput -op vA vB vC vB [vC] ← vA R & M_VH
aдet -op vA vB vC vA ← vB [vC] R & S_DS & S_VS
sput -op vA fB fB ← vA R & M_VH
sдet -op vA fB vA ← fB R & S_DS & S_VS
iput -op vA vB fC vB (fC) ← vA R & M_VH
iдet -op vA vB fC vA ← vB (fC) R & S_DS & S_VS
invoke -op vC . . .vG mB callmB (vC . . .vG) I

R: Redirect access to the object if necessary.
S_VS: Switch to vault stack, if working on DRAM stack and the resulting stack is
tainted.
S_DS: Switch to DRAM stack, if working on vault stack and the resulting stack is
untainted.
M_VH: If the destination object is newly tainted, move it to vault heap.
I: If the thread is working on the DRAM stack and any of the callee arguments is
tainted, switch to vault stack. If the thread is working on vault stack and none of the
arguments is tainted, switch to the DRAM stack.

Table 1: Interpreter Instrumentations

in these instructions, variable vA is assigned with a value deter-
mined by other values on current stack. If the current stack is not
tainted, there is no tainted variable to taint vA, and the resulting
stack is definitely untainted. In addition, the instruction (binary-op
vA vB) does not need the S_DS instrumentation. In this instruction,
the only mutated variable is vA, which retains all its existing taint
tags, indicating that none of existing taint tags can be erased.

5.3 Tainting APIs
In TaintDroid [10], sensitive objects are defined by the system. They
are tainted when going through the predefined framework APIs.
For example, in the framework API handleLocationChanged, the
returned location information is automatically tainted.

In MemVault, we protect a broader range of sensitive data, in-
cluding user generated data. Obviously, the Android framework
cannot determine whether a user input is sensitive or not – only
the developer and the user know. Therefore, we require developers
to identify the origin of this kind of user-generated sensitive data
in the source code, and explicitly invoke our APIs to taint them.

We expose two APIs for developers to taint an object. The design
of APIs is based on the characteristics of the sensitive data. The first
API, MemVault.addTaintArray is specifically designed to handle
array-oriented sensitive objects. In fact, the actual sensitive data
that a user inputs is typically contained in a low-level array object,
and the array is further encapsulated into another high-level object.
For example, in an Android app with a login interface, the high-
level object representing the typed password is an instance of the
class EditText. However, the actual password is contained in a
char array, which is a field of the SpannableStringBuilder object
contained in EditText. The MemVault.addTaintArray API takes
an EditText object as argument, locates the actual inner array that
holds sensitive data, and finally taints the array.

The second API is MemVault.addTaintGeneral. As indicted by
its name, it is used to taint a general data object. This is useful when

an object contains primitive sensitive variables. In this case, the
object itself is tainted (rather than an inner array). In both APIs, if
the object was not tainted earlier, the API also moves the sensitive
object to the vault heap and encrypts the copy in the DRAM.

6 EVALUATION
We are interested in several questions. First, how easy is it to incor-
porate MemVault for protecting existing Android apps? We expect a
system that requires minimal re-engineering effort. To this end, we
looked into four open-source Android apps that process sensitive
data, and manually labeled the taint sources with our APIs. Second,
is the proposed solution effective? In other words, is the tainted
data really encrypted in the DRAM? Third, how much performance
degradation does MemVault bring to the protected apps? Lastly, to
what extend does MemVault affect the overall performance of the
system given that taint tracking is a system-wide operation?

The evaluation results were measured in the aforementioned
i.MX 6Quad SABRE experiment board running an AOSP Android
4.4.3 OS with FDE enabled. We note that although FDE was only
enabled by default in Android 5.0, it has become available in An-
droid 4.4.3. As MemVault is built on top of TaintDroid, we treated
the performance observed from native Android as our baseline, and
compared it with those observed from TaintDroid and MemVault.

6.1 Adoption
We have instrumented four open-source apps to benefit from the
protection of MemVault. WordPress2 is a content management sys-
tem. Users can view and maintain their blogs through the client
app. BankDroid3 is a hub of bank accounts. Users can retrieve bank
transactions of different banks in a single app. For these two apps,
MemVault aims to protect the login credential and bank account in-
formation. KeePass4 is a password manager. It utilizes a master key
to encrypt user passwords of different websites. We use MemVault
to protect both the master key and stored password entries. K-95
is a popular email client for Android. We use MemVault to protect
the email account information and email contents.

Accounting for the import statements, we need only two new
lines of code (LOC) for WordPress and BankDroid, and four new
LOC for KeePass and K-9. Take the K-9 email client as an example;
when the app is launched, the stored account information is loaded
from database to memory as a string. The account information takes
the format of “protocol+://address:password@server”. Obviously,
this string contains sensitive data and should be marked as a taint
source. We used our API to mark the string as sensitive, as shown
in Listing 2. Similarly, when an email message is loaded from the
database as a byte array, we label that array as well.

1 private synchronized void loadAccount(Preferences preferences) {

2 Storage storage = preferences.getStorage ();

3 mStoreUri = Base64.decode(storage.getString(mUuid + ".storeUri

", null));

4 + MemVault.addTaintArray(mStoreUri);

5 ...

6 }

Listing 2: Tainting a sensitive object.

2https://github.com/WordPress/WordPress
3https://github.com/liato/android-bankdroid
4https://github.com/bpellin/keepassdroid
5https://github.com/k9mail/k-9

40

https://github.com/WordPress/WordPress
https://github.com/liato/android-bankdroid
https://github.com/bpellin/keepassdroid
https://github.com/k9mail/k-9

WiSec ’19, May 15–17, 2019, Miami, FL, USA Le Guan, et al.

6.2 Data Exposure Prevention
To examine if an app under protection still has sensitive data in the
DRAM, we directly dumped its address space while it was running,
and searched for the occurrences of sensitive data. We devised
two ways to get its memory image. First, we compiled the fmem
kernel module6 into the Linux kernel. With fmem, we were able to
dump the entire physical memory of the device. Note that the fmem
kernel module was only used in our experimental validation to
emulate a physical attack. In our attack model, we assume attackers
lack the ability to inject arbitrary code in the kernel space. Second,
we registered in the Dalvik virtual machine a signal handler for
memory dumping. When the signal was received, the interpreter
explicitly dumped the memory regions corresponding to the Dalvik
heap and stack.

We input pre-known account information/passwords/email con-
tents into each tested app, and used our dumping tool to capture
the memory images. Table 2 summarizes the results. In the table,
the results in columns DRAM and IRAM were obtained by ana-
lyzing memory images retrieved by feeding the fmem module with
the physical memory ranges of DRAM and iRAM respectively. The
memory images used in column Heap&Stack were obtained by
our signal handler method. Without the protection of MemVault,
we observed a bunch of sensitive data in both the DRAM and
Heap&Stack. With MemVault, we did not observe any occurrence
of sensitive data in the heap and stack segments of the running
process. This indicates that MemVault successfully eliminates all
the occurrences of sensitive data within the VM. In the iRAM, as
expected, we were able to locate lots of sensitive data. Furthermore,
we did not find in the DRAM image any sensitive data.

We also searched for the sensitive data in the system after we
terminated the test apps. As soon as the apps were terminated, we
could not find any occurrence of sensitive data in both the DRAM
and iRAM. This indicates that sensitive data were completely erased
by MemVault after the apps were terminated.

6.3 Overhead of Protected Apps
We evaluated the overhead imposed to individual apps by measur-
ing the delay when loading an app, and runtime overhead.

App Load Time. We modified the Android framework code to
record the time spent on launching an app. The start time is recorded
in the startSpecificActivityLock method when the activity
manager starts the app, while the end time is recorded at the time
when the attachBaseContext method is called, which means the
app has been displayed on the screen.

We measured the app launching time for 100 times, and calcu-
lated the average values, which are shown in Table 3. Both Taint-
Droid and MemVault impose small overheads in starting an app.
This is because Android handles UI mainly through native code.

Runtime Overhead. Evaluating the performance overhead of the
four apps is challenging, because none of the apps provides a
straightforward quantitative output of its performance. We instead
evaluated the overhead imposed to individual apps by measuring
additional power consumption when the app performs the same

6https://github.com/NateBrune/fmem

Android
TaintDroid

MemVault
Android

TaintDroid
MemVault

Android
TaintDroid

MemVault
Android

TaintDroid
MemVault

0

100

200

300

400

500

600

K-9KeePassBankDroid

Po
w

er
 C

on
su

m
pt

io
n

(J
ou

le
s/

ho
ur

)

 Net CPU LCD

WordPress

Figure 4: Power Consumption (the lower, the better).

amount of tasks. Our assumption is that the more CPU cycles are
spent on the task, the more overhead is imposed.

We used an Android UI exerciser Monkey [1] to launch each app
and let it perform a set of typical workloads. Each task was repeated
for at least one hour. In the meanwhile, we kept the PowerTutor
power monitor [34] running in background, and recorded the power
consumption of each tested app.

Figure 4 shows the energy consumption for each app. Both Taint-
Droid and MemVault consumed more energy on CPU than native
Android did, but incurred little or no overhead on LCD and Network.
This is due to the additional CPU cycles spent on taint tracking
and object encryption. While TaintDroid consumed about 18.8%
more power compared with native Android, MemVault consumed
37.2% more. Since MemVault is built on TaintDroid, the additional
energy consumption (i.e., 18.4%) on CPU indicates the performance
overhead of MemVault compared with TaintDroid. Note that in this
experiment, we ran apps with tainted objects; therefore, there were
frequent object encryption/decryption operations. We show in Sec-
tion 6.4 that for non-sensitive apps, MemVault only introduces 9.6%
additional overhead compared with TaintDroid.

6.4 System-wide Overhead
As mentioned earlier, taint tracking is a system-wide operation.
MemVault incurs an inevitable performance overhead even if an
app does not process any sensitive data. In this section, we show
the results of two popular Android benchmarks running without
tainted data. CaffeineMark 3.0 measured the performance overhead
at Java level. Since MemVault was implemented as instrumentation
to the Dalvik VM, the results of CaffeineMark precisely reflected the
overhead introduced by our instrumentation. In addition, we uti-
lized Geekbench3 to measure the introduced overhead to workloads
that simulate real-world scenarios.

As shown in Figure 5a, MemVault exhibits small performance
degradation in all the tests except String. As explained in Taint-
Droid, the exceptionally high overhead is due to “additional memory
comparisons that occur when the JNI propagation heuristic checks
for string objects in method prototypes” [10]. In MemVault, because
of additional redirection checks, the overhead is further magnified.

41

https://github.com/NateBrune/fmem

Protecting Mobile Devices from Physical Memory Attacks with Targeted Encryption WiSec ’19, May 15–17, 2019, Miami, FL, USA

APP DRAM IRAM Heap&Stack
Android MemVault Android MemVault Android MemVault

WordPress Password none n/a Password Password none
BankDroid Account Number & Password none n/a Account Number & Password Account Number & Password none
KeePass MasterKey & Password none n/a MasterKey & Password MasterKey & Password none
K-9 Password & Email none n/a Password & Email Password & Email none

Table 2: Identified Sensitive Data in DRAM, IRAM and Interpreter Heap/Stack

Sieve Loop Logic String Float Float Overall
0

1000

2000

3000

4000

5000

6000

C
af

fe
in

eM
ar

k
3.

0
Sc

or
e

 Android
 TaintDroid
 MemVault

(a) CaffeineMark Benchmark.

Integer
Floating Point

Memory
Overall

Integer
Floating Point

Memory
Overall

0

200

400

600

800

1000

1200

1400

G
ee

kb
en

ch
3

Sc
or

e

Android
TaintDroid
MemVault

Single-core Multi-core

(b) GeekBench3 Benchmark.

Figure 5: System-wide Benchmarks (the higher, the better).

WordPress BankDroid KeePass K-9
Android 985 239 79 269
TaintDroid 1001 247 82 277
MemVault 1008 248 83 277

Table 3: App Start Time (inms).

Overall, the measured overhead is 23.9% (1120 v.s. 1471), compared
to 14.3% (1260 v.s. 1471) in TaintDroid. GeekBench3 is inclined to
real-world workloads. For example, the integer test includes many
crypto and compression algorithms, and floating point test includes
image processing algorithms. They are mostly implemented in na-
tive code. Results in Figure 5b show that for apps involving massive
native code, the overhead is negligible.

7 RELATEDWORK
7.1 Software-based Memory Encryption
Memory encryption is a straightforward approach to protect clear-
text sensitive data from physical attacks to the DRAM chip. Crypt-
keeper [29] and RamCrypt [14] attempt to encrypt the whole ad-
dress space or data segments of a process. However, to execute the
program, a small working set must be kept in clear-text, rendering
data in this region insecure.

Bear [18] addresses the working set problem by employing iRAM
to temporarily store the clear-text data. The authors conducted
comprehensive experiments to evaluate the impact of memory
encryption with different encryption granularities. However, it

works on a clean-slate micro-kernel, and thus the implication to
commodity environments is not revealed. Papadopoulos et. al [28]
implemented both full memory encryption and selective memory
encryption based on compiler-based instrumentation. CaSE [35]
constructs a trusted execution environment to run self-contained
applications within the CPU cache. Because the application must fit
into one way of the cache (32KB), CaSE is not scalable for complex
Android apps that requires more than tens of megabytes of memory.
Sentry [8] hacks the Linux page table handler to implement page-
based memory encryption on Android. As encryption is performed
at a coarse granularity, many nonsensitive data are unnecessarily
encrypted, imposing high runtime overhead. Therefore, the protec-
tion is only activated when the phone enters suspended mode. The
argument is that if the phone is lost in unlocked status, the attacker
is already able to obtain user credentials (such as contacts) through
User Interface (UI). However, there exists a class of credential data
that are not displayed in the UI. For example, a password is never
shown in the UI by default. But such data indeed appear as clear-
text in the DRAM, and are hence vulnerable to physical attacks. To
keep such credential data secret, it is necessary to provide the same
protection to unlocked phones.

In MemVault, we track the propagation of sensitive data and se-
lectively encrypt data that are really worth protecting, regardless of
the status of the phone. Table 4 summarizes exiting memory encryp-
tion solutions. Note that the performance statistics are collected
from relevant papers and vary depending on concrete settings.

42

WiSec ’19, May 15–17, 2019, Miami, FL, USA Le Guan, et al.

Architecture Software
Environment Granularity Completeness† Code

Modification
Unlimited

Memory Usage Overheads

Cryptkeeper [29] x86 Linux 4KB ✗ None ✓ 1.09x∼9.00x
RamCrypt [14] x86 Linux 4KB ✗ None ✓ 1.25x∼2.70x
Bear [18] ARM Micro-Kernel 16B∼128KB ✓ Significant ✓ 1.50x∼3.40x
Work in [28]‡ x86 Linux 16B ✓ None/Significant ✓ 1.17x∼10.00x+
CaSE [35] ARM Self-contained Whole App ✓ Significant 32KB Limitation 1.03x
Sentry [8] ARM Android 4KB ✓ None ✓ 1.48x∼2.74x
MemVault ARM Android Object ✓ Trivial ✓ 1.37x

†: Completeness represents whether the working set of process is protected. ‡: The paper proposed two modes which exhibit very different characteristics.

Table 4: Comparison with Other Software-based Memory Encryption Solutions

7.2 Hardware-based Memory Encryption
In recent years, commodity processors began to incorporate hard-
ware components to support hardware-based memory encryption.
Two representative solutions are Intel SGX [25] and AMD SEV [21].
In SGX, the memory controller is augmented with a crypto engine
that transparently encrypts the transaction between the proces-
sor and a special region of DRAM. Unfortunately, these solutions
mainly target the cloud-centric server market and are missing in
ARM-powered mobile devices. Last, it is also shown that hardware
features can be used to assist memory encryption [15].

7.3 Cloud-assisted Solutions
Cloud-assisted solutions attempt to eliminate local sensitive data
on the device. In CleanOS [31], the credential data objects are also
tracked by TaintDroid. After a certain time of inactiveness, the
tainted credential data objects are encrypted by a key that is later
escrowed in the cloud. When these objects are accessed, only au-
thenticated users could obtain the escrowed key in the cloud to
decrypt the credential objects in the phone. However, due to the
trade-off between security and usability, there exists a timing win-
dow during which the credential data appear in clear-text in the
phone. Moreover, CleanOS does not protect sensitive data on the
interpreter stack. In TinMan [33], the code handling credential data
is offloaded to the cloud server, and the cloud server stores the
real credential data. In the prototype, TinMan can only protect
user credentials that require an input box in GUI. A major concern
with cloud-assisted solutions is availability issue. In particular, in
an intermittent or poor network environment, users may not be
able operate their phones normally. MemVault does not need cloud
service. Instead, sensitive data are stored locally in secure iRAM.

8 LIMITATIONS AND FUTURE WORK
The current prototype only supports Android 5.0 or lower, because
TaintDroid was designed for the Dalvik VM, which has been re-
placed by the new ART runtime. Fortunately, the DEX bytecode
format was reused to retain compatibility. Therefore, it is still feasi-
ble to insert instrumentation code based on instruction semantics
during the compilation. In fact, TaintART [30] has been proposed
to achieve the same goal of TaintDroid but targeted the new ART
runtime. It is possible to port MemVault for newer Android based
on TaintART.

MemVault provides developers with straightforward APIs to
mark the taint sources, which is easy to adapt as evaluated in

Section 6.1. However, developers still need to be slightly involved.
SUPOR [19] and UIPicker [27] show that it is possible to auto-
matically find the sensitive user input by detecting the semantic
information within the application layout resources and program
code. To free developers from the burden of manually labeling the
taint sources, we plan to incorporate these techniques to MemVault.

MemVault is unable to protect sensitive data processed by the
native code. For example, the buffer of the touchscreen driver to
receive password input cannot be tainted in our system. We assume
the Android kernel and framework effectively erase these sensitive
data in time. For example, the buffer can be immediately cleaned
after being fetched by the app. In this way, the stolen or lost phones
cannot contain any sensitive data.

Lastly, only encrypting sensitive data may leak structural infor-
mation of an app, such as memory layout. This could be potentially
leveraged by attackers.

9 CONCLUSIONS
MemVault minimizes the exposure of sensitive data on the DRAM
chip of mobile devices, defeating physical memory disclosure at-
tacks in which attackers have physical access to the phones. Utiliz-
ing TaintDroid [10], MemVault tracks the propagation of sensitive
data and constrains them within a centralized memory vault in
the iRAM. MemVault runs locally on mobile devices, so it avoids
the latency and communication overhead introduced in a cloud-
assisted solution. MemVault selectively encrypts the tainted objects,
so the performance is improved significantly compared with coarse-
grained page-based memory encryption solutions for smartphones.

We have implemented a prototype of MemVault. Through ex-
tensive experiments, we show that with a little effort from pro-
grammers to label the sensitive data inputs, MemVault effectively
minimizes the occurrences of sensitive data in the system, while
the introduced overhead is acceptable for real-world apps.

ACKNOWLEDGMENTS
The authors would also like to thank the anonymous referees for
their valuable comments and helpful suggestions. Peng Liu was
supported by ARO W911NF-13-1-0421 (MURI), NSF CNS-1505664,
NSF CNS-1814679, and ARO W911NF-15-1-0576. Jingqiang Lin
was partially supported by National Natural Science Foundation
of China (Award No. 61772518), and Cyber Security Program of
National Key RD Plan of China (Award No. 2017YFB0802100).

43

Protecting Mobile Devices from Physical Memory Attacks with Targeted Encryption WiSec ’19, May 15–17, 2019, Miami, FL, USA

REFERENCES
[1] Android Developers. 2017. UI/Application Exerciser Monkey. (2017). https:

//developer.android.com/studio/test/monkey.html.
[2] ARM Ltd. 2009. Security Technology Building a Secure System Using TrustZone

Technology (white paper). (2009).
[3] ARM Ltd. 2014. ARM Cortex-A57 MPCore Processor Technical Reference Man-

ual. http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0488d/
index.html.

[4] ARM Ltd. 2019. The Arm System Memory Management Units.
https://developer.arm.com/products/system-ip/system-controllers/
system-memory-management-unit.

[5] Ahmed M Azab, Peng Ning, Jitesh Shah, Quan Chen, Rohan Bhutkar, Guruprasad
Ganesh, Jia Ma, and Wenbo Shen. 2014. Hypervision across worlds: Real-time
kernel protection from the arm trustzone secure world. In ACM CCS’14, 2014.
ACM, 90–102.

[6] Jim Chow, Ben Pfaff, Tal Garfinkel, Kevin Christopher, and Mendel Rosenblum.
2004. Understanding data lifetime via whole system simulation. In USENIX
Security Symposium.

[7] Jim Chow, Ben Pfaff, Tal Garfinkel, and Mendel Rosenblum. 2005. Shredding
Your Garbage: Reducing Data Lifetime Through Secure Deallocation. In USENIX
Security ’05.

[8] Patrick Colp, Jiawen Zhang, James Gleeson, Sahil Suneja, Eyal de Lara, Himanshu
Raj, Stefan Saroiu, and Alec Wolman. 2015. Protecting Data on Smartphones and
Tablets from Memory Attacks (ASPLOS ’15). 177–189.

[9] Consumer Reports. 2015. Smartphone thefts drop as kill switch us-
age grows. http://www.consumerreports.org/cro/news/2015/06/
smartphone-thefts-on-the-decline/index.htm.

[10] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung,
Patrick McDaniel, and Anmol N. Sheth. 2010. TaintDroid: An Information-flow
Tracking System for Realtime Privacy Monitoring on Smartphones (OSDI’10).

[11] EPN Solutions. 2017. Analysis tools for DDR1, DDR2, DDR3, embedded DDR
and Fully Buffered DIMM modules. http://www.epnsolutions.net/ddr.html.

[12] FuturePlus System. 2006. DDR2 800 bus analysis probe. http://www.futureplus.
com/download/datasheet/fs2334_ds.pdf.

[13] Google inc. 2017. Dalvik bytecode. https://source.android.com/devices/tech/
dalvik/dalvik-bytecode.

[14] Johannes Götzfried, Tilo Müller, Gabor Drescher, Stefan Nürnberger, and Michael
Backes. [n. d.]. RamCrypt: Kernel-based Address Space Encryption for User-mode
Processes (ASIA CCS ’16). 6.

[15] Le Guan, Jingqiang Lin, Bo Luo, Jiwu Jing, and Jing Wang. 2015. Protecting
private keys against memory disclosure attacks using hardware transactional
memory. In 2015 IEEE Symposium on Security and Privacy. IEEE, 3–19.

[16] J. Götzfried and T. Müller. 2013. ARMORED: CPU-Bound Encryption for Android-
Driven ARM Devices (ARES ’13). 161–168.

[17] J. Halderman, S. Schoen, N. Heninger, W. Clarkson, W. Paul, J. Calandrino, A.
Feldman, J. Appelbaum, and E. Felten. 2008. Lest We Remember: Cold Boot
Attacks on Encryption Keys. In 17th USENIX Security Symposium. 45–60.

[18] Michael Henson and Stephen Taylor. 2013. Beyond full disk encryption: protec-
tion on security-enhanced commodity processors (ACNS ’14). Springer, 307–321.

[19] Jianjun Huang, Zhichun Li, Xusheng Xiao, Zhenyu Wu, Kangjie Lu, Xiangyu
Zhang, and Guofei Jiang. 2015. SUPOR: Precise and Scalable Sensitive User
Input Detection for Android Apps. In 24th USENIX Security Symposium. USENIX
Association, Washington, D.C., 977–992.

[20] Google inc. 2017. Full-Disk Encryption. https://source.android.com/security/
encryption/full-disk.

[21] David Kaplan. 2016. AMD x86 Memory Encryption Technologies. USENIX
Association, Austin, TX.

[22] Vadim Kolontsov. 1996. Solaris (and others) ftpd core dump bug. http://insecure.
org/sploits/ftpd.pasv.html.

[23] Doug Lea and Wolfram Gloger. 1996. A memory allocator. http://g.oswego.edu/
dl/html/malloc.html.

[24] Lookout. 2014. Phone Theft in America: What really happens when your phone
gets grabbed. https://blog.lookout.com/phone-theft-in-america.

[25] FrankMcKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham Shafi,
Vedvyas Shanbhogue, and Uday R. Savagaonkar. 2013. Innovative Instructions
and Software Model for Isolated Execution (HASP ’13). Article 10, 1 pages.

[26] Tilo Müller and Michael Spreitzenbarth. 2013. FROST: Forensic Recovery of
Scrambled Telephones (ACNS ’13). 373–388.

[27] Yuhong Nan, Min Yang, Zhemin Yang, Shunfan Zhou, Guofei Gu, and XiaoFeng
Wang. 2015. UIPicker: User-Input Privacy Identification in Mobile Applications.
In 24th USENIX Security Symposium. Washington, D.C., 993–1008.

[28] Panagiotis Papadopoulos, Giorgos Vasiliadis, Giorgos Christou, Evangelos
Markatos, and Sotiris Ioannidis. 2017. No Sugar but all the Taste! Memory
Encryption without Architectural Support (ESORICS ’17). Springer, 362–380.

[29] P. A. H. Peterson. 2010. Cryptkeeper: Improving security with encrypted RAM. In
2010 IEEE International Conference on Technologies for Homeland Security (HST).

[30] Mingshen Sun, TaoWei, and John C.S. Lui. 2016. TaintART: A Practical Multi-level
Information-Flow Tracking System for Android RunTime (CCS ’16). 331–342.

[31] Yang Tang, Phillip Ames, Sravan Bhamidipati, Ashish Bijlani, Roxana Geambasu,
and Nikhil Sarda. 2012. CleanOS: Limiting Mobile Data Exposure with Idle
Eviction (OSDI ’12). USENIX, Hollywood, CA, 77–91.

[32] Eran Tromer, Dag Arne Osvik, and Adi Shamir. 2010. Efficient Cache Attacks on
AES, and Countermeasures. Journal of Cryptology 23, 1 (01 Jan 2010), 37–71.

[33] Yubin Xia, Yutao Liu, Cheng Tan, Mingyang Ma, Haibing Guan, Binyu Zang, and
Haibo Chen. 2015. TinMan: Eliminating Confidential Mobile Data Exposure with
Security Oriented Offloading (EuroSys ’15). Article 27, 16 pages.

[34] Z Yang. 2012. Powertutor-a power monitor for android-based mobile platforms.
EECS, University of Michigan, retrieved September 2 (2012), 19.

[35] N. Zhang, K. Sun, W. Lou, and Y. T. Hou. 2016. CaSE: Cache-Assisted Secure
Execution on ARM Processors. In 2016 IEEE Symposium on Security and Privacy
(SP). 72–90.

44

https://developer.android.com/studio/test/monkey.html
https://developer.android.com/studio/test/monkey.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0488d/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0488d/index.html
https://developer.arm.com/products/system-ip/system-controllers/system-memory-management-unit
https://developer.arm.com/products/system-ip/system-controllers/system-memory-management-unit
http://www.consumerreports.org/cro/news/2015/06/smartphone-thefts-on-the-decline/index.htm
http://www.consumerreports.org/cro/news/2015/06/smartphone-thefts-on-the-decline/index.htm
http://www.epnsolutions.net/ddr.html
http://www.futureplus.com/download/datasheet/fs2334_ds.pdf
http://www.futureplus.com/download/datasheet/fs2334_ds.pdf
https://source.android.com/devices/tech/dalvik/dalvik-bytecode
https://source.android.com/devices/tech/dalvik/dalvik-bytecode
https://source.android.com/security/encryption/full-disk
https://source.android.com/security/encryption/full-disk
http://insecure.org/sploits/ftpd.pasv.html
http://insecure.org/sploits/ftpd.pasv.html
http://g.oswego.edu/dl/html/malloc.html
http://g.oswego.edu/dl/html/malloc.html
https://blog.lookout.com/phone-theft-in-america

	Abstract
	1 Introduction
	2 Background
	2.1 Physical Attacks on Smartphones
	2.2 SoC Components
	2.3 Android and TaintDroid

	3 Assumptions and Threats-in-Scope
	4 System Design
	4.1 Architecture Overview
	4.2 Stack Protection
	4.3 Heap Protection
	4.4 Memory Vault Protection

	5 Implementation
	5.1 iRAM Management
	5.2 Virtual Machine Instrumentation
	5.3 Tainting APIs

	6 Evaluation
	6.1 Adoption
	6.2 Data Exposure Prevention
	6.3 Overhead of Protected Apps
	6.4 System-wide Overhead

	7 Related Work
	7.1 Software-based Memory Encryption
	7.2 Hardware-based Memory Encryption
	7.3 Cloud-assisted Solutions

	8 Limitations and Future Work
	9 Conclusions
	Acknowledgments
	References

