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ABSTRACT
Face recognition systems have been targeted by recent physical ad-
versarial machine learning attacks, which attach or project visible
patterns on adversaries’ faces to trick backend FR models. While
these attacks have demonstrated effectiveness in the literature, they
often rely on visibly suspicious patterns, are susceptible to envi-
ronmental noise, or exhibit limited success rates in practice. In this
paper, we propose a novel physical adversarial attack against deep
face recognition systems, namely Agile (adversarial glasses with
infrared laser). It generates adjustable, invisible laser perturbations
and emits them into the camera CMOS to launch dodging and im-
personation attacks against facial biometrics systems. To do so, we
first theoretically model physical adversarial perturbations and con-
vert them to the digital domain. The generated synthesized attack
signals are utilized to guide real-world laser settings. Our exper-
iments with real-world attackers and a benchmark face database
show that Agile is highly effective in DoS, dodging, and imperson-
ation attacks. More importantly, the candidate impersonation target
and optimal attack settings identified by Agile’s attack synthesis
approach are highly consistent with real-world physical attack re-
sults. The grey-box and black-box evaluation against commercial
FR models also confirms the effectiveness of the Agile attack.

CCS CONCEPTS
• Security and privacy→ Biometrics; • Computing method-
ologies →Machine learning.
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1 INTRODUCTION
With recent advances, state-of-the-art face recognition (FR) systems
that employ complex deep learning models trained with large-scale
datasets of millions of faces [4] can achieve over 99% recognition
accuracy [30, 38, 39, 41]. Face-recognition-based authentication sys-
tems, a.k.a. facial biometrics recognition, have been widely adopted
in real-world applications, for example, in the travel industry [14]
and consumer electronics [28]. U.S. Customs and Border Protection
has deployed facial biometrics at all international airports [6].

Along with their growing adoption, many security concerns
arise. One of them is adversarial machine learning attacks [5, 15, 21,
24], which aim to inject carefully-crafted adversarial examples into
face images to trigger misclassification of the target neural models.
However, most of these attacks are designed in the digital world.
When applying them in the physical domain, a significant drop
in attack practicality has been observed. To tackle this problem,
physical adversarial attacks have been proposed to inject physical-
domain perturbations to the object or the imaging component (e.g.,
cameras) of an FR system. The key challenge lies in generating
appropriate physical adversarial artifacts that precisely achieve the
attack effect of their counterpart generated in the digital domain.

Existing physical attacks against FR systems leverage printed
patterns, projected visible patterns, and infrared signals, as summa-
rized in Table 1. Attacks with printed patterns have been extensively
studied in the literature, which generate adversarial perturbations
in the digital domain and convert them to printable patterns in
the physical domain. The patterns are then attached to attackers’
eyeglass frames [34], hats [20], T-shirts [53], face masks [66], face
stickers [25, 29, 49, 52, 56], and makeup [16, 65]. While not relying
on special hardware, printed perturbations often involve a complex
digital-to-physical transformation (e.g., non-printability score [34],
expectation over transformation [3], total variation [20]) to han-
dle printing noise. Besides, they are fixed once being printed out
and thus cannot handle dynamic environmental noises. Another
important drawback is that printed patterns may be visually sus-
picious [25], as demonstrated in Figure 1. Attacks with projected
patterns emit light directly on the attacker’s face [35] or on the key
facial areas [22]. The adversarial patterns could be adjusted during
the attack to achieve good robustness against environment noise.
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However, they require special hardware or cooperation among mul-
tiple attackers for precise projection and have low visual stealthi-
ness, which restricts the attack practicality in real-world settings.
Finally, some recent attacks leverage invisible infrared light to gen-
erate adversarial perturbations and improve attack stealthiness.
However, the perturbation patterns generated by infrared light are
so limited that they can trigger only Denial of Service (DoS) [54]
or untargeted impersonation [63] with low attack success rates.

We also observe that existing physical attacks cannot achieve
high attack efficacy and high practicality (i.e., stealthiness) at the
same time. For example, increasing the coverage of pixels from
0.5% to 2.5% (i.e., large stickers) in [29] can remarkably boost attack
success rate from 10% to 90.32%. Similarly, in Adv-hat [20], attacks
with 10% pixel coverage outperformed those with 6%. Meanwhile, to
increase the success rate, existing attacks [29, 49] often take a brute-
force approach to test a large number of physical perturbations,
which is obviously impractical in real-world environments.

To tackle these challenges, we propose Agile (adversarial glasses
with an infrared laser), a novel physical adversarial attack exploit-
ing infrared laser interference against deep FR models. As shown
in Figure 1, Agile utilizes ultra-small laser diodes at a low hardware
cost to emit invisible infrared signal. It achieves superior stealthi-
ness compared to existing attacks that rely on printed or projected
patterns. The Agile attack consists of two steps: first, it theoretically
models the interference of a selected laser diode, which is then
used to generate synthesized attack face images with simulated
laser perturbations using image fusion. Next, it uses a novel PSAS
(Point-Specific Activation Similarity) filter and a similarity filter
to identify candidate attack face images, which have high success
rates to attack the target image under laser perturbations. With
synthesized attack images and the corresponding laser parameter
settings in the digital domain, Agile identifies a small range for laser
parameter configuration in the physical domain, which can effec-
tively activate dodging and impersonation attacks. Compared with
existing physical adversarial attacks, Agile can continuously gen-
erate adversarial input within the identified optimal attack range
to achieve a higher attack success rate (e.g., 80% ) within a short
period of time (e.g., 8s). We summarize our contributions as follows:
• We proposed a novel physical adversarial attack against facial
biometrics using infrared lasers. It is the first theory-backed, con-
trollable laser-enabled dodging and impersonation attacks with
high effectiveness, stealthiness, robustness, and cost-efficiency.

• We presented a novel attack synthesis approach for physical
attacks. We first developed a theoretical model to formalize laser
interference patterns for the synthesis of attack images, which
guides real-world attacks to achieve high success rates within
a feasible time frame. Then, we designed a novel PSAS filter to
accelerate the search for candidate attack face images.

• We evaluated the effectiveness of Agile against SOTA face embed-
ding models in the white-box, grey-box, and black-box settings.
The results showed that Agile is highly effective.

• We explored Agile’s ability to bypass existing defenses and uncov-
ered the new attack surfaces it introduces, to highlight the need
for future study on proper defenses against this novel attack.

Ethical Considerations. We investigated the vulnerability of
SOTA FR models under infrared laser-based physical adversarial

Figure 1: Physical adversarial attack examples and visual
stealthiness: printed patterns [20, 34, 49, 65], projected pat-
terns [22, 35], infrared patterns [54, 63], and Agile (ours).

attacks. All the experiments were conducted in controlled lab en-
vironments simulating real-world applications using open-source
models and benchmark datasets. The experiments have been re-
viewed and approved by the Human Research Protection Program
and the Laser Safety Committee at the University of Kansas.

The rest of the paper is organized as follows: we introduce deep
face recognition and the attacks against FR systems in Section 2,
and present the threat model in Section 3, followed by an attack
overview and feasibility study in Section 4 and the design details of
the Agile attack in Section 5. We report the evaluation settings and
results in Section 6 and explore additional attacking surfaces en-
abled by Agile in Section 7. Existing defense strategies are discussed
in Section 8. Finally, Section 9 concludes the paper.

2 BACKGROUND AND RELATEDWORK
2.1 Face Recognition Systems
Face-based authentication systems can be categorized into face
recognition and face verification. Face recognition answers the ques-
tion “who are you?” by matching a candidate face against a list of
known faces, i.e., one-to-many matching. Face verification answers
“Is that you?” by matching the face against one known face to con-
firm the candidate’s identity, i.e., one-to-one matching. In this work,
we focus on deep-learning-based face recognition systems, which
have demonstrated outstanding performance, e.g., [13] reported
that more than 80 models have been built and tested on the LFW
dataset [19] and 56 of them achieved 99.0% or higher accuracy.

The face recognition pipeline roughly consists of three phases:
pre-processing, representation (embedding), and recognition. (1) In
pre-processing, faces are detected from the possibly complex back-
ground and their geometric structures (e.g., landmark points such
as eyes, nose, and mouth) are identified. Popular pre-processing ap-
proaches include OpenCV [23]), RetinaFace [9], and MTCNN [59]).
(2) In face embedding, face images are represented as vectors in a
high-dimensional vector space, so that the similarity (or distance)
between two images can be calculated in recognition. State-of-the-
art (SOTA) face embedding models are complex DNNs trained with
very large datasets, e.g., DeepFace [41], FaceNet and FaceNet512 [30],
OpenFace [2], VGGFace2 [4], ArcFace [8], and SFace [61]. The
models also generate decision thresholds based on a preset false
acceptance rate. (3) In recognition, when the distance between a
candidate face and an image in the identity dataset is smaller than
the threshold, the face is matched to that identity. Last, contin-
ual learning has been adopted to improve recognition accuracy by
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Table 1: Categorization of representative physical adversarial attacks against face recognition.

Attacks
Printed Patterns Projected Patterns Infrared Light

Adv-hat Adv-glasses Adv-sticker Adv-makeup Small patterns Entire face LED glasses LED bulbs Agile
[20] [34] [29, 49] [16, 58, 65] [22] [35] [54] [63] (our attack)

Supported Attacks D D, I𝑡 D , I𝑡 D , I𝑡 I𝑡 , I𝑢 I𝑡 , I𝑢 DoS DoS, I𝑢 D, DoS, I𝑡 , I𝑢
Stealthiness × × ✓ ✓ × × × ✓ ✓

Noise Robustness × × × × ✓ ✓ ✓ × ✓
Hardware Costs low low low medium high high low low low

I𝑡=targeted impersonation, I𝑢=untargeted impersonation, D=dodging, DoS=escape from face detection.

adding the newly identified face images to the training dataset and
retraining the classifier.

Building a SOTA deep face recognition/embedding model re-
quires very large training data and excessive computation. In prac-
tice, complex models are often trained and shared by large ven-
dors. For example, FaceNet, DeepFace, and VGGFace are trained by
Google, Facebook, and the VGG community, respectively.

The interpretability of deep networks is still an open and chal-
lenging problem [11]. Guided backpropagation (GBP) [36] generates
gradients through backpropagation to visualize the contribution of
each input pixel to classification. Recent work reported that GBP
fails on the sanity check [1]. Grad-CAM [31] generalized the class
activation map (CAM) [62] to generate activation maps for arbitrary
CNN architectures by using the gradient from the last convolutional
layer. To better explain the results, Grad-CAM++ [7] adopted more
gradient heuristics such as the second derivative of the gradients
and the decomposition framework. In deep face recognition, metric
learning models are trained along with the classifier. The activation
decomposition approach provides a visual explanation for deep
metric learning [64]. In this paper, we use interpretation for deep
metric learning to identify candidate attack images that are more
likely to impersonate the target under laser interference, thereby
substantially reducing the computation overhead.

2.2 Adversarial Attacks against FR Systems
Attacks in the Digital Domain. While some general-purpose
DNN attacks may be utilized to compromise face recognition mod-
els, attacks specifically designed for deep face recognition models
are proposed [47, 60]. They could be roughly grouped into two
categories: adversarial examples: Deepfool [21], FGSM [15], C&W
[5], etc, and backdoors: BppAttack [48], TaCT [42], etc.
Attacks in the Physical Domain. Existing physical-domain at-
tacks utilize printed or projected adversarial patterns, e.g., face
photos and masks [17], eyeglass frames with adversarial patterns
[34], stickers with adversarial perturbations [20], adversarial make-
ups [16], etc. Earlier attacks design adversarial perturbations in the
digital world and convert them to the physical world. However, it
is difficult to precisely generate physical world perturbations that
match the digital world attack performance. To increase the suc-
cess rate, [22, 35] introduced dynamic perturbations, i.e., projected
patterns that are adjustable during the attack. However, the size
and complexity of the attacking equipment make it easily notice-
able and highly suspicious. Recent attacks modeled the physical-
digital conversion of the adversarial patterns to guide the design
of physical-world perturbations, e.g., stickers [29, 49] and infrared
LED [63]. Their performance is still limited for two reasons: first,
modeling digital-physical conversion is highly challenging due to
physical signal dynamics. Besides, physical-domain parameters are

either fixed or can only be adjusted at an overly coarse granularity,
which restricts the attack settings in the real world and results in
low attack success rates.

2.3 Light Source-based Adversarial Attacks
Adversarial lasers and light have been used in other physical-world
attacks. The AdvLB attack [12] generates visible laser beams as
perturbations to trick object detection DNNs into misclassifying.
The Rolling Colors [55] uses a visible laser beam on traffic lights to
trigger the camera of the autonomous vehicles to misclassify the
traffic light’s color. GhostImage[57] uses visible light projection
to tamper with object detection, leveraging the ghost effect to in-
fluence cameras even outside their field of vision. Compared with
laser/light-based FR attacks, the attack scenarios, threat models,
targeted systems, and approaches differ significantly, making it
infeasible to directly apply these light/laser attacks in face recogni-
tion systems. In particular, object detection is vulnerable to changes
in color and shape, whereas FR models show greater robustness
to these changes, complicating efforts to tamper with FR systems.
Impersonation attacks in FR require the face detection module to
detect and align the face accurately but also need to deceive the
face recognition module into misclassifying the altered face image.
This process is more challenging than simply disrupting object
recognition through color-based interference. Meanwhile, the im-
age projection device used in [57] is large and complex, making the
attack impractical in our scenario, where stealthiness is required.

Finally, the laser has been used in DoS and untargeted imperson-
ation attacks against the FR systems. Privacy Visor [54] embedded
IR LEDs in glasses to escape face detection in video surveillance
(DoS), which is less challenging than dodging and impersonation.
We extracted the attack images from their paper [54] and evaluated
them with SOTA face detection models. Faces are correctly detected
by MTCNN [59] and RetinaFace [9]. The Invisible Mask [63] uses
three IR LEDs mounted on a cap to project invisible light on the
face. They only achieve untargeted impersonation in small-scale
experiments (one attacker with four successful targets). The synthe-
sized images do not demonstrate strong similarity with the physical
attack images. The large-scale attack simulation was not validated
with corresponding physical attacks. [59] also acknowledges the
health risk since the attacker’s eyes are exposed to strong IR light
sources (three 5𝑊 LEDs) in a very short distance (approximately 3
inches). On the contrary, our design has been proven safe. Last, the
dodging attack in [59] is essentially a DoS attack.

3 THE FR SYSTEM AND THREAT MODEL
We consider a typical facial biometrics system in which a camera
continuously captures video streams of a user standing in front
of it. For a full-HD camera with a prime lens, the detectable face
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(e.g., 112x112 to 1920x1080 pixels) requires a subject-to-camera
distance of 20-60 cm. We assume that the laser diode points directly
at the camera, maintaining a stable distance within the required
range, which is practical in real-world FR systems. The distance
could be approximated while inaccuracies could be compensated
by current adjustment (see Section 6.5.2). Additionally, angles can
be aligned using the ghost effect, regardless of the availability of a
face alignment guide on the user interface/screen (see Section 6.5.1).
Most FR systems will continuously take videos/pictures until the
subject is identified. Second-level delays are acceptable in practice.

The FRmodel recognizes an input face image as a known identity
if its vector-space distance to that identity (class) is smaller than
a preset threshold. When there are multiple matches, the system
selects the class with the smallest distance (or highest similarity).
Threat Model. We adopt a threat model that is consistent with
other physical-domain FR attacks in the literature. In particular,
the attacker should not be able to tamper with the hardware and
software components of the FR system. Besides, the FR systems are
typically automated and often do not involve human observers.

We also assume the attacker has no knowledge of the face dataset
for training the embedding model, but he may have (1) full knowl-
edge of the face database for the recognition task (e.g., authorized
or unauthorized identities), the DNNs used for face embedding and
classification, and the camera parameters (i.e., white-box attacks);
(2) full knowledge about the face database but not the DNNs used in
the FR system (i.e., grey-box attacks); and (3) no prior knowledge
about the FR system or the database (i.e., black-box attacks).
Attacker’s Goals. The terminologies for physical-world attacks
against FR systems are inconsistent in the literature. Here, we cate-
gorize the attacks into three types: (1) Impersonation attacks, where
the attacker who is not in the face database is recognized by the
FR system as a selected authorized identity (i.e., targeted imperson-
ation) or any authorized identity (i.e., untargeted impersonation)
in the face database. (2) Dodging attacks, where the attacker who is
in the face database is not recognized by the FR system as himself
(i.e., identity dodging) or as anyone in the block list (i.e., database
dodging). And (3) Denial-of-Service (DoS) attacks, in which the at-
tacker aims to disable the face recognition functionality of the FR
system so that no face is detected from the captured image. Note
that dodging is more challenging than DoS since it requires a face to
be detectable but misclassified. In practice, face recognition gates or
turnstiles in public venues (exhibition halls, sports arenas, stadiums,
government buildings) often use blacklists. The gate opens only
when a person not on the blacklist is detected, e.g.,[46]. In this case,
DoS is ineffective while dodging is desired.
The Agile Attack and its Objectives. In this paper, we present
a physical-domain attack against FR systems, called Agile, which
can realize all three attacks, i.e., impersonation, dodging, and DoS.
While being practical in real-world applications, physical-domain
impersonation attacks often have unsurprisingly low attack success
rates. To improve the attack performance, we propose novel in-
formed attacks under the white-box setting: based on the knowledge
about the face dataset and the DNN models, the attacker computes
attack configurations (for impersonation, dodging, and DoS) and
candidate attacker-target pairs (for targeted impersonation), with
which the attack achieves a high success rate in the physical do-
main. In addition, we evaluate the DoS, dodging, and impersonation

Figure 2: (A) laser diode, (B) annular interference pattern and
image captured by a color CMOS camera, and (C) simulated
laser signal and synthesized image.

attacks under the grey-box and black-box settings to demonstrate
the effectiveness of Agile in real-world applications.

4 ATTACK FEASIBILITY AND CHALLENGES
4.1 Attack Rationale and Feasibility
The Agile attack embeds a small laser diode into a pair of eyeglasses,
which emits the laser beam directly into the imaging component
of the FR system, e.g., a color CMOS camera. The narrowband
infrared laser diode, as shown in Figure 2A, generates infrared laser
signals with an annular interference pattern produced after passing
through the lens. The camera captures the laser signal, revealing
a physical adversarial perturbation affecting the facial image, as
shown in Figure 2B. Intuitively, this results in a “blur” effect on the
captured face, potentially saturating some pixels, e.g., the central
bright dot in Figure 2B, or increasing the red-channel value of others.
These alterations can significantly impact the feature representation
of the captured image, subsequently misleading the classification
model. Meanwhile, the infrared laser light is invisible to the human
eyes, which makes the attack stealthy.

Next, we investigate the hardware, attack effects, and potential
success rate to assess the feasibility of the Agile attack.
Hardware. Commodity infrared laser diodes come with varied
wavelength and output power options. Due to safety and cost con-
cerns, we prefer low-power laser diodes, such as HL6750MG [43]
and L785H1 [44] from Thorlabs with 685 𝑛𝑚 and 785 𝑛𝑚 wave-
lengths, respectively. They are low-cost ($70-$90 for retail) and have
maximum operating currents of 120𝑚𝐴 and 250𝑚𝐴, respectively.
The imaging component of the face recognition systems can be
any commodity camera. In this work, we focus on CMOS cameras,
which are more prevalent in real-world facial recognition systems
compared to CCD cameras. The CMOS sensors are usually sensitive
to optical signals with a wavelength in [400 𝑛𝑚, 1000 𝑛𝑚], while
the human eyes can only notice signals within [400 𝑛𝑚, 700 𝑛𝑚].
Therefore, the infrared light in [700 𝑛𝑚, 1000 𝑛𝑚] can be accurately
sensed by the camera sensors but invisible to human eyes.
Deep Face Recognition Models. We consider SOTA deep face
recognition models such as FaceNet [30], VGGFace2 [4], DeepFace
[41], ArcFace [8], and SFace [61]), which are open-source and ex-
tensively tested in the literature, as the target of the attack.
Attack Effects. A laser perturbation could change the feature
representation of a face image. Even a small change may affect
the recognition result, causing a misclassification (untargeted or
targeted impersonation). As shown in Figure 3, along with the
increasing of the laser signal, the blurred area increases, which
potentially obscures key facial features and prevents the face from
being correctly recognized, resulting in a dodging attack. As the
blur effect intensifies, no face could be detected from the image,
resulting in a DoS attack.
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Figure 3: Types of physical adversarial attacks triggered by
different laser signals and the potential power ranges.

Attack Success Probability. Laser perturbations have been shown
effective in DoS against face recognition [63]. Similar results were
observed in our experiments. As shown in Figure 3, the pertur-
bations from strong laser signals (laser current ≥ 248𝑚𝐴 in our
settings) lead to excessive overexposure, rendering the faces un-
detectable. We also ran tests for untargeted impersonation attacks
against a face database with 1,000 users to assess the attack suc-
cess rates. For example, in a system using MTCNN for face detec-
tion/alignment and DeepFace for recognition, as shown in Table
6, all 15 attackers could impersonate one or multiple users in the
database in real-world tests (i.e., the physical domain). In the digital
domain, face images of 15 attackers under 15 different laser settings
(power and distance) could “match” 722, 181, and 370 users using the
Euclidean, Euclidean-L2, and cosine distance metrics, respectively.

4.2 Challenges and The Agile Attack Overview
A straightforward yet naive Agile physical adversarial attack is to
place the attacker wearing the laser-embedded glasses in the field
and test all possible perturbations. In a simple scenario where the
laser setting is solely determined by the operating current of the
laser diode, the total number of settings is 𝐾 (𝛿) = (𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛)/𝛿 ,
where the current is in [𝐼𝑚𝑖𝑛, 𝐼𝑚𝑎𝑥 ] and 𝛿 denotes the step-width.
Challenges. The naive approach is impractical in dodging attacks,
where the attacker should remain unrecognized all the time. How-
ever, exhaustively attempting all possible perturbations may cause
the attacker to be identified under a weak or ineffective pertur-
bation. For example, we have tested the attack success rate (ASR)
of naive identity dodging in the physical domain, where 5 attack-
ers were randomly selected from 15 available attackers to attack
the FaceNet [30] model using the L785H1 laser diode [44]. We set
𝐼𝑚𝑖𝑛 = 60𝑚𝐴, 𝐼𝑚𝑎𝑥 = 250𝑚𝐴, and 𝛿 = 1𝑚𝐴. On average, there
were only 18 settings out of 190 possible settings that enabled a
successful identity dodging (with an 𝐴𝑆𝑅 = 9.4%). The results also
showed that the effective current for dodging attacks has a very
narrow range, as shown in Figure 3. Furthermore, the attack effects
on different attackers vary. The same perturbation enabling a dodg-
ing attack for one attacker may lead to an impersonation or a DoS
attack when applied to another attacker.

Meanwhile, both dodging and impersonation attacks are suscep-
tible to adversarial perturbations. To enhance the attack success
probability, smaller step widths are preferred since more settings
are likely to produce effective perturbations. However, it would
significantly increase the attack time, which may cause the attack
impractical in real-world applications. For instance, in a naive tar-
geted impersonation, we randomly selected 5 targets from the LFW
dataset and counted the number of successful impersonation at-
tacks launched by 15 available attackers under 190 laser settings.
The average ASR was between 0% and 0.77% as shown in Table 2,
and the average attack time was 283.5 seconds.

Table 2: The average number of successful targeted imper-
sonations of 15 attackers against 5 randomly selected targets.

Targets T1 T2 T3 T4 T5
# of successes / ASR 0/0 22/0.77% 17/0.6% 6/2.1% 0/0

Finally, laser perturbations are constrained by laser power and
interference patterns. Without an effective attack strategy, launch-
ing targeted impersonation using the naive approach may often fail.
For example, targets T1 and T5 in Table 2 cannot be impersonated
by any attacker under any laser perturbations. This is because the
images of the attacker and the target are far away from each other
in the embedding space, so that small perturbations are unable to
push them close enough to be considered similar by a face recogni-
tion model. Recruiting more attackers would help to improve the
attack success rate, however, it would also increase the attack time.

To address these challenges, we propose a novel framework for
physical adversarial attacks. It identifies attack settings with high
success probabilities in the digital domain and uses the informa-
tion to guide physical-domain attacks, making the attacks more
practical. The settings include laser settings in both dodging and
impersonation, and additionally suggest optimal attackers among
a candidate attacker set in impersonation. We refer to the Agile
attacks as informed dodging or informed impersonation to dis-
tinguish them from conventional dodging or impersonation.
Agile Framework Overview. Attacks in the Agile framework
have two phases, digital attack synthesis (denoted by blue lines in
Figure 4) and physical attack implementation (denoted by red lines).
Digital attack synthesis outputs suggested attackers and a small
number of laser settings for controlling the laser diode to generate
effective laser perturbations in physical attack implementation.

The key component of the Agile framework is digital attack
synthesis. We will elaborate on its detailed design in Section 5.
The main idea is to model the laser signal produced by a laser
diode at a given power (step 1○), and generate a set of synthe-
sized attack images with simulated laser perturbations through
laser interface fusion (step 2○). With the knowledge of the face
dataset, the victim FR model, and its camera parameters, the Ag-
ile framework computes the settings under which the simulated
digital-domain attacks achieve high attack success rates (step 3○).
Finally, in physical-domain attacks (step 4○), the laser diode gen-
erates laser signals using the identified power settings to tamper
with the target FR model, for example, inducing it to misclassify the
attacker as a particular user (targeted impersonation) or someone
other than the attacker himself (identity dodging).

5 THE AGILE INFORMED ATTACKS
In this section, we theoreticallymodel the infrared laser interference
to the imaging systems and present a method to fuse attack images.
Then, we present Agile informed attack design to compose physical-
domain informed dodging and impersonation attacks using results
from simulated attacks in the digital domain.

5.1 Laser Interference Modeling
A laser beam with a high temporal coherence emits light with a
very narrow spectrum. This results in annular interference patterns
when propagating through multiple lenses of the camera, as shown
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Figure 4: Agile attack workflow: blue lines denote attack synthesis process and red lines denote real-world attack process.

in Figure 2B, After propagating through, each cell of the CMOS
sensor behind the lens catches the annular interference light shining
on its surface and converts it into electrons. Then, an analog-to-
digital converter translates the differing charges of individual cells
into pixel values of various colors. As a result, physical adversarial
perturbations are injected into digital images.

It is very challenging to accurately measure the perturbation at
each pixel of the digital image, because laser interference modeling
not only depends on the hardware (laser and camera) but also is
highly sensitive to physical settings and environment dynamics.
When an ideal model is not available, we speculate that an imper-
fectly accurate model (as shown in Figure 2C) could still provide
useful information to guide a robust attack, because the perturba-
tions in our attack are strong but mono-featured. In this work, we
explore this hypothesis and demonstrate its practicality. Table 3
summarizes the notations used in the laser interference modeling.

The shape of a laser spot is typically defined by its irradiance
distribution, which forms a beam profile, and the phase, which deter-
mines the beam profile over the propagation distance. Laser diodes
used in this work have a Gaussian beam profile, but our model can
be extended to other beam profiles with small modifications. The
Gaussian irradiance profile 𝑃 (𝑟 ) [10] can be described as follows:

𝑃 (𝑟 ) = 2𝑃
𝜋𝜔 (𝑧)2

exp
(
−2𝑟2

𝜔 (𝑧)2

)
(1)

As illustrated in Figure 5A, the power 𝑃 of the laser is dispersed
across the wavefront during propagation. The camera captures
only the portion of the signal 𝑃𝑎 that passes through its aperture
𝑟𝑎 . For the detailed 𝑃𝑎 derivation approach. Once the laser signal
enters the aperture, the lenses of the camera create annular inter-
ference patterns that can be modeled based on their specific optical
characteristics as shown in Equation 2.

𝑃𝐼 = 𝑃𝑎 · cos( 2𝜋𝑛𝑡 × cos(arcsin (𝑛 sin (arctan(𝑑/𝑓 ))))
𝜆

)2 (2)

5.2 Laser Interference Fusion
Next, we quantify the adversarial perturbation generated by the
laser by measuring the effect of a laser signal on the RGB channels
of the image according to its quantum efficiency. It is a sensitivity
measure to describe the probability that a photon landing on a
pixel gives off an electron and causes a change in brightness. When
a laser with 𝜆 and 𝑃𝐼 is shed into the CMOS, the color filters on
each photodiode filter the signal and output 𝑃𝑅

𝐼
, 𝑃𝐺

𝐼
, and 𝑃𝐵

𝐼
, where

𝑃𝑅
𝐼
= 𝑃𝐼 · 𝑓𝑅 (𝜆), 𝑃𝐺𝐼 = 𝑃𝐼 · 𝑓𝐺 (𝜆), and 𝑃𝐵

𝐼
= 𝑃𝐼 · 𝑓𝐵 (𝜆), and 𝑓𝑅 (𝜆),

𝑓𝐺 (𝜆), and 𝑓𝐵 (𝜆) are the quantum efficiency of three color channels.

When the light strength is sufficiently high, the Red channel
with a larger quantum efficiency will be saturated first. Meanwhile,
the Green and Blue channels with smaller quantum efficiency will
keep receiving light until they are overflowed. When all three color
channels are saturated, the corresponding pixels become white.
Therefore, we need to capture the color-filtering effect and calibrate
the RGB values when some pixels are saturated. We define a relu-
like function F (𝑥) = 𝑚𝑖𝑛(𝑥, 𝛼) following [55], where 𝛼 stands
for the overflow value of each channel. It is typically set to 255.
The converted pixel value of the laser signal is computed as 𝑌 =

(𝑌𝑅, 𝑌𝐺 , 𝑌𝐵), where 𝑌𝑅 = F (𝑃𝑅
𝐼
), 𝑌𝐺 = F (𝑃𝐺

𝐼
), and 𝑌𝐵 = F (𝑃𝐵

𝐼
).

Next, we measure the pixel values of the laser interference in the
digital domain and then apply it to an input image by adding the
perturbation on three channels. Since some pixels may get saturated,
we need to calibrate the color channel overflow again. Therefore,
for an input image 𝑋 and a laser perturbation 𝑌 , we fuse them to
generate an output RGB image as F (𝑋 + 𝑌 ) =𝑚𝑖𝑛(𝑋 + 𝑌, 𝛼).

However, in real-world attacks, when the laser intensity is large,
the camera will adjust its exposure time to reduce the light shed on
the CMOS sensor. The synthetic face image with laser perturbation
is brighter than real-world images captured by the camera. So, we
further adjust its brightness by a ratio 𝑟𝑏 = 𝑃𝑜/(𝑃𝑜 + 𝑃𝑎), where
𝑃𝑎 is the laser intensity and 𝑃𝑜 is the power of the input figure 𝑋 .
Finally, we obtain the simulated attack image following Equation 3
and compute the simulated perturbation as𝑋𝑜 −𝑋 . Figure 2B shows
a laser interference pattern and the corresponding synthesized face
image.

𝑋𝑜 = F (𝑟𝑏 (𝑋 + 𝑌 )) =𝑚𝑖𝑛(𝑟𝑏 (𝑋 + 𝑌 ), 𝛼) (3)

5.3 Attack Simulation and Informed Attacks
After modeling the laser interference and fusing it into an image, we
simulate an attack image by applying a synthetic laser perturbation
to any input image. Let 𝑥𝑎 denote the face image of attacker 𝑎 and
𝑧𝑎,𝑟 denote the simulated attack image under a laser perturbation
𝑟 . 𝑧𝑎,𝑟 can be computed following Equation 3. This enables us to
run simulated attacks in the digital domain and search for optimal
attack settings to guide physical-domain attacks. So, we call this new
attack technique the Agile informed attack. The informed attacks
are expected to be: (i) effective, where physical-domain attacks
informed by digital-domain simulations should achieve high attack
success rates; (ii) practical such that the identified settings should
be easy-to-implement and remain stealthy in the physical domain;
and (iii) efficient, which requires the computation cost for searching
for optimal settings remain reasonably low.
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Figure 5: Laser power distribution during propagation: (A)
the curvature of the wavefront of a Gaussian beam; (B) the
energy passing through the aperture.

5.3.1 Attack Objectives. We propose two types of informed attacks,
i.e., informed dodging and informed impersonation, which include
identity dodging, database dodging, untargeted impersonation, and
targeted impersonation. Moreover, we consider DoS attacks a spe-
cial instance of dodging, which has a simpler objective function
since any overly strong laser signal (e.g., generated by a current
≥ 248𝑚𝐴 in our experiments) could trigger DoS.

Let 𝑓 (·) denote a face embeddingmodel with a decision threshold
𝜏 based on D, and L(·) represents a distance function measuring
the similarity of two feature embeddings, such as Euclidean-L2.
In dodging attacks, we aim to find a small perturbation 𝑟 , when
applied to the image of an attacker 𝑎, who is in the face database
D, the simulated attack image 𝑧𝑎,𝑟 would not be recognized as 𝑎
(i.e., identity dodging) or anyone in a pre-defined deny-list L (i.e.,
database dodging). The objectives of the two dodging attacks can
be respectively described by Equations 4 and 5 as follows.

L(𝑓 (𝑧𝑎,𝑟 ), 𝑓 (𝑥𝑎)) > 𝜏, 𝑥𝑎 ∈ D (4)
L(𝑓 (𝑧𝑎,𝑟 ), 𝑓 (𝑥)) > 𝜏, 𝑥𝑎 ∈ D and ∀𝑥 ∈ L (5)

Next, let us denote the face detection and alignment model in
the target FR system as M(·), where M(𝑥) = 1 means a face is
detected in an image 𝑥 . Then, the objective of DoS attacks can be
simplified as M(𝑧𝑎,𝑟 ) = 0, indicating no face detected in the attack
image 𝑧𝑎,𝑟 .

Similarly, in targeted impersonation, we aim to find appropriate 𝑟
such that under the laser perturbation, the attack image of attacker
𝑎, who is in a set of known attacker A, would be misidentified
as an image of the target user 𝑡 who is in the face database D.
In untargeted impersonation, 𝑡 can be any user in D. Therefore,
the objectives of targeted and untargeted impersonation can be
described by Equations 6 and 7, respectively.

L(𝑓 (𝑧𝑎,𝑟 ), 𝑓 (𝑡)) < 𝜏, 𝑥𝑎 ∈ A, 𝑡 ∈ D (6)
L(𝑓 (𝑧𝑎,𝑟 ), 𝑓 (𝑥)) < 𝜏, 𝑥𝑎 ∈ A, ∃𝑥 ∈ D (7)

5.3.2 Informed Attack Design. In the Agile framework, an informed
attack consists of two steps.
Candidate Setting Search: In this step, we search for candidate
laser settings under which the laser signals lead to successful ad-
versarial attacks in the digital domain. A laser setting typically
includes parameter values about the laser’s wavelength, optical
power, as well as the laser-to-camera distance and angle. Among
them, the wavelength is determined once a laser is selected and
the laser-to-camera angle should be 0° since we require the laser
diode to point right at the camera (we will discuss laser-camera

Table 3: Notations used in laser interference modeling.
Notation Definition

𝑃 Laser optical output power
𝑃 (𝑟 ) Representing power intensity at a given location r
𝜆 Wavelength of the laser
𝜃 Divergence angle of the laser
𝑟 Radial distance from the axis
𝑧 Propagation distance
𝑟𝑎 Aperture radius
𝑡 Lens thickness
𝑓 Focal length
𝑛 Refractive index
𝑑 Distance to the CMOS imaging plane center

𝜔 (𝑧) Laser beam radius where the irradiance is 1/𝑒2 of the peak

alignment in Section 6.5.1). Therefore, we only need to explore all
possible combinations of laser power and laser-to-camera distance.

The effective laser power (i.e., laser light captured by the camera’s
aperture) is proportional to the electrical current supplied to the
laser diode. It is also inversely proportional to the square of the
distance. In theory, we can fix the laser-camera distance while
adjusting the laser current to produce any laser signal captured
at another laser-camera distance. For example, the laser signal
produced by a current of 100 mA at a laser-to-camera distance
of 35 cm can approximate the signal generated by the same laser
operating with a current of 204.1 mA and at a distance of 50 𝑐𝑚.
Therefore, by maintaining a constant laser-camera distance (e.g.,
35 𝑐𝑚) and varying laser current, we can simplify the search process.

The search starts from the minimal operating current with a step-
width 𝛿 and generates simulated perturbations. The corresponding
synthesized attack images 𝑧𝑎,𝑟 for the attacker 𝑎 are used to identify
candidate currents satisfying the objectives described in Equations
4 - 7 in different attack cases. We employ a basic grid search for
dodging attacks (Section 5.3.3). To improve search efficiency, we
propose an enhanced search scheme comprising two filters based
on the embedding similarity and a novel point-specific activation
similarity for impersonation attacks (Section 5.3.4).
Optimal Setting Identification: Among all candidate settings,
we aim to identify the optimal ones to inform real-world attacks.
It is a non-trivial task because laser settings producing successful
digital-domain perturbations may not necessarily result in success-
ful physical attacks, due to inaccuracies in laser signal modeling
related to the susceptibility of laser signals to physical-domain
noise, such as measurement inaccuracies, environmental lighting,
scattering during light propagation, etc. To tackle this challenge,
we choose to determine candidate current ranges, rather than indi-
vidual values, such that a current within each range is highly likely
to yield a successful physical-domain attack. For example, small
distance inaccuracies can be compensated by small adjustments
near the candidate current. This strategy has been shown effective
for addressing uncertainties in digital-to-physical transformation
and mitigating the influence of modeling inaccuracies [55].

In particular, we employ a sliding window of length 𝑘 to identify
consecutive laser settings that lead to successful digital-domain
attacks, e.g., {𝐼1, ..., 𝐼𝑘 }. Based on empirical analysis, we set 𝑘 to 3.
Then, we merge adjacent ranges to form longer ranges and output
a set of candidate ranges ranked by the range size. The first (also
the longest) range, denoted as [𝑅𝑚𝑖𝑛 , 𝑅𝑚𝑎𝑥 ], will be used to inform
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Figure 6: (A) and (B): the heatmaps between the same attacker
and two different targets. (C) and (D): the average difference
of the similarity between the attack and target images before
and after applying laser perturbations, for each of 15 attack-
ers and two different groups of targets.

the physical attack, which will start from the range center (i.e.,
𝐼 = (𝑅𝑚𝑖𝑛 + 𝑅𝑚𝑎𝑥 )/2) and increase or decrease the current by 𝛿 in
each search step. In our experiments, we set 𝛿 to 1 mA.

5.3.3 Informed Dodging Attacks. To inform dodging attacks in the
physical domain, we need to find if there exists a laser perturbation
enabling digital-domain identity or database dodging, and the can-
didate range to produce that laser signal. Following the design in
Section 5.3.2, we can directly apply the grid search to identify the
optimal range satisfying the objectives defined by Equations 4 and
5 and launch physical Agile dodging attacks. Experiment results in
Section 6.2 show that the informed identity dodging and database
dodging attacks achieve close to 100% average attack success rates.

5.3.4 Informed Impersonation Attacks. To inform physical imper-
sonation attacks, we expect to find if there exists a laser perturbation
making the synthesized attack image of any known attacker simi-
lar to the selected target (targeted impersonation) or making the
synthesized attack image of a selected attacker similar to any user
in the database (untargeted impersonation). Besides, we need to
determine the candidate range to produce that laser signal.

We could apply the grid search, however, it yields a high compu-
tation cost, since each search step needs to generate the synthesized
attack image for each attacker and perform a classification. The
computation is dominated by the embedding-calculation operation,
denoted as 𝑂𝑒 . Therefore, the grid search cost for an informed
targeted impersonation is proportional to the number of known
attackers 𝑁𝐴 and possible laser settings 𝐾 (𝛿), which can be approx-
imated as 𝑁𝐴 · 𝐾 (𝛿) ·𝑂𝑒 . For example, 𝑁𝐴 = 15 and 𝛿 = 1𝑚𝐴, and
𝐾 (𝛿) is 150 in our tests. The cost for untargeted impersonation
increases significantly by a factor of 𝑁𝑇 , i.e., the number of users
in the face database, which is set to 1,000 in our experiments.
Enhanced Search: We propose a novel enhanced search scheme
utilizing two filters based on embedding similarity (ES) and point-
specific activation similarity (PSAS). It identifies a small set of opti-
mal attackers for a selected target, or a small set of targets among all
users in the database for a selected attacker, to improve the attack
success rates while reducing the number of searches.

For example, in informed targeted impersonation, the ES filter
identifies the attackers close to the target in the embedding space
while the PSAS filter finds the ones holding certain characteristics
that make them susceptible to laser perturbations. Let A denote
the set of known attackers. We represent the attacker sets after the
ES filter and PSAS filter as A𝐸𝑆 and A𝑃𝑆𝐴𝑆 , respectively, where

Figure 7: The effectiveness of ES filter.

A𝑃𝑆𝐴𝑆 ⊆ A𝐸𝑆 ⊆ A. Accordingly, the objectives of targeted and
untargeted impersonation defined in Equations 6 and 7 are revised
as follows:

L(𝑓 (𝑧𝑎,𝑟 ), 𝑓 (𝑡)) < 𝜏, 𝑥𝑎 ∈ A𝑃𝑆𝐴𝑆 , 𝑡 ∈ D (8)
L(𝑓 (𝑧𝑎,𝑟 ), 𝑓 (𝑥)) < 𝜏, 𝑥𝑎 ∈ A𝑃𝑆𝐴𝑆 , ∃𝑥 ∈ D (9)

We return the top candidate attacker in A𝑃𝑆𝐴𝑆 or the entire set
to inform physical-domain attacks, making targeted impersonation
more practical. In untargeted impersonation, the filters will output
candidate target sets for a given attacker, denoted asT𝐸𝑆 andT𝑃𝑆𝐴𝑆 ,
to predict attack results without testing with the entire target set.

Next, we present the design for targeted impersonation. However,
the scheme can be applied to untargeted impersonation by simply
swapping the attacker and target.
(1) Embedding Similarity Filter: Low-power laser diodes are used
due to cost and safety concerns, resulting in small laser perturba-
tions, which may be constrained to manipulate pairs of attack and
target images that are widely separated in the embedding space. On
the other hand, if two images are already close (near the decision
boundary), small perturbations have a good chance to push them
closer. Therefore, we calculate the similarity between the embed-
dings of each attacker in A and the target, ranked the attackers by
the similarity scores, and output A𝐸𝑆 with the top-3 attackers.
(2) Point-Specific Activation Similarity (PSAS) Filter: In synthesized
attack images, the laser signals have a stronger influence on cer-
tain pixels than others. So, we partition the image into two areas,
denoting the area under stronger influence as the region of interest
(ROI) and the remaining area as the non-ROI. Besides, we can cal-
culate the contributions of the ROI and non-ROI regions towards
the overall similarity between two images, using the point-specific
activation similarity (PSAS) [64].

In particular, let 𝐴𝑎 and 𝐴𝑡 denote the feature maps in the last
convolution layer of the deep FR model for two images, for example,
an attack and a target image. For each point (𝑖, 𝑗 ) in the attack image,
we compute its overall activation in the target image:

𝑠 = (𝑊 𝑎
𝑖,𝑗𝐴

𝑎
𝑖,𝑗 ) ·

∑︁
𝑥,𝑦

(𝑊 𝑡
𝑥,𝑦𝐴

𝑡
𝑥,𝑦) (10)

where (𝑥,𝑦) is a point in the target image,𝑊𝑖, 𝑗 and𝑊𝑥,𝑦 are the
weight matrix for point (𝑖, 𝑗 ) and (𝑥,𝑦), respectively. It represents
the cosine similarity between the point (𝑖, 𝑗 ) and the feature vector
of the target image in the embedding space, i.e., the contribution
of the point (𝑖, 𝑗 ) towards the overall similarity. If we visualize the
point-specific activation similarity using heatmaps, we can see the
regions in one image contributing more to its overall similarity
with the other image. For example, Figure 6A shows the upper face
region of both the attack and target images contributes more to
the overall similarity between them, while in Figure 6B, the bottom
region contributes more.
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We observed that the laser perturbations, which are effective in
the digital domain, often exhibit a “blur” effect in the ROI. Therefore,
under its interference, the similarity in the non-ROI region will
have a greater impact on the overall similarity between two images
than the similarity in the ROI. Intuitively, if an attack image is
close to the target image and has a higher similarity in the non-ROI
compared to the ROI, the laser perturbation is likely to enhance
the overall similarity between the two images, thus increasing the
success rates of the attack. Therefore, we design the PSAS filter
to select attackers from A𝐸𝑆 , where the similarity in the non-ROI
region between their attack images and the target image is higher
than the similarity in the ROI.

The PSAS filter consists of three steps. First, we use the nose and
mouth landmarks generated during face detection and alignment
to partition the image into two parts. The upper partition is the
ROI region. Second, we average the overall activation for each
point in the ROI and non-ROI regions and compare their aggregate
contributions to the overall similarity. Finally, we select the attack
images with higher non-ROI similarity to form the set A𝑃𝑆𝐴𝑆 .
Filter Effectiveness and Efficiency:We empirically validate the effec-
tiveness of ES and PSAS filters using 15 attackers and 1,000 targets
(in the I-1K set in Section 6.3). For the ES filter, we demonstrate
the distribution of the embedding space distances between each
attacker 𝑎 (without adversarial laser) and each target in I-1K in
Figure 7 (white bars). The distribution of the distances between 𝑎
and targets who can be impersonated (denoted as T𝑎) are shown in
the gray bars. As shown, 98% of the impersonation cases happened
between attacker-target pairs whose original distances are among
the top 25% of all pairwise distances. That is, if we employ the least
expensive ES filter to eliminate 70% to 75% of the targets in I-1K
who are less similar to 𝑎’s benign image, the remaining set T𝐸𝑆
contains the majority of T𝑎 .

For the PSAS filter, we divide the targets into two groups for
each attacker, one with a higher ROI similarity and the other with a
higher non-ROI similarity. Then, we apply laser signals generated
under 15 settings (i.e., the current in [60𝑚𝐴,200𝑚𝐴] with 𝛿 = 10𝑚𝐴)
to each attack image, and calculate the average similarity difference
between the attack and target images before and after applying
laser perturbations. Figure 6C and 6D report the results for two
groups with a higher ROI similarity and a higher non-ROI similar-
ity, respectively. The light and dark bars represent the similarity
changes in the ROI and non-ROI regions, while the green dots de-
note the overall similarity changes. Apparently, for the group in
Figure 6D, the laser perturbations on average improve the overall
similarity, improving the attack success rate.

The ES and PSAS filters involve both embedding-calculation and
embedding multiplication operations, denoted as 𝑂𝑒 and 𝑂𝑚 , re-
spectively (𝑂𝑒 ≫ 𝑂𝑚). In this process, we calculate the embedding
vectors for 𝑁𝐴 attackers in A and the target, the feature maps for
the attacker in A𝐸𝑆 and the target, and the embedding vectors for
the attacker in A𝑃𝑆𝐴𝑆 under each of 𝐾 (Δ) settings, where Δ is a
coarse step-width, e.g., Δ = 10𝑚𝐴. Therefore, the estimated compu-
tation is (𝑁𝐴+1+𝐾 (Δ) · |A𝑃𝑆𝐴𝑆 |)𝑂𝑒 . Compared to the computation
of the grid search, the enhanced search reduces computation of
𝑂𝑒 by 97.3% at least, with 𝑁𝐴 = 15, 𝐾 (𝛿) = 150, 𝐾 (Δ) = 15, and
|A𝑃𝑆𝐴𝑆 | = 3 at most.

Table 4: Average ASR of identity-dodging (ID) and database-
dodging (DD) within the optimal current ranges.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15
Range Length in ID 13 12 15 13 10 15 20 14 12 10 19 12 11 13 14
Range ASR in ID (%) 92.3 83.3 86.7 76.9 80.0 80.0 85.0 78.5 83.3 90.0 84.2 83.3 81.8 84.6 92.8
Range ASR in D-50 (%) 92.3 83.3 86.7 76.9 80.0 80.0 85.0 78.5 83.3 90.0 84.2 83.3 81.8 84.6 92.8
Range ASR in D-200 (%) 92.3 83.3 86.7 76.9 80.0 73.3 80.0 78.5 83.3 90.0 78.9 75.0 81.8 84.6 92.8
Range ASR in D-500 (%) 84.6 83.3 80.0 75.0 77.7 73.3 78.9 71.4 75.0 88.8 77.7 75.0 80.0 76.9 92.3
Range ASR in D-1K (%) 84.6 81.8 80.0 75.0 77.7 71.4 77.7 71.4 75.0 77.8 77.7 70.0 80.0 76.9 83.3

6 IMPLEMENTATION AND EVALUATIONS
6.1 Experiment Settings
Hardware. In the experiments, we used the L785H1 laser diode
[44]. It has a narrow line width (< 0.1 𝑛𝑚) to produce reliable
interference fringes and small beam divergence angles (5° lateral
and 10° vertical angles) to cover a substantial area while remaining
safe for cameras. We drilled a small hole in the nose bridge of the
frame of the eyeglasses to embed the laser diode. This position
allows the laser perturbation pattern to reliably influence critical
regions on the face (i.e., eyes and nose). Besides, when the attacker
wears the glasses and looks at the camera, the incidence angle of
the laser beam will be close to 90° for better laser alignment.

The diode is powered by a current source, the Kungber SPS305
DC power supply, and operates within a voltage range between 2𝑉
and 3𝑉 . It could be powered by two AAA alkaline batteries using
a simple circuit to convert the voltage source into an adjustable
current source. We used an iPhone 13 ultra-wide camera with the
Sony IMX772 CMOS to capture face images in most experiments.
Besides, we tested the effectiveness of Agile on a different camera
(an iPhone 12 camera with the Sony IMX372 CMOS). In all experi-
ments, we set the subject-to-camera distance to 35 𝑐𝑚 to capture
the faces with effective sizes for different FR models.
FR Models and Parameters.We adopted the 𝐿𝐹𝑊 dataset [18] in
the experiments, which contains 13,233 face images of about 5,749
users (identities). In each experiment, we randomly sampled a set
of individuals to create the identity database or the denylist.

In most experiments, we used MTCNN [59] for face detection
and alignment, a pre-trained FaceNet model1 for face embedding,
and the normalized Euclidean distance. In impersonation attacks,
we also explored 4 state-of-the-art face recognition models (VG-
GFace2 [4], DeepFace [41], ArcFace [8], and SFace [61]) and other
face detection models and distance metrics. To calculate the similar-
ity between two images, we adopted the optimal 𝐿2-distance thresh-
old of 1.242 for the LFW dataset [30], which is widely accepted in
the literature for unrestricted, labeled data. All the experiments
were conducted using PyTorch 1.7.1 on a desktop computer with
Intel Core i7 8700 CPU and Nvidia RTX 2080 GPU.
Attackers and Data Collection.We recruited 15 volunteers (de-
noted as A1 to A15) from the University of Kansas to act as attackers,
including: (1) undergraduate and graduate students, and faculty;
(2) both females and males; and (3) individuals from different race
and ethnicity groups (white, black, and Asian). For each individual,
we took photos and videos without the infrared laser signal (i.e.,
benign images/videos) and with the laser interference generated
under different current settings increasing from 60𝑚𝐴 to 250𝑚𝐴
in 40 seconds (i.e., attack images/videos).
1Model 20180402-114759 is an Inception ResNet (v1) [40] trained with VGGFace2,
achieving 0.9965 accuracy on LFW. https://github.com/timesler/facenet-pytorch.

https://github.com/timesler/facenet-pytorch
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Table 5: Attack performance of untargeted impersonation.
A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15

I-100 23 22 11 21 9 21 7 17 25 4 5 7 7 8 12
I-500 146 132 67 85 44 103 49 56 90 43 32 43 42 45 59
I-1K 248 236 157 227 75 217 109 121 207 95 74 96 77 88 134

6.2 Informed Dodging Attacks
Identity Dodging. In a successful identity-dodging attack, the
attacker should not be recognized as himself. Therefore, given an at-
tacker, we first searched within the power range of [60𝑚𝐴, 250𝑚𝐴]
for candidate current settings that lead to successful simulated
dodging attacks under synthesized laser interference. We used the
step-width 𝛿 = 1𝑚𝐴 and the decision threshold 𝜏 = 1.242. Then, we
identified the ranges of at least three consecutive candidate settings
(i.e., 𝑘 = 3), from which the optimal current range [𝑅𝑚𝑖𝑛, 𝑅𝑚𝑎𝑥 ]
was determined for each attacker. For instance, the optimal cur-
rent ranges for attackers A3 and A7 are [235 𝑚𝐴, 250 𝑚𝐴] and
[228𝑚𝐴, 248𝑚𝐴], respectively. Finally, we generated laser pertur-
bations using the current within each attacker’s optimal range and
ran the identity-dodging attack in the physical domain. Starting
from the range center, we increased and decreased the current by
𝛿 = 1𝑚𝐴 each time until reaching the range boundary.

“Informed” with the optimal range, the Agile attack becomes
effective and efficient. For all 15 attackers, the physical identity-
dodging attacks succeeded in the initial current setting (i.e., optimal
range center), achieving a 100% average attack success rate (ASR).
We also tested all the settings in the optimal current ranges with
𝛿 = 1𝑚𝐴 interval and recorded the ones under which the physical
dodging attacks were successful. This allows us to calculate the
attack success rate in the optimal range (called range ASR). As
shown in Table 4, the attacks succeeded in most settings in the op-
timal range, indicating high robustness against small measurement
inaccuracy and environment noise.

The optimal range helps to determine the boundary between
dodging and DoS attacks. For example, the laser perturbation with
𝐼 = 250𝑚𝐴 launched successful identity dodging for most attackers,
however, it would cause DoS for some attackers (e.g., A7). In general,
an input current larger than 𝑅𝑚𝑎𝑥 would generate a sufficiently
large laser perturbation and cause image overexposure. The satu-
ration of pixels over most of the face image renders the detection
model ineffective. Therefore, the optimal range can guide Agile DoS
attacks. We did experiments for attackers whose 𝑅𝑚𝑎𝑥 < 250𝑚𝐴
and the DoS attacks were successful in the physical domain. How-
ever, we did not conduct full-scale DoS experiments in this work,
since our infrared diodes have a maximum power of 250𝑚𝐴. As
sufficiently large laser signals would inevitably blind all imaging
systems, it is reasonable to conclude that increasing laser power
could achieve a high or 100% DoS success rate [37].
Database Dodging. In a successful database-dodging attack, the
attacker should not be recognized as himself or anyone on the
denylist. In this experiment, we randomly sampled 50, 200, 500, and
1,000 individuals from the 𝐿𝐹𝑊 dataset and added the attacker’s
benign images to mimic the denylists of 4 different sizes, denoted
as D-50, D-200, D-500, and D-1K, respectively.

Similar to the identity-dodging attack, we searched for candidate
current settings and the optimal current range that led to successful
simulated attacks in which the synthesized attack images could

Table 6: Attack performance in different models/settings.
VGGFace2 DeepFace

MTCNN Retina OpenCV MTCNN Retina OpenCV
Cosine 674 |0 |0 631 |0 |0 622 |0 |0 370 |0 |0 389 |0 |0 308 |0 |0

Euclidean 922 |0 |0 912 |0 |0 908 |0 |0 722 |0 |0 736 |0 |0 718 |0 |0
Euclidean-L2 555 |0 |0 401 |0 |0 389 |0 |0 181 |0 |0 184 |0 |0 106 |0 |0

ArcFace SFace
MTCNN Retina OpenCV MTCNN Retina OpenCV

Cosine 104 |0 |0 95 |0 |0 97 |0 |0 88 |1 |1 60 |3 |3 74 |1 |1
Euclidean 356 |1 |1 370 |0 |0 373 |1 |1 654 |0 |0 718 |0 |0 582 |0 |0

Euclidean-L2 58 |1 |1 56 |2 |2 57 |1 |1 34 |5 |5 25 |4 |4 38 |1 |2
In each model and under each pre-processing setting: (left) the total number of
identities impersonated by any of the 15 attackers; (middle) the number of attackers
who failed to impersonate any target in the I-1K dataset; (right) the number of failed
attackers who were identified by Agile’s simulated attacks.

escape the entire denylist. Finally, we ran the physical Agile at-
tacks with the laser signals generated within the optimal range
and evaluated if the attacker was recognized as any identity on the
corresponding denylist or not. The results showed that the database
dodging attacks against all four denylists achieved 100% success
rates with the initial current setting. We also calculated the range
ASRs for 15 attackers using the settings in the optimal range. As
shown in Table 4, the database dodging attack is more robust to
succeed against smaller denylists with substantial distance between
two identities than larger denylists where the distance between
two identities is small.

6.3 Untargeted Impersonation Attacks
Laser perturbations generated by low-cost laser diodes are typically
small. Being applied to the attacker, they could cause small shifts of
the feature vectors of the attack images in the embedding space. In
this section, we investigated the effectiveness of such small shifts
towards successful untargeted impersonation. The results would
lay the foundation for Agile attacks for targeted impersonation.

In particular, we randomly selected 100, 500, and 1,000 individ-
uals from the 𝐿𝐹𝑊 dataset to construct three identity datasets,
denoted as I-100, I-500, and I-1K, respectively. Since the face recog-
nition model is not 100% accurate, the benign images of some at-
tackers could be misidentified as individuals in 𝐿𝐹𝑊 . We identified
these individuals and excluded them from the identity datasets.
Besides, in each new experiment, we resampled all the I-n datasets.

Next, we applied laser perturbations generated under 15 cur-
rent settings, i.e., from 60𝑚𝐴 to 200𝑚𝐴 with 10𝑚𝐴 interval, to
each attacker and captured the attack images. Finally, we calculated
the distances between the feature representations of an attack im-
age and each image in the identity datasets to identify successful
impersonation cases.
Attacks against FaceNet. We used MTCNN [59] to detect faces
from images and the pre-trained FaceNet model to compute the
feature vectors of the face images. If the embedding distance be-
tween an attacker and a target (in an identity dataset) is smaller
than the decision threshold (i.e., 1.242 for LFW), we consider it a
successful untargeted impersonation. Finally, we counted the num-
ber of success cases for each attacker. Note that if the distances
between an attacker and two different targets are both smaller than
the threshold, we consider them as two success cases.
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Table 7: Targeted impersonation against 5 targets.
A𝐸𝑆 A𝑃𝑆𝐴𝑆 𝐴𝑖 [𝑅𝑚𝑖𝑛, 𝑅𝑚𝑎𝑥 ] 𝐴𝑆𝑅𝑂𝑅 𝐴𝑆𝑅𝐸𝑅

T1 {A9, A4, A11} {A9, A4, A11} A9 [192-198] 0 100%
T2 {A3, A15, A14} {A3} A3 [155-180] 100% 100%
T3 {A2, A12, A1} {A2, A12} A2 [137-154] 100% 100%
T4 {A10, A4, A13} {A10} A10 [80-99] 100% 100%
T5 {A1, A7, A6} {A1, A7} A1 [125-138] 100% 100%

Table 5 reports the total number of targets in each identity dataset
that were impersonated by each attacker. The attack is more likely
to succeed in larger identity datasets than smaller ones. For example,
the average pair-wise distance between 15 attackers’ benign images
and the targets in the I-1K dataset is 1.279, which was reduced to
1.176 under laser perturbations. This indicates that the adversarial
perturbations on average pushed the attackers towards the targets
in the embedding space.
Attacks against SOTA FR Models. Next, we tested the per-
formance of the Agile untargeted impersonation attack against
four state-of-the-art FR models: VGGFace2 [4], DeepFace [41], Ar-
cFace [8], and SFace [61]. Besides MTCNN, we also considered
two other commonly used face detection and alignment modules,
RetinaFace [9] and OpenCV [23]. Besides the normalized Euclidean
distance (Euclidean-L2), we also tested the cosine similarity and Eu-
clidean distance metrics, which are popular in FR applications [33].
Therefore, for each FR model, we tested a total of 9 settings.

We utilized the deepface platform [33] to implement 4 FR models.
In each model, the decision threshold was calculated from a false
acceptance rate (FAR) of 0.001 on the LFW dataset and coded in the
find_threshhold function in deepface’s modules/verification.py file.
In each model and under each setting, we computed the embedding
distances between 15 attackers and the targets in the I-1K dataset
under 15 current settings to identify successful impersonation cases.

Table 6 reports an aggregated number of success cases across
15 attackers, showing the effectiveness of the Agile attack against
deep face recognition models. For example, 555 identities in the
I-1K dataset could be impersonated by at least one of the 15 attack-
ers under one of the 15 current settings in the VGGFace2 model
using MTCNN and the normalized Euclidean distance. Even in the
latest models with very high recognition accuracy (e.g., SFace and
ArcFace with 99.65% and 99.41% accuracy on 𝐿𝐹𝑊 ), the physical
perturbations have a non-negligible chance to enable imperson-
ation. Compared to the raw Euclidean distance and cosine similarity,
the normalized Euclidean distance appears to be a robust distance
metric against the Agile attacks. Meanwhile, the face detection and
alignment models have a modest effect on attack performance.

While untargeted impersonation appears to be feasible with Ag-
ile attacks, we also found that a few attackers failed to impersonate
any target in the I-1K dataset. For example, 5 attackers failed in the
attack against SFace using MTCNN and the normalized Euclidean
distance, as shown in Table 6. Obviously, they would fail in the
targeted impersonation attack under the same setting. Using Ag-
ile’s simulated attacks in the digital domain, we can identify these
attackers effectively, as shown in Table 6, to reduce the attack time
in the real world.

6.4 Informed Targeted Impersonation Attacks
Results in untargeted impersonation show that with a given set
of attackers and small laser perturbations, the Agile attack cannot

Table 8: Targeted impersonation against SOTA FR models.
FR Models |T𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 | |T𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑 | |T𝑖𝑚𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑡𝑒𝑑 | FE ASR
VGGFace2 561 547 319 97.5% 56.8%
DeepFace 165 159 143 96.4% 86.7%
ArcFace 66 66 63 100% 95.5%
SFace 45 45 44 100% 97.8%

impersonate all the targets. For FaceNet (with MTCNN and normal-
ized Euclidean distance) and a randomly selected I-1K dataset, only
364 identities could be impersonated by the 15 attackers recruited
for our experiments. If we increase the size of the attacker set A,
we could impersonate more targets.

To evaluate the effectiveness of the Agile targeted impersonation
attack, we randomly selected 5 targets from 364 candidates, denoted
as T1 to T5. Based on the Euclidean-L2 distance between each
target and the attackers, the ES filter output the A𝐸𝑆 set with top-3
attackers mostly close to each target in the embedding space, as
shown in Table 7. Next, we used the PSAS filter to identify the
attackers in A𝐸𝑆 who are more similar to the target in the non-
ROI region and constructed the set A𝐴𝑆𝑃𝑆 for the Agile targeted
impersonation attack in the physical domain.
A𝐴𝑆𝑃𝑆 and the optimal current range [𝑅𝑚𝑖𝑛, 𝑅𝑚𝑎𝑥 ] are used to

guide the physical-domain attacks. For example, we selected the first
attacker in A𝐴𝑆𝑃𝑆 for each target and calculated the corresponding
optimal current range. In the physical Agile attack, we set the
initial current at the center of the optimal range and increased and
decreased the laser current by 𝛿 = 1𝑚𝐴 each time until reaching the
range boundary. The attack is considered successful if the attacker
could impersonate the target within the optimal range. Table 7
shows that four targets were successfully impersonated while one
failed, achieving an average attack success rate of 80%. This is
because targeted impersonation requires accurate perturbations
and therefore is less tolerant to measurement inaccuracies (e.g.,
laser-to-camera distance and angle misalignment) and environment
noises (e.g., lighting conditions). As discussed in Section 6.5.2, such
inaccuracies and noises could be compensated by adjusting the
laser current. So, we could extend the current range to improve
the attack success rate. Table 7 shows the attack success rates in
the optimal range (denoted as 𝐴𝑆𝑅𝑂𝑅 ) and in an extended range of
±10𝑚𝐴 from the optimal range center (denoted as 𝐴𝑆𝑅𝐸𝑅 ).

Next, we evaluated Agile targeted impersonation against four
SOTA FR models (with MTCNN and Euclidean-L2). In the I-1K
dataset, we first identified the targets who could be impersonated
(denoted as T𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ). Similar as discussed above, for each tar-
get in T𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 , we found the set of candidate attackers (A𝑃𝑆𝐴𝑆 )
and the corresponding optimal and extended ranges for laser cur-
rent. The simulated attacks in the digital domain showed that the
identified attackers could impersonate most of the targets (denoted
as T𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑 ), showing that the ES and PSAS filters achieved high
filter efficiency (FE). Finally, we launched the Agile targeted im-
personation attacks in the physical domain with the attackers in
A𝑃𝑆𝐴𝑆 and the extended ranges. Table 8 reports the set of the
target (T𝑖𝑚𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑡𝑒𝑑 ) that were successfully impersonated in the
real-world attacks and the average ASRs for each FR model. The
ASR on VGGFace2 is lower than that of the other models since the
attackers were misidentified as individuals other than the original
targets (i.e., the attacker is close to more than one target in the em-
bedding space). In the latest models that maximize the separation
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Table 9: Informed targeted impersonation at different dis-
tances.

Laser-to-Camera Distance 32 𝑐𝑚 35 𝑐𝑚 38𝑐𝑚

(A1, T1) informed setting (mA) [74-94] [90-110] [108-128]
# of successful attacks 11 10 13

(A2, T2) informed setting (mA) [56-76] [66-86] [80-100]
# of successful attacks 9 8 6

(A3, T3) informed setting (mA) [114-134] [138-158] [166-186]
# of successful attacks 13 15 16

among identities, such as ArcFace and SFace, the Agile attack could
achieve over 95% attack success rates.

6.5 Discussions
6.5.1 Attack Time. Agile consists of an offline synthesis phase and a
real-time attack phase. Our experiments demonstrate that applying
filters reduces over 90% of the offline synthesis time. For example,
in a targeted impersonation attack against the I-1K database with
15 attackers, the attack synthesis process using grid search took
268.75 hours to test all 150 laser settings (using the FaceNet model
on the DeepFace platform). However, applying filters reduced the
simulation time to 2.97 hours.

The real-world attack phase involves camera alignment and
current adjustment steps. During camera alignment, attackers can
visually align the laser with the camera using screen feedback, lever-
aging the point-symmetric relationship between the light source
and the ghost image as proposed by GhostImage [57].We conducted
an experiment with 7 participants, each repeating the alignment
process 10 times. On average, participants completed the alignment
in 2.35 seconds. Over repeated tests, alignment times improved
significantly; the slowest participant initially took 4.5 seconds but
reduced to 1.6 seconds after multiple attempts.

Participants without screen feedback could observe a red spot
reflected in the camera lens and attempt to center it manually. In
experiments involving 7 participants, the alignment time ranged
from 1.41 seconds to 6.64 seconds, with an average of 2.81 seconds.
Similar to the screen feedback method, participants showed im-
provement in alignment time with repeated attempts. Alignment
without screen feedback may be less precise, but it still maintains ac-
curacy within ±3°, which does not significantly impact the attack’s
performance.

In current adjustment, Agile selects the optimal current range
based on informed information from the attack synthesis to com-
pensate for inaccuracies in distance and ambient light. Since these
factors are unpredictable, the adjustment time is empirically evalu-
ated. Experimental results from Sections 6.3 and 6.4 indicate that all
pairs can achieve the desired attack effect within 20 settings. The
current adjustment interval is set to match the frame time, allowing
up to 4 seconds at 5 frames per second, with an average of 1.6
seconds. This rate corresponds to the minimum refresh rate used
by DeepFace [32] to ensure compatibility across all models. How-
ever, this rate can be significantly increased. For example, FaceNet
recommends 25 frames per second in its demo [45], which could
potentially reduce the time for current adjustment by five-fold.

6.5.2 Attack Robustness. Next, we discuss and empirically assess
the tolerance of Agile against inaccuracies in laser-to-camera dis-
tance, angle misalignment, and varying lighting conditions.

Figure 8: Images captured at (A) normal distance (35cm), (B)
long distance (2m), (C) 6° angle, (D) 12° angle, (E) dark en-
vironment (no external lighting), and (F) extremely bright
environment (under sunlight).

Attack Effectiveness with Distance Inaccuracies. The Agile
attack operates effectively within a specific distance range due
to the constraints of the selected laser diode’s operating power.
Based on this power, the effective laser-to-camera distance ranges
between 32 𝑐𝑚 and 38 𝑐𝑚, within which Agile can achieve targeted
impersonation with a high success rate.

We empirically validated the effectiveness of Agile in targeted
information attacks under different distances.We randomly selected
3 pairs of attackers and targets from 15 attackers using the I-1K
dataset, denoted as (A1, T1), (A2, T2), and (A3, T3). Each attacker
could successfully impersonate the target in the digital domain.
Through informed impersonation, a current range was determined
to guide the physical-domain attacks, as shown in Table 9, where
all 𝐾 = 20 settings within each range were tested.

Across three different distances, the attacks achieved high attack
success rates (ASRs), which remained consistent. At distances below
30 𝑐𝑚, the laser signal was too powerful, often causing dodging
attacks. Conversely, at distances longer than 40 𝑐𝑚, dodging attacks
rarely succeeded. In extreme cases, such as distances over 2 meters,
the attack failed due to the extremelyweak laser signal, as illustrated
in Figure 8B. Within the effective distance range, inaccuracies in
distance measurement can be compensated by adjusting the current.
For instance, at a distance of 35 cm, varying the distance between 1
𝑐𝑚 and 3 𝑐𝑚 in both forward and backward directions consistently
resulted in successful Agile targeted impersonation attacks.
Attack Effectiveness with Angle Misalignment.While Agile
ideally expects the laser-to-camera angle to be 0°, we empirically
tested attack images with ±1, ±2, and ±3 degrees in targeted imper-
sonation. These angles were calculated based on the distance and
ghost pixel coordinates, following the method proposed in Ghos-
tImage [57]. The attacks generally succeeded with a slight decrease
in attack success rates as the angle deviated from 0°. For instance, at
angles up to 6° (Figure 8C), the attacks showed inconsistent results
compared to perfectly aligned angles. When the angle increased to
12°, exceeding the laser’s divergence angle, the attack failed most of
the time. This failure occurred because the camera could not fully
capture the laser signals beyond the divergence angle (Figure 8D).
Agile under Different Lighting Conditions.We conducted ex-
periments under two ambient light conditions in an indoor setting:
full lighting (500 lux) and partial lighting (300 lux). We repeated
experiments for dodging, targeted, and untargeted impersonation,
achieving above 90% attack success rates (ASRs). Dodging and un-
targeted impersonation attacks yielded similar robust results under
normal lighting conditions, whereas some targeted impersonation
attacks failed, indicating sensitivity to environmental noise. Un-
der extremely bright conditions, such as direct sunlight (8F), the
attacks consistently failed. Conversely, in dark environments, such
as indoors without additional lighting (8E), the laser acted as the
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Figure 9: Grey-box and black-box attack against Amazon
ReKognition: successful DoS (A), dodging (B), and imperson-
ations with confidence scores (C).

primary light source, causing camera saturation and resulting in
dodging and/or denial-of-service (DoS) effects.

6.6 Grey-box and Black-box Attacks
We evaluated the Agile attacks against the Amazon Rekognition sys-
tem [27]. Using its API, we tested DoS and identity dodging attacks
using the Face Comparison module and the untargeted imperson-
ation attacks using the Celebrity Recognition under the black-box
setting. Besides, we tested database dodging using the Searching for
a face using an image function under the grey-box setting, which
adopted 𝐿𝐹𝑊 as the target dataset. In this experiment, we have no
knowledge about the pre-processing and face recognition models
used by Amazon Rekognition.

The benign and attack images of 15 attackers were used to test
DoS and dodging attacks. As shown in Figure 9A, the Amazon
Rekognition system returned a message ‘images must contain de-
tectable faces’ for the input attack image, indicating a successful
DoS attack. In Figure 9B, for a benign image with a high confidence
score of 99.7%, the system failed to recognize the attack image with
the laser perturbation, indicating a a successful identity dodging.
Similar results were obtained in database dodging attacks.

Next, we tested untargeted impersonation attacks on Amazon
Rekognition. If the input face image is “recognized” (with a default
threshold of 75.0), the system will return the celebrity’s name, the
profile page, and a confidence score. We uploaded the original and
2,250 attack images of 15 attackers with 150 laser perturbations
generated with 𝐼 ∈ [60𝑚𝐴, 210𝑚𝐴] through Amazon Rekognition’s
API. For 15 attackers, none of their original images was matched
with any celebrity in the database. Under the Agile attack, 10 at-
tackers were identified as celebrities, as shown in Figure 9C.

While face recognition models hosted at large companies are ex-
pected to be more robust than open-source models and research pro-
totypes, this experiment shows that Agile is quite effective against a
commercial face recognition product under black-box and grey-box
settings. We had an interesting observation that the impersonated
targets shared the same gender and race as the attackers, indicating
that these factors may play a role in commercial services.

7 ADDITIONAL ATTACK SURFACES
7.1 The Continual Attack
The real-world face recognition systems often adopt continual learn-
ing (a.k.a. incremental learning), in which images from recently

Figure 10: Attack propagation in the continual attack.

recognized subjects are added to the dataset and the model is period-
ically retrained with updated data. Hence, the number of images for
each subject increases, and the recognition accuracy improves over
time [26]. However, FR systems are shown to be highly susceptible
to backdoor attacks with physical triggers [50]. Continual learning
introduces a new attack vector that allows poisoning samples to
be injected through a legitimate channel. In such settings, once an
Agile attacker successfully impersonates a target in the dataset, the
attack image with laser perturbation is added to the training dataset
and labeled as the impersonated identity. Once the face recognition
model is retrained, the laser perturbation will be “learned” as a
feature of the impersonated identity, so that future Agile attacks
can more easily succeed using the same attacker with different laser
settings or even with varied attackers.

We evaluated the effectiveness of the Agile attacks in a contin-
ual learning setting using FaceNet with an SVM classifier for face
recognition. 143 identities in the LFW dataset, each with more than
10 images, were selected to train the initial classifier, denoted as
𝐶0. Next, we identified 15 pairs of attackers and targets where each
attacker can successfully impersonate the target under laser per-
turbations. Finally, we inserted the images of each attacker into the
training dataset to retrain 15 new classifiers, one for each attacker,
for 20 rounds. In each round, we inserted one image of the attacker
into the corresponding training set.

Let (𝐴𝑖 ,𝑇𝑖 ) denote a pair of attacker and target and𝐶𝑖 denote the
classifier polluted by𝐴𝑖 , where 1 ≤ 𝑖 ≤ 15. In each round, we tested
each 𝐶𝑖 with the images of all 15 attackers and recorded the num-
ber of attackers who were mis-identified as the target 𝑇𝑖 . Figure 10
reports the results at rounds 1, 5, 10, and 20. The attack images
inserted into the training sets after the first round performed a data
poisoning attack against the classifiers. Consequently, in the fol-
lowing rounds, besides the intended attacker, an increasing number
of other attackers with laser perturbations were misidentified by
each classifier. At round 20, most of the attackers can impersonate
the initial targets, indicating that the laser perturbations become a
discriminative feature learned by the classifiers.

7.2 Predictable Untargeted Impersonation
Untargeted impersonation attacks are considered straightforward
but are rarely implemented in real-world scenarios due to the un-
certainty of which identities could be impersonated. This informa-
tion is crucial in systems requiring additional verification, such
as secondary authentication. Conversely, due to the limitations of
physical-domain attacks, targeted impersonation typically has a
lower success rate compared to untargeted impersonation.

To fully leverage the capability of Agile attacks, we propose a
variation of untargeted impersonation, called predictable untargeted
impersonation. This approach identifies a small set of candidate
targets who are highly likely to be impersonated by the selected
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attacker(s). We consider this method more practical for imperson-
ation attacks in real-world scenarios compared to both targeted
and traditional untargeted approaches.
Approach. In untargeted impersonation, we utilized two filters and
synthetic attacks to assess an attacker’s capability of impersonation.
Here, we reverse the process to identify the most robust target for
each attacker and the corresponding optimal current settings. In
particular, for each attacker, we select the targets where the attacker-
target pairs have optimal ranges exceeding 10𝑚𝐴. Among these
pairs, we choose the one with the smallest distance and output the
target as the “predictable target” for that attacker, with the laser
settings that perform best established as the optimal range.
Experiment Results. We conducted predictable untargeted im-
personation experiments using the I-1K dataset from 𝐿𝐹𝑊 and
YouTube Faces DB (𝑌𝑇𝐹 ) [51] against three SOTA models. We
employed the proposed approach to identify the candidate target
and the optimal range for each attacker. This information guides
real-world attacks. Table 10 shows the predictable targets for 15
attackers in three FR models and two identity datasets with 1,000
individuals. We observed that highly robust FR models (e.g., SFace)
yield results consistent with real-world scenarios, where the at-
tackers always impersonated the predictable targets. In models of
medium robustness (e.g., FaceNet), for a small fraction of attackers,
the predictable targets may not be found. In less robust models
(e.g., DeepFace), the same predictable target may be identified for
different attackers.

8 EXISTING DEFENSES AND LIMITATIONS
Existing defenses against physical laser attacks operate on three
layers: optical, digital image, and FR model. We will discuss the
limitations of these defenses against our novel attack.
Optical Filters. The simplest defense against infrared-based at-
tacks is to mount an IR cut-off filter on the camera lens. However,
some cameras are designed to capture infrared light to enhance
image quality in low light conditions, and an IR filter would in-
terfere with their normal operations. Attackers can bypass this
defense by using a wavelength near the red region, partially sacri-
ficing stealth. For instance, common cut-off wavelengths are around
700 𝑛𝑚, but using a laser diode like the HL6750MG with a 685 𝑛𝑚
wavelength can bypass the filter. Despite this adjustment, our agile
attack remains effective even when an IR cut-off filter is used.
Adversarial Image Detection. An adversarial image detection
mechanism can be integrated into the image processing pipeline.
Agile images can be detected using image features or a fine-tuned
binary deep-learning model for distinguishing between adversarial
and benign face images. However, the infrared laser patterns re-
semble normal red circles (e.g., red ornaments or stickers), which
may increase the true negative rate. This resemblance can also be
exploited as a new attack surface for DoS attacks.
Model Robustness. Adversarial training involves “teaching” DL
models with known adversarial examples and can be used to defend
against Agile or other physical attacks. However, this approach is
costly, as it requires generating adversarial images and retraining
the large face recognition model. Our attack creates adversarial
samples that closely resemble normal users. This complicates the

Table 10: Result of predictable untargeted impersonation.
Dataset A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15

SFace YTF 𝑇1,1 𝑇1,2 𝑇1,3 𝑇1,4 𝑇1,5 𝑇1,6 𝑇1,7 𝑇1,8 𝑇1,9 𝑇1,10 𝑇1,11 𝑇1,12 F 𝑇1,14 𝑇1,15
LFW 𝑇2,1 𝑇2,2 𝑇2,3 𝑇2,4 𝑇2,5 𝑁𝑖 𝑇2,7 𝑇2,8 F 𝑇2,10 F F F 𝑇2,14 𝑇2,15

FaceNet YTF 𝑇3,1 𝑇3,2 𝑇3,3 𝑇3,4 𝑇3,5 𝑇3,6 𝑇3,7 N 𝑇3,9 𝑇3,10 N N 𝑇3,13 𝑇3,14 𝑇3,15
LFW 𝑇4,2 𝑇4,3 𝑇4,4 𝑇4,5 𝑇4,6 𝑇4,7 𝑇4,7 N 𝑇4,9 𝑇4,10 N N 𝑇4,13 𝑇4,14 𝑇4,15

DeepFace YTF 𝑇5,1 N 𝑇5,3 𝑇5,4 𝑇5,5 𝑇5,1 𝑇5,7 𝑇5,8 𝑇5,9 𝑇5,10 𝑇5,11 𝑇5,12 W 𝑇5,1 𝑇5,15
LFW 𝑇6,1 𝑇6,2 𝑇6,3 𝑇6,4 𝑇6,5 𝑇6,6 𝑇6,7 𝑇6,8 𝑇6,9 𝑇6,10 𝑇6,11 𝑇6,12 𝑇6,13 W 𝑇6,15

𝑇𝑖,𝑗 denote an anonymized user in two datasets; F means the attacker failed in the
physical-domain impersonation; N means no predictable target was found; W means
the attacker impersonated a target other than the predictable target.

distinction between legitimate users and attackers. While care-
ful design and refinement of the training dataset may reduce the
increase in true negative cases, attackers can counteract these mea-
sures by adjusting the strength, wavelength, and shape of the laser
perturbation.
OtherMonitoringCameras. Figure 5 shows that the laser’s power
is concentrated within a narrow cone. At a distance of 2𝑚, the
cone’s radius is 27𝑐𝑚, but the power density drops to 0.0001𝑤/𝑐𝑚2.
Therefore, it is impractical for another camera to capture the laser
unless it is positioned next to the target camera.
Attack Limitations. Like other physical attacks,Agile cannot work
over long distances, under extreme lighting conditions, or with
large laser-to-camera angles. FR systems typically automate iden-
tity recognition services without human oversight. Traditionally,
security personnel patrol areas to identify suspicious individuals,
and Agile appears less suspicious than other physical attacks (Fig-
ure 1). However, if a human observer monitors the output of the
FR system, it presents a challenge similar to other physical attacks.

9 CONCLUSION
In this paper, we present Agile, a novel, highly stealthy, and very
effective physical attack against deep face recognition systems. It
generates adjustable, invisible laser perturbations and emits them
into the camera CMOS to launch DoS, dodging, and impersonation
attacks. We develop a theoretical model to generate synthesized
attack signals and utilize them to guide the implementation of the
physical attacks. Our method’s efficacy and feasibility are validated
through diverse attacks on both SOTA open-source FR models and
sophisticated commercial models. Given Agile’s effectiveness in
exploiting practical limitations and providing more attack surfaces,
coupled with the inadequacy of existing protective measures, there
is a highlighted need for enhanced defensive strategies.
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