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ABSTRACT
Applying machine learning techniques to solve real-world prob-
lems is a highly iterative process. The process from idea to code
and then to experiment may require up to thousands of iterations
to find the optimum set of hyper-parameters. Also, it is hard to find
best machine learning techniques for a given dataset. The WOLF
framework has been designed to simultaneously automate the pro-
cess of selecting the best algorithm and searching for the optimum
hyper-parameters. It can be useful to both who are novice in ma-
chine learning and just want to find best algorithm for their dataset,
and also to those who are experts in the field and want to compare
their new features or algorithm with state of the art techniques. By
incorporating the WOLF framework in their designs, it is easier
for novices to apply machine learning techniques on their dataset.
With a wide range of evaluation metrics provided, WOLF also helps
data scientists to develop better intuition towards machine learning
techniques and speed up the process of algorithm development.
Another main feature of the WOLF framework is that user can
easily integrate new algorithms at any stage of the machine learn-
ing pipeline. In this paper, we present the WOLF architecture, and
demonstrate how it could be used for standard machine learning
datasets and for Android malware detection tasks. Experimental
results show the flexibility and performance of WOLF.
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1 INTRODUCTION
Machine learning has been quite successful in various fields, such as
health, finance, education, sports, computer vision, speech recogni-
tion, which has encouraged demand for machine learning systems
amongst novices in the field. Open source libraries [10] [20] have
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been built to help novices use machine learning algorithms. By def-
inition, machine learning automates the task of learning in terms
of rule induction, classification, regression etc. to draw knowledge-
able insights and to forecast an event before it actually takes place.
Despite this, the task of selecting the best algorithm(s) for a spe-
cific dataset is not automated [5]. With the rapidly growing pool
of available machine learning algorithms, it becomes difficult for
novices as well as researchers to choose the best algorithm specific
to their given dataset. The main steps of any machine learning sys-
tem consists of preprocessing to prepare data, followed by feature
selection/extraction to remove noise or redundant information from
data, and then finally applying and evaluating machine learning
techniques to gather useful information about the data [19].

Automation is the fuel that drives WOLF. Automating time-
consuming and repeatable tasks are the defining characteristics
of the project. The rising scope of Artificial Intelligence (AI) and
machine learning increases the need for automation to simplify the
process and hence help researchers and data scientists to dig deeper
into the problem and understanding it well rather than spending
time in tweaking the algorithms and the parameters involved. The
positive correlation of growing intelligence and the complexity of
solutions has shifted the trend from Artificial Intelligence (AI) to
Automated Intelligence, a paradigm on which WOLF is based.

WOLF has been built to have impact on a wider audience than
traditionally targeted by the machine learning community. The au-
tomation of machine learning pipeline helps people with different
levels of expertise and requirements, helping novices to identify
the best possible combination of algorithms without even having
in-depth knowledge of the inner workings of the algorithms. At the
other end of the spectrum, WOLF serves as a useful supporting tool
for seasoned researchers and businesses to figure out the best re-
sulting hyper-parameters, helping them reduce the time-to-market.
The project is developed with the idea behind rising interest of
data scientists towards Data Science competitions, as the machine
learning automation has become a necessity as competitors spend
lot of time in model construction and evaluation.

Although the project so far supports the classification problems
but there are a handful of classification algorithms consisting of
base classifiers and ensemble methods as well that are not currently
supported. WOLF framework provides the leverage of adding pro-
prietary algorithms, making it more customizable since the scope
of growing algorithms in the system is unrestricted. The process of
adding an algorithm to the pipeline is pretty intuitive and straight
forward. Also, the idea of not stealing the freedom of model eval-
uation from the user has been taken care of in the project; the
result file consists of various widely used metric calculations giving
user better understanding and control through easy comparison of
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pipeline combinations, therefore helping the user make decisions
with high confidence.

In this paper architecture of WOLF framework will be explained.
The usability of theWOLF frameworkwill be demonstrated through
experiments on various types of datasets. Moreover, the results gen-
erated by WOLF will be used to support the following hypothesis:

(1) Comparison between Deep and Shallow Models: Perfor-
mance comparison between deep and shallow networks ex-
plains whether using deep networks is always beneficial or
not?

(2) Comparison between Machine Learning Algorithms: Per-
formance comparison between different Machine Learning
algorithms supported by WOLF demonstrate if they perform
differently for a given dataset?

(3) Fine-Tuning Hyper-parameters: Is there any benefit of doing
fine tuning of hyper-parameters?

This paper has been organized as follows: Section II gives brief
overview about similar frameworks developed in the past. Section
III highlights main features of theWOLF framework. Section IV and
V, provides detailed descriptions about architectural and database
management aspects of WOLF. In section VI, the usability of the
WOLF framework has been demonstrated by generating results
for various data sets. Also, through experimental results above
mentioned hypothesis regarding machine learning techniques has
been described in section VII. Section VIII highlight some of the
future work in order to make WOLF framework more useful.

2 RELATEDWORK
In recent years, various platforms and techniques have been de-
veloped for easing cumbersome tasks in a machine learning (ML)
workflow, such as data pre-processing, feature extraction and se-
lection, and model selection. They can be categorized into two
categories, ML workflow management and ML workflow discovery.

2.1 ML Workflow Management
Platforms and techniques in this category provide tools for creat-
ing, modifying, executing or sharing ML workflows. The FBLearner
Flow system from Facebook was designed to be capable of easily
reusing algorithms, scaling to run thousands of simultaneous cus-
tom experiments, and managing experiments with ease. KNIME [4]
enables easy visual assembly and interactive execution of a data
pipeline through customizable and extendable nodes. The portable
format for analytics is an emerging standard for statistical models
and data transformation engines [18]. PFA combines portability
across systems with algorithmic flexibility: models, pre-processing,
and post-processing are all represented as functions that can be ar-
bitrarily composed, chained, or built into more complex workflows.
Kepler [15] provides an graphical interface for creating a “scientific
workflow" an executable representation of the steps required to
generate results.

2.2 ML Workflow Discovery
The techniques in the second category is more related to WOLF in
the sense that they aim to discover an optimal ML workflow for a
ML task. TPOT is a Python automated machine learning tool that
optimizes machine learning workflows using genetic programming

[17]. The scalability of TPOT may be problematic since its process
of finding optimal workflow were not designed for distributed com-
putation. To addressing the issue of scalability in machine learning,
Tim et al. proposed MLBase framework [14] consisting of three
components, ML Optimizer, MLI, and MLLib. Through ML Opti-
mizer, an optimal learning plan can be selected for a ML task, such
as classification, specified using a declarative language. Note that
ML Optimizer is still under development and MLLib is specifically
designed for Spark. It requires non-negligible efforts to implement
an Spark compatible algorithm to achieve distributed computation.
DataRobot is a proprietary data science system with software that
covers the tasks that a data scientist typically performs. It is de-
signed to automate the task of data cleaning, visualization, model
construction, model evaluation, and making predictions.

3 FEATURES OF THEWOLF FRAMEWORK
The objectives ofWOLF framework are quite similar to other related
projects mentioned in previous section [5] [17] . However, WOLF
implementation is much simpler and there are certain features of
WOLF systems that makes it a more attractive automated machine
learning platform to use for a wide variety of users. Following
are the main features of WOLF platform that differentiate it from
similar existing frameworks:

3.1 Standard Input Format
In order to make preparation of Input Data simple, Wolf requires
input dataset should be converted into "*.arrf" format, which is the
most common input file format among other similar platform like
Auto-Weka [5].

3.2 Integration of New Algorithms
To ease the task of developing new algorithms at any stage in thema-
chine learning pipeline( preprocessing,feature selection, machine
learning algorithms) WOLF provides the user with a hands-on tool
to test and compare newly designed algorithms with state of the art
techniques without worrying about other stages of machine learn-
ing pipeline. Consequently, it speeds up the development phase of
algorithms and saves lots of time and effort in redesigning other
stages of the machine learning pipeline.

3.3 Search Optimum Hyper-parameters
It is possible to search the hyper-parameter space for the best cross
validation score through WOLF. WOLF also enables users to search
optimum hyper-parameters for selected machine learning algo-
rithms. User s can provide the WOLF platform with a range of
possible hyper-parameter values for which WOLF performs Grid
search. Together with optimum hyper-parameter search for each al-
gorithm, WOLF provides the user with the algorithm that performs
best for given dataset using cross validation scores.

3.4 Built to Support Wide Range of Tasks
WOLF has been designed to cover a wide range of machine learning
tasks, which include binary and multi-class classification. Differ-
ent metric evaluation criteria have been integrated into WOLF to
develop better intuition of machine learning models for a given
dataset.
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Figure 1: The WOLF framework and its transactions.

4 THEWOLF ARCHITECTURE
WOLF works in transactions to figure out the best pipeline for
the user’s data. A transaction is a common machine learning task
performed to build the best solution for a data problem. Some of
those tasks include data preprocessing, cross validation, feature
engineering, model construction and evaluation. Each transaction
provides choice of various algorithms. The WOLF platform runs all
transactions based on the configuration provided by the user, and
selects a pipeline consisting of best performing algorithm for each
transaction individually. Each transaction in the project is isolated
but is dependent on the output generated by its prior task. WOLF’s
workflow is shown in Figure 1.

A typical WOLF pipeline consists of multiple transactions, not all
transactions are mandatory. The dotted line in Figure 1 is to show
alternate paths or the transactions that can skipped in a pipeline.
Each transaction performs a meaningful task.

The WOLF transactions are dependent on the user input config-
uration. To keep the consistency across all user configurations, the
project follows a protocol which defines the structure and keywords
used for creating a configuration file.

Following are the list of transactions inmachine learning pipeline
adopted in WOLF framework:

4.1 Preprocessing
There are some common data preprocessing operations which are
performed on the data file provided by user. This step includes
operations like getting rid of NaN (Not a Number) values or replac-
ing them with user specified values. Label encoding of categorical
features and scaling of numerical features is also performed in the
preprocessing step.

4.2 Splitting Data
The splitting data transaction replicates the task of cross validation.
After pre-processing of user input data it is then split into multiple

pairs of train and test files. The number of train and test data file
combinations generated depends on the values provided by the user
for the number of folds and repetitions parameter under split data
configuration. The data file is always randomized before splitting
which leads to distinct pairs of train and test files.

4.3 Feature Extraction
The data extraction is mostly meant for dimensionality reduction
of data set or for creating new features by combining multiple
features which may be more meaningful to model construction
algorithms. The train and test file combinations created by splitting
data transactions are treated as input for data extraction phase.
Because not all the data sets requires data extraction or the user may
want to take control of the feature extraction step, this transaction
has been made optional.

The method used for dimensionality reduction is Principal Com-
ponent Analysis (PCA).

4.4 Feature Selection
Taking the train and test files pairs generated after data extraction
or splitting data transaction (if data extraction is skipped) the opera-
tion of feature selection is performed on them. The idea behind this
transaction is to get rid of noisy data or the features which are not
meaningful to model construction algorithms. The task of feature
selection is also optional for the same reasons as feature extraction.
After performing feature selection, pairs of train and test files are
created but this time the output files consist of meaningful features
only.

The algorithm used for this purpose is Support Vector Machine
Recursive Feature Elimination (SVM_RFE). Given an external es-
timator that assigns weights to features (e.g., the coefficients of
a linear model), the goal of recursive feature elimination (RFE) is
to select features by recursively considering smaller and smaller
sets of features. First, the estimator is trained on the initial set of
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features and weights are assigned to each one of them. Then, the
features whose absolute weights are the smallest are pruned from
the current set features. That procedure is recursively repeated
on the pruned set until the desired number of features to select is
eventually reached.

4.5 Model Construction
The input for model construction transaction is train and test file
combinations generated by feature selection or feature extraction
or the splitting data transaction based on the users configuration
if any of the transaction is skipped. This transaction consists of
multiple algorithms and each model construction algorithm runs in
parallel. The output generated by this transaction consists of result
files which contain true values and predictions made for test files.
The number of generated files depend on the number of algorithms
chosen by the user for experimentation and also the freedom of
hyper-parameters as configured by users. So far, the following
classifiers have been integrated into the WOLF framework:

(1) AdaBoost [11]
(2) Bernoulli and Gaussian Naive Bayes [9]
(3) Decision Tree [22]
(4) Logistic Regression (LR) [7]
(5) Random Forest (RF) [8]
(6) Linear, Nu and C-Support Vector Machines [6]
(7) Linear and Quadratic Discriminant Analyses (LDA) [12]
(8) Deep Neural Network (DNN) [1]

4.6 Model Evaluation
After performing all the important tasks of machine learning, eval-
uation of results is undertaken. In this step, metric calculation is
performed for all possible combinations formed by prior transac-
tions. WOLF consists of metrics like precision, accuracy, area under
curve (AUC), Matthews correlation coefficient (MCC), f1-score and
many more. The output of this transaction is used for decision mak-
ing or choosing the best (based on the chosen metrics) predicting
combination of algorithms.

4.7 Model Selection
This is the moment of truth; the user is provided with a result file
consisting of metrics calculated for all possible combinations based
on the configuration file. The result file also consists of graph repre-
sentation of all metrics for each configuration combination which
may be further pruned by the user. This gives users the leverage of
analyzing the result for appropriate choice of the algorithm which
performs best according to their metric selection.

5 WOLF DATABASE MANAGEMENT
In WOLF, the configuration of all the transactions as well as the
metric evaluation results of each configuration are saved into the
database. The idea behind integrating database to the project is to
ease the tracking of each run. It also helps to ease the process of
result generation after the complete pipeline completion, which is
then utilized for model selection. As the configuration of each user
differs, using relational database could have caused huge waste of
space. To conserve space, a non-relational database, MongoDB is

used, where only the parameters for a transaction that are specified
by users are saved.

The use-case of each collection is:

5.1 Split Data
The user’s configuration for “Splitting Data” transaction of the
project gets saved into this collection. The collections consists of
data file information by storing the input file name and also the
parameters like number of folds and number of repetitions set by
user in the configuration file.

5.2 Files
This collection keeps track of the files name that get created after
splitting data transaction. It just consists of train file name and test
file name for each pair generated. The idea behind this is to keep
track of best performing pair if required.

5.3 Feature Extraction
The configuration passed for “Feature Extraction” transaction by
user gets saved into this collection. The information stored in the
collection consists of, executable (name of algorithm that get exe-
cuted) and parameters for the chosen executable.

5.4 Feature Selection
The feature selection collection provides information about the
users configuration for “Feature Selection” transaction. It consists
of executable (name of algorithm that get executed) information and
also consists of parameters values provided for chosen algorithm.

5.5 Algorithm
The information related to the “Model Construction” transaction
gets stored into this collection. The stored information consists of
executable (name of user selected algorithm) and parameters for
the selected algorithm.

5.6 Result
As the name explains this collection contains output generated
by “Model Evaluation” transaction. All the metrics value that get
calculated in evaluation step like mcc, f1-score, precision, and recall
etc. gets stored into the collection. The result collection provides
moment of truth; it is used to query the results of all pipeline
combinations executed by user and generate the report for model
selection.

All the collections in WOLF database schema except Result has
one tomany relationship with Result collection. As Result collection
contains the metric evaluation result so it makes sense to refer each
result document to the configuration it is related to. The Result
collection along with metric evaluation output, consists of unique
ids’ for all the other collections like split data, feature extraction
and selection, algorithm. The unique IDs’ of other collections are
the foreign keys that point to the particular configuration used for
the generated result.
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Table 1: The datasets for binary classification

Dataset Name No. of Attributes No. of samples Pos. / Neg. Samples Percent Positive Samples
Bank note authentication 5 1372 610 / 762 0.445

Blood Transfusion Service Center 5 748 178 / 570 0.237967914
Climate Model Simulation Crashes 19 540 494 / 46 0.914814815

Connectionist (Sonar, Mines vs. Rocks) 61 208 111 / 97 0.533653846
default of credit card clients 24 30000 6636 / 23364 0.2212

Fertility 10 100 12 / 88 0.12
LSVT Voice Rehabilitation 311 126 42 / 84 0.333333333
Pima Indians Diabetes 8 768 268 / 500 0.348958333

Spambase 58 4601 1813 / 2788 0.394044773
Vertebral Column 7 310 210 / 100 0.677419355

Wholesale customers 8 440 142 / 298 0.322727273

Table 2: Results generated by WOLF for the Spambase Dataset

Algorithm Name Accuracy f1 score mcc Precision Recall roc auc
Random Forest 0.940491943 0.922081025 0.875282549 0.952318939 0.893881254 0.932342067
Decision Tree 0.905932828 0.881324856 0.803675827 0.87639301 0.88665373 0.902562047

AdaBoost Classifier 0.938579417 0.921548713 0.871293486 0.927807641 0.915611007 0.934563288
Deep Neural Network 0.723321129 0.538341427 0.405704617 0.776242927 0.421798091 0.670599051
Bernouli Naive Bayes 0.885960569 0.849226568 0.759761205 0.886503696 0.815392448 0.873621528
Linear Support Vector 0.832480662 0.776085134 0.673030914 0.821482253 0.791323227 0.825286975
Logistic Regression 0.927605137 0.906666538 0.847999572 0.921425047 0.892614492 0.921487069

Linear Discriminant Analysis 0.887568983 0.846374519 0.764242867 0.916240821 0.78682252 0.869953218
Gaussian Naive Bayes 0.821346197 0.808553048 0.676682579 0.700090522 0.957035295 0.845072219

6 EXPERIMENTS
The main focus of carrying out the following experiments is to
present main features ofWOLF framework to compare performance
of state of the art machine learning techniques with optimum hyper-
parameters. As WOLF is an automated machine learning platform,
so a user will only provide data in .arff format along with the
configuration file. The user can tell which algorithm to execute
in each transaction and the range of hyper-parameters for each
algorithm in the configuration file.

6.1 Binary Classification Tasks
In order to demonstrate applicability of WOLF platform, different
families of datasets from UCI repository [16] for binary classifica-
tion tasks were selected. In order to pass those data sets to WOLF,
they were first converted into .arff data format.

Table 1 provides a list of datasets that has been evaluated by
WOLF. The number of attributes in Table 1 corresponds to feature
points in each dataset. The number of feature points are not too big,
that’s why feature selection or extraction transactions were not
used. Also, it is useful to note the total number of samples and ratio
of positive samples. For a dataset with high percentage of one class
of samples, a machine learning model which is biased towards most
likely label will give high accuracy. So other evaluation metrics like
precision will give better insight in such cases.

Table 2 provides evaluation metrics generated by WOLF frame-
work for all algorithms that have been applied to Spambase Dataset.

There is no dependency among algorithms, so, all these algorithms
were executed and evaluated in parallel. Evaluation metrics calcu-
lated for binary classification are the most popular ones to evaluate
algorithm performance. For instance, in some applications it’s only
desirable to have a high accuracy score, however for critical ap-
plications it can also be desirable to have a high precision score.
Precision is the ability of the classifier not to label as positive a
sample that is negative, and recall is the ability of the classifier to
find all the positive samples. It is also worth noting if the machine
learning model is predicting randomly or has learned something
from training data. For this purpose, (roc_auc) score can give better
intuition and model is considered good if the score is close to 1.
For the Spambase dataset, Random Forest and Ada Boost classi-
fier performed better as compared to other algorithms in terms of
accuracy.

Table 2 provides information about which family of algorithms
are superior to others for a given dataset. DNN performance is
quite poor for this particular application which is evident from
roc_auc score which is close to 0.5. The possible reason could be
the size of training dataset. In summary, the evaluation metrics for
binary classification provided by WOLF framework may help data
scientists to develop better intuition of different machine learning
techniques.

Table 3 demonstrates another feature of the WOLF framework,
which is to search for optimum hyper-parameters through the grid
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Table 3: Results of deep neural networks with various hyper-parameters for the vertebral dataset

Accuracy Learning Rate Batch Size No. Neurons in each layer roc auc
0.829677419 0.001 200 [100,100,100] .796761905
0.836129032 0.001 100 [100,100,100,100] 0.797333333
0.410322581 0.01 100 [100,100,100,100] 0.506619048
0.61483871 0.01 100 [100,100,100] 0.510380952
0.831290323 0.001 100 [100,100,100] 0.795595238
0.523870968 0.01 50 [100,100,100] 0.507142857
0.63483871 0.01 200 [100,100,100,100] 0.596380952

0.84 0.001 200 [100,100,100,100] 0.810142857
0.329677419 0.01 50 [100,100,100,100] 0.5
0.809032258 0.001 50 [100,100,100] 0.795666667
0.745806452 0.01 200 [100,100,100] 0.668857143
0.816129032 0.001 50 [100,100,100,100] 0.804309524

Table 4: Accuracy scores for all binary classification datasets

Dataset Name RF Linear SVM DNN LR Bernoulli Naive Bayes LDA Ada Boost DT
Bank note auth. 0.9923 0.9889 0.9998 0.9896 0.8419 0.9786 0.996 0.9810

Blood Transfusion 0.6279 0.5323 0.5003 0.5495 0.4993 0.5419 0.6181 0.5852
Climate Sim. Crashes 0.5501 0.7941 0.6581 0.5773 0.5 0.7158 0.7535 0.6527
Sonar, Mines/Rocks 0.8167 0.7692 0.61 0.7507 0.5051 0.7358 0.7954 0.6919
Default of credit card 0.6540 0.5217 0.5 0.4999 0.6731 0.6127 0.6388 0.6081

Fertility 0.5531 0.4960 0.5223 0.4988 0.5 0.4878 0.5375 0.4964
Voice Rehabilitation 0.7831 0.5058 0.6344 0.5529 0.6854 0.7256 0.7916 0.7351
Pima Indians Diabetes 0.7216 0.5597 0.6864 0.7151 0.5035 0.7253 0.7131 0.6412

Spambase 0.9323 0.8252 0.6706 0.9215 0.8736 0.8699 0.9345 0.9025
Vertebral Column 0.8058 0.7261 0.8101 0.8095 0.6438 0.8017 0.7917 0.7592

Wholesale customers 0.9053 0.6939 0.5 0.8765 0.5 0.7748 0.8800 0.8520

search. Except for Deep Neural Networks (DNN), the grid search is
simple and efficient to find optimum hyper-parameters.

Table 3 provides details about the performance of DNN on the
Vertebral dataset for a range of hyper-parameters provided by the
user in the configuration file. It can be deduced from the table
that the learning rate plays a vital role in DNN’s performance,
compared to batch size and depth. This helps data scientists to
determinewhich hyper-parameters plays a vital role in performance
and provides a better understanding about DNN for a given problem.
This would help them to adopt good implementation practices in the
future. More advanced parametric search algorithms, such as the
Bayesian optimization and active optimization, will be integrated
into the WOLF framework as part of the future work.

Table 4 summarizes the results for all datasets mentioned in Table
1. It can be seen that the WOLF framework is applicable to different
families of datasets and automates the process of finding the best
machine learning algorithmwith optimum hyper-parameters. It can
be observed that not a single machine learning model outperform
in all datasets. So the user needs an automated platform like WOLF
to choose best algorithm for each application. Also, if data scientists
develop a new algorithm, it can easily be compared with existing
commercial or proprietary algorithms.

6.2 Android Malware Detection
For all experiments, a dataset of real Android applications and real
malware requested from the authors of Drebin [3] is considered.
The final dataset contains about 40,000 benign applications and
3000 malware samples. This is one of the largest malware datasets
that has been used to evaluate a malware detection method on
Android [3].

The app features are extracted in two ways: from permission
information of given sample (extracted from manifest.xml file) and
from system call information. Detailed description of the feature
extraction procedure is given below. Figure 3 shows the Area un-
der curve (AUC) values of different machine learning algorithms
analyzed for the given feature vectors consisting of permission bits
and API calls.

From the experiment results we can see that the Decision Tree,
has given an AUC value closest to 1.0.

Feature Extraction The appropriateness of extracted features de-
termines the accuracy of the classification results. The features are
extracted in two phases described below.
Feature Extraction using Static Analysis Android applications come
in an Android package (.apk) archive. This .apk file is a zip bundle of
AndroidManifest.xml, classes.dex and other resources and folders.
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Table 5: The datasets for multiclass classification

Dataset Name No. of Attributes No. of samples Classes
Dermatology 35 358 6

Iris 5 150 3
Leaf 16 340 30

Page Blocks Classification 11 5473 5
Wine Quality 12 4898 11

Table 6: Accuracy scores for all multiclass classification datasets

Algorithm Name Dermatology Iris Leaf Page Blocks Classification Wine Quality
Random Forest 0.97 0.929 0.745 0.852 0.412
Linear SVM 0.956 0.934 0.578 0.667 0.0801

DNN 0.613 0.571 0.585 0.119 0.050
Gaussian Naive Bayes 0.843 0.933 0.713 0.495 0.219

LR 0.97 0.93 0.385 0.732 0.210
LDA 0.956 0.964 0.7937 0.669 0.253

AdaBoost 0.48 0.905 0.0853 0.554 0.114
Decision Tree 0.97 0.929 0.745 0.852 0.412

For extracting these features, the .apk files need to be reverse engi-
neered. This is done using the apktool. The AndroidManifest.xml
file contains a lot of features that can be used for static analysis. One
of the main features is the permissions requested by the application.
In order to extract these permissions, regular xml parsers cannot
be used since Android has its own proprietary binary xml format.
A special xml parser developed by the Drebin [3] authors is used
for extracting permission features from the AndroidManifest.xml
file of the application.
Feature Vectors Let 𝑅 be a vector containing a set of all Android
permissions requested by an application. For every 𝑖th application
in the Android apps dataset, we generate a binary sequence 𝑅 =

{𝑟1, 𝑟2, 𝑟3, ....., 𝑟 𝑗 }, where:

The permissions identified are stored as a binary sequence of
0 or 1 in a comma separated form in the final .arff file submitted
to the WOLF Machine Learning Platform. This sequence typically
contains comma separated permission bits which denote 1 if the
corresponding permission is present or 0 if it is absent. In addition,
we consider a variable C denoting the class of the application, where
𝐶 = 0 for a benign application and 𝐶 = 1 for malware app.

Figure 2 explains the feature extraction method from [3]. We list
the steps to extract features as fellows:

(1) Download the Drebin dataset of all malware and benign files.
(2) Reverse engineer the android applications in the dataset.

This reverse engineering is achieved using the APK tool
(already done by Drebin authors).

(3) Drebin uses an xml parser is used to extract the permission
request features from the AndroidManifest.xml, along with

Figure 2: Flow chart of permission feature extraction [3]

other features such as hardware resources and filtered intents
requested.

(4) The permissions requested by each Android application are
then sent to the Feature Vector generator program where the
application’s feature vector is generated using the method
discussed above.

(5) We finally build a matrix that maps the permissions re-
quested by each application in the dataset to the correspond-
ing application. This file also contains the class (benign /
malware) information of the application and stores it in an
ARFF [3] file format.

6.3 Multiclass Classification Tasks
For Mutliclass Classification, few datasets were acquired from UCI
repository [16] and the details about each data set are provided in
Table 5. Results generated by WOLF platform are shown in Table 6.

Again, it can be observed selection of suitable algorithm is an
important step. For instance for Dermatology dataset, performance
of AdaBoost classifier is quite poor as compare to other algorithms.
Again, in Leaf dataset it’s performance degrades severely.
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Figure 3: Performance of Android malware detection

In summary, the WOLF framework is able to find optimum algo-
rithms for all datasets except the Wine Quality set. This indicates
that it can provide a good insight about the dataset to the data
scientists.

7 HYPOTHESIS
From the results described in previous section, the following hy-
pothesis can be postulated:

(1) Comparison between Shallow and Deep Models: In this ex-
periment, we try to compare performance of deep models
with standard shallow machine learning models to develop
better understanding about the applicability of deep models.
It is evident that deep models do not perform better when
data size is small. Also, if ratio of positive to negative samples
is not closer to 0.5, DNN models are more likely to over fit.

(2) Fine tuning Hyper-Parameters is essential: This is the essen-
tial part of getting good performance from a given machine
learning model. It is evident from Table 3 that model’s perfor-
mance drastically suffer with wrong set of hyper-parameters.

(3) No standard Machine Learning Algorithm for all applica-
tions: It can be observed from Results shown in Table 4,
that no single machine learning algorithm can be applied
to all datasets. So there will always be a need to find which
algorithm is better suited for a particular application.

8 FUTURE WORK
In order to make deep learning more effective for smaller datasets,
fine tunning of pre-trained models also known as transfer learning
[23] needs to be integrated into WOLF. Moreover, grid search for
optimum hyper-parameters for DNN requires lots of resources.
To address this issue, better parameter optimization techniques
like Bayesian optimization [21] or latest techniques like active
optimization [13] and learning to learn [2] need to be integrated
into the WOLF framework. Efforts are being made to make the
WOLF framework publicly available online, where users can upload
the project directly to get the results, or contribute to the project.
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