
This paper is included in the Proceedings of the
29th USENIX Security Symposium.

August 12–14, 2020
978-1-939133-17-5

Open access to the Proceedings of the
29th USENIX Security Symposium

is sponsored by USENIX.

You Are What You Broadcast: Identification of
Mobile and IoT Devices from (Public) WiFi

Lingjing Yu, Institute of Information Engineering, Chinese Academy of Sciences;
School of Cybersecurity, University of the Chinese Academy of Sciences; Bo Luo,

The University of Kansas; Jun Ma, Tsinghua University; Zhaoyu Zhou and
Qingyun Liu, Institute of Information Engineering, Chinese Academy of Sciences

https://www.usenix.org/conference/usenixsecurity20/presentation/yu

You Are What You Broadcast:
Identification of Mobile and IoT Devices from (Public) WiFi

Lingjing Yu†‡, Bo Luo§, Jun Ma]\, Zhaoyu Zhou†‡, Qingyun Liu†‡

† National Engineering Lab for Information Security Technologies
Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China

‡ School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China
§ EECS/ITTC, The University of Kansas, Lawrence, KS, USA

] Tsinghua University, Beijing, China; \ Pi2star Technology, Beijing, China
yulingjing@iie.ac.cn, bluo@ku.edu, majun_ee@tsinghua.edu.cn, {zhouzhaoyu,liuqingyun}@iie.ac.cn

Abstract
With the rapid growth of mobile devices and WiFi hotspots,

security risks arise. In practice, it is critical for administrators
of corporate and public wireless networks to identify the type
and/or model of devices connected to the network, in order
to set access/firewall rules, to check for known vulnerabili-
ties, or to configure IDS accordingly. Mobile devices are not
obligated to report their detailed identities when they join a
(public) wireless network, while adversaries could easily forge
device attributes. In the literature, efforts have been made to
utilize features from network traffic for device identification.
In this paper, we present OWL, a novel device identification
mechanism for both network administrators and normal users.
We first extract network traffic features from passively re-
ceived broadcast and multicast (BC/MC) packets. Embedding
representations are learned to model features into six inde-
pendent and complementary views. We then present a new
multi-view wide and deep learning (MvWDL) framework that
is optimized on both generalization performance and label-
view interaction performance. Meanwhile, a malicious device
detection mechanism is designed to assess the inconsistencies
across views in the multi-view classifier to identify anoma-
lies. Finally, we demonstrate OWL’s performance through
experiments, case studies, and qualitative analysis.

1 Introduction

Over the past decade, we have observed a steady growth in
the number and types of portable devices. WiFi and cellular
network remain the two major options for mobile devices
to connect to the Internet. Although cellular networks have
improved speed and coverage, and reduced costs in recent
years, WiFi still has the edge in lower cost, better support from
devices, and less capacity limits. Cisco predicts that the role

L. Yu, Z. Zhou, and Q. Liu were supported in part by the Youth Inno-
vation Promotion Association of the Chinese Academy of Sciences, and the
Key Technical Talents Project of CAS (Y8YY041101); B. Luo was supported
in part by NSF-1565570, NSA Science of Security (SoS) Initiative, and the
Ripple University Blockchain Research Initiative.

and coverage of WiFi will continue to expand, and WiFi traffic
will account for 50% of total IP traffic by 2022. Meanwhile,
the number of public WiFi hotspots will grow 4-fold globally,
from 124 million (2017) to 549 million (2022) in a five-year
span [11]. With the significant growth of public Wifi support
and usage, security and privacy concerns naturally arise.

The administrators of corporate and public WiFi services
are concerned with malicious devices connecting to their net-
works, which may potentially harm the platform or other users
in the network, e.g., [4, 45]. The security challenges are pri-
marily caused by the diversity of devices, potential access to
critical/core services, lack of proper security management by
their owners, and limited auditing capability. On the other
hand, users of public WiFi also express concerns about the
security of their devices, data, and personal information. How-
ever, they do not always exercise proper privacy protection
while connecting to unknown networks [5, 9, 30].

For system administrators, whenever a new mobile device
connects to the network, it is critical to identify its manu-
facturer, type, and model, so that proper security precautions
could be taken, e.g., configure firewall rules accordingly, ver-
ify if known vulnerabilities are patched, or inform IDS. In
practice, identifying the type of mobile/IoT devices is of par-
ticular interest, since devices of the same or similar types are
often managed under similar access control and firewall poli-
cies. For instance, when employees connect smart tea kettles
or coffee makers to the network, the corporate security policy
may place them in the same group that is limited from access-
ing any internal resource, while smartphones are expected
to be governed by completely different policies. Meanwhile,
the manufacturer1 attribute also provides important informa-
tion in device management. The same manufacturer tends to
share the design and implementation of hardware and soft-
ware components across products. As a result, they often have
similar vulnerabilities and are patched simultaneously. For
example, the firmware vulnerability reported in CVE-2006-
6292 affects Apple’s Mac mini, MacBook, and MacBook Pro

1In the rest of the paper, we use manufacturer and make interchangeably.

USENIX Association 29th USENIX Security Symposium 55

products. Meanwhile, regular users also have the need to dis-
cover potentially harmful devices, such as hidden cameras or
a virtual machine with spoofed identity [10, 60], when they
connect to WiFi hotspots. While active reconnaissance poses
the risk of being detected and denied, users have the option
of passive reconnaissance, where they receive and examine
broadcast/multicast (BC/MC) messages to identify other de-
vices in the same network, and looks for potential threats.

Efficient and accurate identification of mobile devices is
challenging, especially when the features are limited and often
incomplete. There is no standard protocol to actively query
devices for their identities. Even if there were one, devices
do not have to provide faithful answers. Existing researches
on IoT device identification utilize a small set of network
features and were only tested on approximately 20 to 50 de-
vices in controlled environments, e.g., [43, 64]. With relatively
small feature space, scalability becomes a concern. That is,
detection accuracy may drop dramatically with the increasing
quantity and diversity of devices in real-world applications.

In this paper, we attempt to answer three questions: (1)
When a mobile/IoT device connects to a wireless network,
what protocol(s) would broadcast information that may be re-
ceived by other devices connected to the same WiFi? (2) What
information or features contained in the broadcast messages
are unique to a device, and how could system administrators or
normal users make use of such information to accurately iden-
tify the important attributes: manufacturer, type, and model, of
the devices? And (3) How can we utilize subtle hints caught
during device identification to discover malicious devices?

To answer these questions, we present OWL: overhearing
on WiFi for device identification. The key idea is to utilize the
unique features in network packets that are introduced by the
subtle differences in the implementations of network modules
on mobile/IoT devices. OWL examines and utilizes all the
features that could be passively collected from broadcast and
multicast protocols such as DHCP, DHCPv6, SSDP, mDNS, LLMNR,
BROWSER, NBNS, IGMP, etc. Distinct features extracted from
related protocols naturally form a view. Multi-view learning is
then employed to utilize views constructed from all available
protocols for device classification. With fingerprints collected
from more than 30,000 mobile/IoT devices, we demonstrate
outstanding performance of the proposed mechanism.

Moreover, malicious devices may attempt to forge their
identities and hide their presence to avoid being identified
or tracked. For instance, in our dataset, we found a virtual
machine running on a laptop that claimed to be an open WiFi
hotspot. We argue that it is difficult for adversarial devices
to completely forge the complex set of features from the en-
tire stack of essential network protocols. We observed that
fabricated or forged devices often behave inconsistently in dif-
ferent views, e.g., the fake WiFi hotspot demonstrated features
of a real WiFi access point on some views, while showing
features of its host laptop on other views. Therefore, we fur-
ther attempt to discover malicious devices by examining the

inconsistency across views in the multi-view classifier.
The technical contributions of this paper are: (1) We pro-

pose a multi-view wide and deep learning model to identify
mobile/IoT devices using features from BC/MC packets col-
lected through passive reconnaissance over WiFi; (2) Through
large-scale experiments, we demonstrate the performance of
the proposed mechanism in identifying the manufacturer, type,
and model of mobile/IoT devices; and (3) OWL is also able to
effectively detect forged or fabricated devices by identifying
the abnormal inconsistencies across views.

The rest of the paper is organized as follows: we define
the problem in Section 2, and explain the data collection pro-
cesses in Section 3. We present the OWL algorithm, followed
by implementation and experiments in Sections 4 and 5. We
present case studies of abnormal devices in Section 6. We
discuss other important issues and review the literature in
Sections 8 and 9, and finally conclude the paper.

2 Problem Statement and the Threat Model

In this section, we formally present the objectives of OWL,
followed by an adversary model of abnormal devices.
Device Identification. The primary goal of OWL is to iden-
tify devices on a WiFi network through packets they broad-
cast/multicast (BC/MC). Formally, device identification is
a classification problem: given a set of labeled samples
{(Di, li)}, find a classifier c : D→ L, which assigns a label
lx = c(Dx) to a new sample Dx. In OWL, Di is a device
represented by features extracted from BC/MC packets. De-
vices are identified at three granularity levels: {manufacturer},
e.g., “amazon”; {manufacturer-type}, e.g., “amazon-kindle”;
{manufacturer-type-model}, e.g., “amazon-kindle-v2.0”. Last,
we design OWL to only rely on unencrypted passive traffic
that could be sniffed without any special privilege.
Abnormal Device Detection. It is beneficial to the adminis-
trators/users if OWL could tell if a device appears abnormal,
besides labeling it. Therefore, another objective of OWL is
to identify devices whose BC/MC traffic appears to deviate
from known benign patterns. This abnormal sample could be a
previously unknown device, or a fabricated/forged device. For-
mally, function d : D→{“benign”,“malicious”} is designed
to assign a label d(Di) for each new device Di. Initially, d
is only trained with benign samples. When new malicious
samples are confirmed, they are used to re-train d to improve
the detection accuracy for future samples of this type.
Assumptions and Adversary Model. We assume that OWL
could connect to the to-be-measured WiFi network–the net-
work is open, or the WiFi security key is known. This is true
for network administrators who measure their own networks.
This is also true for users who attempt to detect suspicious
devices when they connect to public WiFi. We also assume
that the network infrastructure we connect to is benign, so
that they faithfully forward/route packets as defined by the
protocols, and OWL is able to collect those packets. Finally,

56 29th USENIX Security Symposium USENIX Association

we start with a clean model in the first task, where adversaries
are not considered. Hence, we assume that the overwhelming
majority of the devices in the training dataset are benign.

In the task of abnormal device detection, we employ a
simple threat model as follows: the adversaries attempt to
connect (unauthorized) devices to (public) wireless networks.
The abnormal/malicious device could be: (1) devices that
do not forge their own identities (so that they are unaltered,
genuine devices), however, they are forbidden in the network,
such as hidden cameras; (2) devices that attempt to hide their
true identities. This includes fabricated or altered devices that
connect to the network with malicious purposes, such as fake
access points or DHCP servers, spoofed IoT device identities
[60, 65]. This also includes devices that are counterfeit or
forged at manufacturing, such as the fake Apple TVs we
discovered (please see Section 6). This threat model only
applies to the second task of the OWL approach.

3 Data Collection and Feature Extraction
3.1 Data Collection and Initial Analysis
Data was collected through a fully passive approach from
three types of WiFi networks: (1) Open (unencrypted) pub-
lic networks at coffee shops, restaurants, retail stores, some
airports, etc. We directly connected to the hotspots without
providing any credentials. (2) Open public WiFi with cap-
tive portals at airports, hotels, corporate guest networks, etc.
We connected to these networks but did not provide infor-
mation on landing pages. Hence, we were usually blocked
from accessing the Internet, but we were able to sniff BC/MC
packets. (3) Secure WiFi networks, including organization
networks, home WiFi, and some public WiFi. We only col-
lected data from networks that we were granted access to,
such as university networks and retail stores that give pass-
words to customers. We connected the sniffing laptop to the
networks, and employed Wireshark or tcpdump to download
all BC/MC messages. The process was completely passive
and non-intrusive. We did not turn on promiscuous or monitor
mode. We did not actively send any message or make any
spoofing attempt. The packets were all in plaintext and were
also accessible to any other user on the same network.

With the help of our collaborators, we collected wireless
network traffic from seven countries: US, Portugal, Sweden,
Norway, Japan, Korea, and China. From January 2019 to July
2019, we collected data from 176 WiFi networks, among
which 12 networks disabled BC/MC. Each data collection
session lasted approximately 20 to 30 minutes. The WiFi net-
works we sniffed were very diverse in terms of ownership,
including university, airport and hotel WiFi, restaurant, retail
store, and volunteers’ household WiFi. In total, we collected
BC/MC packets from 31,850 distinct devices, which were
identified by MAC addresses. Figure 1 (a) shows the distri-
bution of WiFi networks (allowed BC/MC) and devices. The
number of devices per network is higher in Korea and China,

mostly due to higher population density. In particular, we
collected data from an airport in Korea and a student dorm in
China, which contributed large volumes of devices. We statis-
tically analyzed the collected data and found the following:
1. In total, we have identified 275 distinct protocols in the data.
Note that we treat UDP packets to different ports as distinct
protocols. Figure 1 (b) shows the distribution of the top 10
most frequently used protocols, led by ARP, ICMPv6 and mDNS.
2. 69.5% of devices sent BC/MC packets using more than
2 protocols and 46.1% of devices sent BC/MC packets us-
ing more than 3 protocols. Intuitively, the more protocols
devices use for broadcasting, the more information they leak.
51.9% of the devices sent mDNS packets, which may convey
semi-identifiable attributes of the devices. Application layer
protocols like DHCP, SSDP and LLMNR are also wildly used.
3. Protocol popularity appears to be consistent across coun-
tries, with a few exceptions. For instance, mDNS is the most fre-
quently used BC/MC protocol in the US, Japan, and Sweden,
but is ranked lower in the other countries. This is explained
by the fact that these countries have higher density of Ap-
ple devices2, which intensively use mDNS to discover services
in the network. Meanwhile, Dropbox LAN Sync Discovery
(DLSD) is not found in China, because DLSD is a proprietary
protocol of Dropbox, which is blocked in China.
4. Some protocols are only used by one type of devices. For
instance, the KINK protocol is only found in packets sent from
Samsung TVs. This observation implies two perspectives:
(1) the proprietary protocols are good identifiers of hard-
ware/software manufacturers; (2) when a proprietary protocol
appears in the traffic generated by a third-party device (identi-
fied from other network traffic features), such device should
be further investigated–it could be a spoofed device.
5. In the initial analysis, we employ Apriori [56] to statisti-
cally examine the patterns of BC/MC protocols used in each
type of devices, and show some examples in Table 1. For each
device, the protocols are ranked by the frequency of captured
packets. We can observe that each device family may have
its distinct frequency pattern of protocols. Different prod-
ucts from the same manufacturer may show the same/similar
pattern of protocols, e.g., several DLink devices demonstrate
identical patterns of protocols. Most likely, such devices share
the same hardware and software in their WiFi component.

The initial analysis suggests the possibility of using fea-
tures extracted from BC/MC packets to identify the make,
type, and model of the devices. The complexity of the patterns
also implies that it could be very challenging for adversaries
to perfectly spoof the network features of other devices.

3.2 Ethical Considerations
We collected data through a completely passive approach.
We did not turn on promiscuous mode. That means, we were

2According to OS market share by country reported by https://gs.
statcounter.com/os-market-share/

USENIX Association 29th USENIX Security Symposium 57

https://gs.statcounter.com/os-market-share/
https://gs.statcounter.com/os-market-share/

Figure 1: Statistics of collected data: (a) distribution of sniffed WiFi networks and devices in 7 countries; (b) the top 10 most
frequently used BC/MC protocols in the dataset; and (c) the distribution of number of protocols used in devices.

Table 1: Examples of broadcast/multicast protocol frequency patterns of mobile/IoT devices.
device-type protocol frequency pattern device-type protocol frequency pattern
apple-phone ARP,mDNS,DHCP,ICMPv6,LLC,IGMP apple-smartspeaker ARP,ICMPv6,mDNS
dlink-siren ARP,mDNS,DHCP,ICMPv6,IGMP hikvision-camera ADWIN_CONFIG,SSDP,IGMP

dlink-watersensor ARP,mDNS,DHCP,ICMPv6,IGMP lg-tv ARP,mDNS,ICMPv6,SSDP,IGMP
edimax-camera ARP,mDNS,DHCP,SSDP,IGMP sumung-tv ARP,UDP_15600,UDP_8001,IGMP

microsoft-gameconsole mDNS,LLMNR,ICMPv6,DHCPv6,IPv6,SSDP,IGMP xiaomi-humidifier ARP,mDNS

the legitimate and intended receivers of the BC/MC packets.
These packets were also received by all other computers in
the same subnet. We did not eavesdrop on any unicast packet.
We did not attempt to send anything (e.g., ARP requests). To
our best knowledge, the data collection process did not violate
any networks’ Terms and Conditions that were presented to
the users. None of the T&Cs mentioned BC/MC traffic or
network monitoring. Some forbid activities that may impact
the security or usability of the network, while we did not
impact the network. Some information in our data set may be
considered somewhat sensitive. We discuss them here:
1. MAC. MAC addresses are unique identifiers of devices
(not users). Recent research showed that users are vulnerable
to MAC tracking attacks [14]. Such privacy risk does not
apply in our data: (1) we only briefly collected data from sites
that are very sparsely scattered globally. The probability to
re-encounter the same MAC is extremely low. (2) We only
retained the top six hexadecimal digits of MAC addresses.
They cannot be used as unique identifiers of devices.
2. Device Name. Some devices (e.g., iOS devices) allow users
to configure device names, and adopt them in several proto-
cols, such as mDNS and DHCP 3. Users may name the device
with their own name (e.g., Alice’s iPhone). We observed in-
dividuals’ names in approximately 7% of the devices. The
majority of them were first names, and many were fake names.
In data pre-processing, we removed all names and analogues.

Besides MACs and (some) names, we do not have any
identifier or personal information in the data. We did not
collect any opinion, behavioral information, sensor data, de-
mographic attribute, or other sensitive information. It is ex-

3Although Android allows users to set device names, the user-defined
names are only used as hotspot and Bluetooth names, while DeviceName in
mDNS and DHCP are manufacturer-defined strings that cannot be changed.

tremely difficult, if not impossible, to associate the collected
data with offline identities. We did not make any attempt to
discover personal information or to track any user. The data
collection and analysis process did not introduce any risk to
any user. The information we collected was technical data
that was received by a large audience (anyone in the subnet).

We discussed the project and data collection process with
the IRB of the National Engineering Lab for Info. Sec. Tech. at
CAS. They determined that our project was not human subject
research, and it did not need a full IRB review. The Human
Research Protection Program at the University of Kansas
reviewed our written memo and agreed with the decision.

3.3 Identifiers and Feature Extraction
We extracted three categories of features from the sniffed
BC/MC packets: (1) the identifiers are (almost) unique to
each make/type/model of the devices, i.e., they can be em-
ployed to uniquely identify devices when they are available.
(2) The main features are robust discriminators that can be
combined to collectively provide enough information to dis-
tinguish devices. (3) auxiliary features are collected through
actively querying devices. We only use them in evaluation.
1. Identifiers. Examples of protocols/fields that may carry
device identification attributions are listed in Table 2, roughly
ordered by their popularity and robustness (i.e., the unlikeli-
hood to be altered). MAC prefix is available on every device
and it could be utilized to infer the manufacturer of a device
[40]. We retain the top six hexadecimal digits of MAC ad-
dresses in the MAC prefix feature, e.g., string “80:e6:50” is
extracted from MAC “80:e6:50:19:54:4e”. However, MAC
prefix may only indicate the manufacturer of the WiFi mod-
ule on some devices, not the device manufacturer. Next, Host
Name in DHCP, answer names in mDNS response messages are

58 29th USENIX Security Symposium USENIX Association

Table 2: Examples of data fields that may contain identifiers.
priority Protocol Fields

1 – MAC prefix
2 DHCP Option12 (HostName)
3 DHCP Option60 (VendorClass)
4 DHCP Option77 (ModuleName)
5 DHCPv6 Option39 (ClientFQDN)
6 MDNS answer names in response messages
7 SSDP.MSEARCH user-agent
8 SSDP.MSEARCH X-AV-Client-Info
9 LLMNR query name
10 BROWSER query name
11 NBNS query name
12 UDP device name

also meant to contain device names. The other fields listed
in Table 2 may contain keywords, such as “hp_printer_mfp-
m227fdw”, which can be used to directly identify devices.

Although identifiers are unique and informative, we can
not solely rely on them in identifying mobile/IoT devices in
practice. First, they are simply unavailable in the majority of
the devices. In our data set, approximately 30% of the devices
contain additional identification information beyond MAC
addresses. Moreover, adversaries or even benign users may
tamper with the identifiers listed in Table 2. For instance, a
user may change the name of her iPhone in phone settings,
e.g., to “Alice’s New Toy”. This name will now appear in the
HostName field of the DHCP requests from this phone.
2. Main Features from BC/MC Packets. We categorize our
main network features into two types: (A) key-value pair
features and (B) pseudo natural language features.
2A. Key-value Pairs. A key-value pair feature has a distinc-
tive name and a corresponding value, which is categorical,
numerical, or textual. We treat features from DHCP, DHCPv6,
SSDP, LLMNR, BROWSER and NBNS protocols as key-value pairs.

Each DHCP option code is regarded as the key, with the
option value as the value. For instance, in a DHCP Request
packet, the value of Option 57 (Maximum Message Size) is
1500. We extract the feature as: “57:1500”. For DHCP Option
55 (Parameter Request List), the value is the sequence of all
request option codes in a string. Besides, we also generate a
special feature with “dhcp-key-seq” as the key, the sequence
of all option codes in the DHCP message as the value.

Messages from protocols such as SSDP, LLMNR, BROWSER
and NBNS are composed of key-value pairs intrinsically, so
that they are directly extracted. For the SSDP protocol, we also
generate a key “ssdp-key-seq” with the sequence of keys in
SSDP as its value, which is similar to “dhcp-key-seq” feature.

IP addresses do not provide device identity information.
However, the use of IPv4 and IPv6 and the port numbers are
informative. IPs are transferred to strings (“IPv4” or “IPv6”),
while port numbers are preserved. For example, attribute value
“239.255.255.250:1900” is converted to string “IPv4:1900”.
Last, MAC prefixes are retained as key-value pairs.
2B. Pseudo Natural Language Features. Besides the key-
value pair features, several protocols also include unstruc-
tured textual content in their messages: (1) mDNS payloads, (2)

broadcast/multicast protocol sequence, and (3) payloads of
UDP packets that are not resolved to a specific protocol.

We treat the resource records (RRs), authoritative-
nameservers, and additional records in mDNS messages as
pseudo-natural-language features. We concatenate the val-
ues from all the fields in an RR (RR name, RR type,
cache-flush, etc) into a string, in which fields are separated
by ‘|’, so that each field will be processed as a token in feature
embedding. Especially, the string values of RR name field and
domain name in RDATA field are divided into multiple tokens
by replacing all the occurrences of the ‘.’ character with the
separator ‘|’. Each TXT value in data field is treated as a token
as well. On average, there are 216 tokens in each RR. We
group all the RR strings into the mDNS feature of a device.

Next, we concatenate the protocol sequence used by each
device to an unstructured text string, and use it as a pseudo-
natural-language feature. We also observed that some UDP
messages, which are not resolved to a specific protocol, con-
tain information of devices in the form of unstructured plain
text. Hence, we also extract all textual data from the payloads
of such BC/MC UDP messages as pseudo natural language
features. Last, we would like to note that all IP and MAC
addresses in pseudo natural language features are also trans-
formed in the same way as key-value pair features.
3. Auxiliary Features. Devices may advertise their services
by multicasting a SSDP notify message with the device de-
scription URL provided in the “LOCATION” field. The URL
points to a device description file in XML format that contains
identifiable information of the device. For instance:
<friendlyName>DELL-PC: dell:</friendlyName>

Following the URL to download the file is considered ac-
tive reconnaissance and somewhat intrusive. Therefore, we
only attempted to extract this feature within the authors’ or-
ganizational networks. The information discovered in device
description files is only used in performance evaluation.

4 Device Fingerprinting and Classification

In this section, we present the core algorithms of OWL,
i.e., multi-view wide and deep learning for device manufac-
turer/type/model classification and abnormal device detection.

4.1 MvWDL Algorithm Overview
In theory, device identification is a classification task, which
predicts manufacturer/type/model labels for new devices
based on models learned from training data. In Section 3.3,
we have extracted features from packets of BC/MC protocols.
As observed in our initial analysis and discussed in the lit-
erature (e.g., [42, 43, 53, 64]), features from each protocol
provide certain degree of discriminatory power in device iden-
tification. However, when the sample size increases from tens
to tens of thousands, none of the protocols provides enough
information to differentiate the whole spectrum of devices.
For example, we have observed that two devices magic-cast

USENIX Association 29th USENIX Security Symposium 59

and Apple TV share very similar mDNS messages, but they dif-
fer significantly in their DHCP and SSDP packets. Meanwhile,
Apple’s iPhone and MacBook generate almost identical DHCP
packets, while their mDNS packets differ from each other.

Our initial observations demonstrate that: (1) each BC/MC
protocol generates an independent set of features that could
contribute to device classification; (2) sets of features from
different protocols complement each other in terms of dis-
criminatory power in the identification of large volume of
devices and labels; (3) not all protocols are available in all de-
vices, due to devices’ capabilities and network configurations.
Intuitively, our observations suggest the use of multi-view
learning, where features from different protocols are naturally
organized into views, and classification functions on all views
are jointly optimized. In practice, multi-view learning recog-
nizes the inherent diversity and relationships of the features,
which confirm each other in some regions of the feature space,
while complementing each other in other regions. Multi-view
representations are integrated so that different feature spaces
(views) are transformed into the same latent space, to improve
overall classification and generalization performance.

Multi-view learning enforces view consistency in training.
When a testing sample triggers strong inconsistency across
views, it is either a new device label that is not in the training
data, or a malicious device, whose networking components
have been tampered with. Especially, when multiple views
indicate strong confidence in contradictory predictions, the
device is highly likely to be spoofed or fabricated.

In this paper, we present a multi-view wide and deep learn-
ing (MvWDL, Figure 2) framework for device classification
and abnormal device detection. MvWDL consists of three
components: (1) MvWDL first extracts features from BC/MC
packets and learns multi-view embedding representations as
device fingerprints. (2) Inspired by the wide & deep learning
model [8], a hybrid-fusion multi-view artificial neural network
is designed to fuse dense embeddings from six independent
and complementary views in two structures: (a) a deep neural
network for early fusion is designed to maximize the gen-
eralization performance, and (b) a wide component for late
fusion is added to improve the memorization of label-view
interaction, i.e., how does each view response to each man-
ufacturer/type/model of devices. (3) Malicious devices are
detected with view inconsistency. A “positive” loss function
enhances view consistency for benign samples. Meanwhile,
when malicious devices are confirmed and labeled, they are in-
corporated through a “negative” loss function, which captures
the view inconsistencies caused by malicious devices.

4.2 Device Fingerprinting
We first construct device fingerprints from features extracted
from BC/MC packets. In practice, key-value pair features and
pseudo natural language features are processed differently.
Fingerprints from key-value pair features. Formally, the
set of all key-value pair features for a device are defined as:

KVi = {ki,1 : vi,1, . . . ,ki,n : vi,n}, in which ki, j and vi, j denote
the jth key and jth value of device i, respectively. The global
key list is defined as an ordered collection of all the keys in
the entire dataset: K = {k1,k2, . . . ,kN}. Corresponding to the
order of keys in the key list, we define the key-value pair
feature vector of the device i as: V̄KV,i = {vi,1,vi,2, . . . ,vi,N}.
All categorical values are tokenized. When a key k j does not
exist in KVi, we set the corresponding value vi, j to “null”.
Fingerprints from pseudo natural language features. To
fully utilize information resides in the content of pseudo-
natural-language features, we explore two content model-
ing algorithms to generate fingerprints: (1) word to vector
(word2vec), and (2) Latent Dirichlet Allocation (LDA).
(1) Word2vec. The word2vec approach [44] is based on the
distributional hypothesis, which indicates that terms occur-
ring in the same context tend to have similar meanings. Its
main purpose is to vectorize words in the text corpus so that
words appearing in similar contexts are represented by vectors
close to each other in the feature space. In its existing imple-
mentations, the contexts are captured with sliding windows.
However, they are not suitable in our application, in which
the context of a token in the pseudo-natural-language features
must remain in the scope of a “sentence” (a RR in mDNS, a
field in the sniffed packet). Hence, we implemented our own
word2vec scheme in three steps: (1) We build a word to id
dictionary to tokenize terms in the dataset. (2) The entire cor-
pus is used to train a neural network model Mw2v to maximize
the conditional probability of a word given its context, i.e.:

argmax
θ

∏
(ω,c)∈D

p(ω|c;θ) (1)

in which θ is the optimization goal while maximizing the
conditional probability of word (ω) given the context (c). D
is the set of all (ω,c) pairs. The context (c) of a word (ω) is
composed of a window of 5 terms centered at ω, and restricted
in the same string as ω. (3) We apply Mw2v to each word to
get its corresponding vector. The feature vector of the entire
string is constructed as the mean of all its token vectors.
(2) Latent Dirichlet Allocation. LDA is a classic topic model-
ing approach based on the Bag-of-Words model [6]. Its idea
is to construct a model of document-topic-term relationship
using unsupervised learning. Different from word embedding,
LDA generates human-interpretable topic models. With the
observation that different devices usually show diverse topic
distributions, we utilize LDA to statistically model the topic
distribution of the pseudo natural language features.

4.3 Multi-view Wide & Deep Learning

Features extracted in Section 4.2 are organized into views
based on their host protocols, as listed in Table 3. Some sim-
ple protocols, such as ARP, generate identical packets from
different devices. They only contribute to the protseq feature,
which records the sequence of protocols used by a device.

60 29th USENIX Security Symposium USENIX Association

Figure 2: An overview of the multi-view wide and deep learning framework.

Table 3: View dimensionality before/after embedding.
view base protocols dimensionality
DHCP DHCP and DHCPv6 85/680
mDNS mDNS 7/128
SSDP SSDP 67/536
LBN LLMNR, BROWSER, NBNS 16/128
UDP other UDP features 1/128
protseq protocol sequence & MAC prefix 2/136

In multi-view embedding representation, six views are for-
mally denoted as: F = {v1,v2,v3,v4,v5,v6}. We learn a global
word embedding space and LDA topic space for each view.
The embedding representation of view vi is defined as:

ei = f i(vi;wi) (2)

where wi is the view-specific column-index matrix for vi. f i is
a range of column-specific embedding operations (id embed-
ding, word2vec, and LDA), followed by a concat operation
to generate view vi’s final dense embedding ei.

4.3.1 Deep Fusion

The deep fusion component implements the early-fusion
model of multi-model learning. We fuse the dense embedding
ê = [e1,e2, . . . ,e6] into one compact vector e as the initial
input of the fusion neural network. Based on offline experi-
ments, we choose affine transformation as the attention oper-
ation gatt(·), instead of other popular operations such as sum
fusion, max fusion or concatenation fusion.

gatt(ê;Wa,ba) = softmax(tanh(W T
a ê+ba) (3)

e = gatt(e1,e2, . . . ,e6) (4)

where Wa and ba are the affine transformation parameters.
Next, we feed the fusion vector e into a deep neural net-

work f deep(·). Its main component is a standard multi-layer
perceptron (MLP), where the output of layer k is defined as:

`(k+1) = σ(W (k)`(k)+b(k)) (5)

σ is the ReLU (Rectified Linear Unit) activation function
(except that the last layer is a fully connected layer). W (k) and
b(k) denote the perceptron weight and bias, respectively.

The objective loss Ldeep of the deep component is defined
as a maximum likelihood estimation function P̄:

Ldeep = P̄(y = t|e;θ) =
C

∏
c=1

P(y = tc|e;θ)I(y=tc) (6)

where C is the training set, and tc is the label of sample c. P
is the conditional probability of a sample being labeled as tc
under input e, with θ as the parameter set. I is the indicator
function. The optimization progress is denoted by maximum
log likelihood and stochastic gradient descent ∇:

∇θL
deep = argmax

θ

Ee∼p̂view log(f deep ◦gatt(e)) (7)

where E is the expectation and p̂view is the distribution of e.
As a feedforward neural network, the classification probability
f deep
tc of the deep fusion network is defined as:

f deep
tc =

exp(`(K)
tc)

∑
tc

exp(`(K)
tc)

(8)

4.3.2 Wide Fusion

Besides the deep component for generalization performance,
we add another wide component, which implements the late-
fusion model of multi-model learning, to memorize the inter-
actions among features, views and labels. The wide compo-
nent takes ê as input, applies affine transformation on each
view ei and trains a wide linear model to produce:

pi(y = t|ei) (9)

where pi is the classification result from view i. Similar to the
deep component, we also use maximum log likelihood and
stochastic gradient descent to define and optimize the loss of
wide component Lwide:

∇θL
wide = argmax

θ

∑
ei∈ê

Eei∼p̂view log(f wide(ei)) (10)

where f wide(·) represents a one-layer network for multi-
class classification, whose output is also narrowed by softmax.
The c-th element of the wide fusion output, f wide

tc , indicates
the probability of the sample (device) being labeled as tc. It is
defined as the sum of view-wise probabilities:

USENIX Association 29th USENIX Security Symposium 61

f wide
tc = ∑

ei∈ê
pi(y = tc|ei) = ∑

ei∈ê

exp(ωT
i ei + γi)

∑
tc

exp(ωT
i ei + γi)

(11)

As defined in [8], there are two essential requirements for
the wide component: (1) only linear operations are allowed
in the wide model. Therefore, ωi and γi in Eq. (11) are affine
transform parameters. (2) the output of the wide component
is linearly merged to the deep component. Hence, we fuse the
output of the wide and deep components and define the final
conditional probability of the classifier output as:

f f inal
tc = f wide

tc + f deep
tc (12)

4.3.3 View Consistency and Malicious Device Detection

Besides the wide and deep learning approach for mobile de-
vice identification, our second objective is to identify mali-
cious devices through BC/MC network features. To achieve
this, the following two assumptions are necessary:
Assumption 1. For a benign testing sample, label probabil-
ities pi(y = t|ei) generated from different views in the wide
component shall demonstrate strong consistency.
Assumption 2. When label probabilities from different views
demonstrate certain level of inconsistency/disagreement, the
device is either new to the model, or fabricated/forged.

In multi-model learning, view consistency (Assumption
1) is a fundamental objective that is often referred to as the
consensus principle. It is achieved by different mechanisms
such as co-training or shared latent sub-space. In the wide
and deep components of OWL, views are jointly optimized so
that view agreements are implicitly included in the objectives.
To further enhance the mutual agreements across views, we
define the correlation-based loss to explicitly maximize view
consistency in training. First, view correlation is defined as:

corr(pu,pv) = ‖pu−pv‖2
2 (13)

where pu and pv are output vectors from two different views
of the wide component. Their correlation is defined with L-2
norm. The loss function is defined as a sigmoid function:

L+ = ∑
(u,v,k)∈Dpri

log
1

1+ e−corr(pk
u,p

k
v)
, (14)

where L+ is the loss of augmented correlation, (pk
u,p

k
v) denote

the output from views u and v for sample k, and Dpri denotes
the priori dataset which includes all labeled benign samples.
Note that we do not have any known malicious sample in the
initial dataset. We also assume that benign samples always
significantly outnumber malicious samples in the dataset.

Assumption 2 denotes that malicious devices that attempt to
fabricate identities often cause inconsistencies in the BC/MC
packets. In OWL, we quantitatively model the degree of view
inconsistency, and use it for malicious device detection:

∑
1≤u,v≤6

(ηcorr(pk
u,p

k
v)+(1−η)I(A(pk

u) 6= A(pk
v)))> ε (15)

where A returns the index with the largest probability in pk. η

is a trade-off parameter in [0,1], which balances the probabil-
ity inconsistency corr(pk

u,p
k
v) with the type inconsistency. ε

is the threshold that separates benign and suspicious samples.
Last, when malicious devices are detected and confirmed

through manual investigation, they are formally labeled and
used to train a fourth loss function, which attempts to maxi-
mize view inconsistency for known malicious devices:

L− = ∑
(u,v,k)∈Dpos

log
1

1+ ecorr(pk
u,p

k
v)

(16)

where Dpos denotes the posterior dataset of labeled malicious
samples. They are also removed from the benign set Dpre.

Finally, four loss functions are combined to learn all pa-
rameters jointly (Eq. 17). In summary, the deep component
(Ldeep) is a maximum likelihood estimation function opti-
mized towards the best classification performance for device
labels under input features; the wide component (Lwide) is
to optimize classification performance on each view; the L+

component is optimized towards the maximum view agree-
ment for benign samples; and the L− component is to maxi-
mize the view inconsistency for malicious devices. All four
objectives are integrated in the MvWDL model (Figure 2).

h̄ = Ldeep +Lwide +L++L− (17)

5 Implementation and Experiments

In this section, we briefly introduce the implementation of
OWL, and then present our experiment results.

5.1 Dataset and Data Labeling
At the finest granularity of the device identification task, each
device is expected to receive three labels:

{Manufacturer, Type, Model}

We refer to the literature [23, 24, 33, 43] to define 34 types
of devices. Examples of popular types of devices are:

phone computer pad router camera smart-plug
smart-switch virtual-machine game-console tv
lightbulb printer kettle watersensor watch

Based on the availability and trustworthiness of labels, our
samples are categorized into four sets: (1) samples with vali-
dated labels (i.e., the ground truth data); (2) samples labeled
in the semi-automatic process; (3) samples with auxiliary
(SSDP) features; and (4) samples without any label.
Ground Truth Data. A portion of our data was collected
in controlled environment, such as our own lab network or

62 29th USENIX Security Symposium USENIX Association

home network. We obtained the true labels of such devices.
We were also able to verify the manufacturer/type/model of
some display items in electronic stores. In total, we have 423
devices with validated labels in our ground truth dataset. Note
that each device in this category receives all three labels.
Semi-automatic Device Labeling. The majority of the
samples were collected from uncontrolled environments. To
create labels, we design a semi-automatic labeling process:
(1) for an unlabeled device, we manually examine human-
interpretable text in the sniffed packets (fields listed in Table
2). If the information appears to be benign and consistent,
we label the device accordingly. Note that we may not learn
all three labels for a device. (2) When patterns are observed
from a specific manufacturer/type/model of devices, we
create labeling rules in the form of {Condition => Label}.
For instance, {MAC:D-link; HostName:DCS-930LB =>
(D-link, camera, dlink_camera_dcs-930lb)} states
that when MAC prefix indicates D-link and DHCP Option-12
(HostName) contains string “DCS-930LB”, the device
labeled as D-Link camera DCS-930LB. (3) The rules are
used to process all unlabeled samples. All automatically
generated labels are verified by the creators of the rules.
Rules may be refined and re-applied during this process. We
then move to (1) for the next unlabeled device. (4) All labels,
manually or automatically created, are further reviewed and
confirmed by another member in the team.

Eventually, we annotated 4,064 devices to the finest granu-
larity: {manufacturer, type, model}, among which 410 distinct
device models were identified (the ground truth data is not
included here). In addition, 6,519 devices were annotated with
{manufacturer, type}, while the exact models were unknown.
15,895 devices were labeled with {manufacturer} only. They
are called the annotated dataset. 4,871 devices were left with-
out any label, i.e., the labelless dataset. Last, 78 devices were
set aside as supplementary testing data (to be discussed).

Among the three labels, manufacturer is the easiest to iden-
tify and reveals the least amount of information. It does not tell
administrators how the access policies could be configured, or
tell other users if the device could be suspicious. Meanwhile,
sometimes the MAC prefix only tells the manufacturer of
the network components, instead of the manufacturer of the
device itself. For instance, we have seen several different de-
vices carrying TP-Link’s mac prefix. Therefore, some devices
are left unlabeled although the MAC prefixes are known.
The Sanitized Dataset. We used human-interpretable textual
content in network packets for device annotation. The text
content is also processed as pseudo natural language features
and used for device identification in OWL. Meanwhile, we
also like to answer this question: “How much does OWL rely
on human interpretable textual features to identify devices?”
For this purpose, we sanitized all the annotated samples by
removing all identifiers (labels were preserved for evaluation
purposes). That is, we removed all the keywords that are used
in {Condition => Label} rules, including all the MAC pre-

fixes, to create this Sanitized Dataset. We verified that neither
the labeling rules nor the human annotators were able to dis-
tinguish any device (at any granularity) in the sanitized data.
Samples with Auxiliary Features and Supplementary
Testing Data. As introduced in Section 3.3, we followed the
device description URLs in SSDP notify to obtain auxiliary
features for devices in our organizational network. We col-
lected meaningful device descriptions for 180 devices. They
are utilized in two ways: (1) for 102 samples that are anno-
tated to {type} and {model} levels in the labeling process,
we employ auxiliary features to validate the labels. They are
included in the annotated dataset. (2) For samples that are
labelless or only labeled with {manufacturer}, we deliberately
set them aside and only used them in testing. We call this set
of 78 devices the Supplementary Testing Dataset.
Trivial Features and Unidentifiable Devices. Feature sets
that carry identical values across many device types are called
trivial features. Devices with only trivial features are uniden-
tifiable in theory. We identify such devices in four steps: (1)
apriori is used to find feature frequencies for each device
type. (2) Devices with informative protocols (mDNS, SSDP,
DHCP, DHCPv6, LLMNR, NBNS and BROWSER) are eliminated. (3)
In the remaining devices, feature sets that appeared in more
than N device types are called trivial features. (4) Devices
that contain only trivial features are marked as unidentifiable.

5.2 Experiment Results
To test the performance of the MvWDL model presented in
Sec 4, we evaluate its performance from three aspects: (1)
the accuracy and coverage of classification in comparing with
other methods, (2) performance on sanitized data (extreme
condition), and (3) the speed of device identification.
Metrics. The performance of device identification is evalu-
ated by three metrics: (1) the coverage (C) denotes the fraction
of all devices that OWL (or another approach) could generate
a label for; (2) the accuracy (A) is the fraction of labeled
devices that are correctly labeled; and (3) the overall identifi-
cation rate (OIR) denotes the faction of all devices that are
correctly labeled. They are formally defined as:

C = |{labeled devices}|/|{all devices}| (18)

A =
|{correctly labeled devices}|
|{labeled devices}|

(19)

OIR =
|{correctly labeled devices}|

|{all devices}|
=C×A (20)

We compare the performance of OWL with state-of-art
device identification mechanisms, which could be roughly
categorized into fingerprint-based and rule-based approaches.
Fingerprint-based approaches extract features from network
traffic and then employ supervised learning for device identi-
fication. Among this category of approaches, WDMTI [64]
produces good performance on MC packets (DHCP). Rule-

USENIX Association 29th USENIX Security Symposium 63

based approaches extract text keywords from payload of unen-
crypted network traffic to create {keywords->device} rules
for device identification. ARE [24] is the state-of-art approach
in this category of solutions. We implemented WDMTI, ex-
tracted its features from our dataset, and trained/tested it in
the same way as OWL. We also implemented ARE to extract
rules from our training data and applied them on testing data.
Note that we employed ARE on different protocols from [24].
Performance Evaluation on Ground Truth Data. We com-
pare the performance of WDMTI, ARE and OWL on the
ground truth data. We compare their accuracy, coverage and
OIR at three different granularity, from coarse to fine: {man-
ufacturer}, {manufacturer, type}, and {manufacturer, type,
model}. We perform a 10-fold cross validation and demon-
strate the results in Figure 3 (a). The results show that: (1)
OWL provides the best overall performance (OIR) at all gran-
ularity levels. Its coverage is consistently the highest, as OWL
could always extract features from the network traffic and
predict a label. At finer granularity, OWL significantly outper-
forms both ARE and WDMTI in OIR. (2) ARE has the best
accuracy but limited coverage, especially at fine granularity
levels. It is able to correctly identify the manufacturer of more
than 80% of the devices, since MAC prefixes are used for this
label and they are mostly available. For type and model, the
informative textual terms are not always available in network
traffic, hence, ARE is unable to identify the majority of de-
vices. (3) WDMTI solely depends on features extracted from
DHCP packets, hence, its coverage is always limited.
Performance Comparison on Annotated Data. We evalu-
ate all three approaches on the annotated dataset, as shown in
Figure 3 (b). First, since we were able to annotate the manufac-
turer of all the samples in this dataset, they all contain enough
features for OWL and ARE to identify the manufacturer, i.e.,
they both achieve C = 100% on {manufacturer}. Not all de-
vices contain enough information for ARE to identify their
type and model. For the same reason, we were unable to an-
notate type and model these samples in the dataset. However,
OWL could still utilize non-human-interpretable features to
classify these devices. Hence, OWL’s coverage is significantly
higher than ARE and WDMTI for the two fine-grained labels.

Next, we evaluate the accuracy of all three approaches
based on the annotations. We do not have {type} and {model}
annotations on more than 50% of the samples. Although OWL
is able to estimate these labels for unannotated samples, we
cannot tell whether such estimations are correct. That is, for
the {manufacturer, type} and {manufacturer, type, model}
granularity, coverage (C) is evaluated on all samples in the
annotated dataset, while accuracy (A) is only evaluated on
partial data–samples with {type}, and {model} annotations.
Therefore, we mark accuracy and OIR with A* and OIR* in
the figure, where OIR∗ =C×A∗. From Figure 3 (b), we can
see that OWL achieves similar accuracy to ARE. We can also
expect OWL to generate better OIR in these two categories,
due to its significant advantages in coverage.

At the {manufacturer, type} granularity, OIR* was calcu-
lated from 10,583 samples that have the {type} label. The
other 15,895 samples did not contain enough information for
human annotators to recognize their types. Therefore, A∗ and
OIR∗ represent the upper-bound of the actual A and OIR. To
estimate the lower-bound of A, we sanitized the 10,583 anno-
tated samples by removing all textual features and MACs –
now they provide even less information than the 15,985 unla-
beled samples. OWL achieved 88.4% accuracy on sanitized
data. A reasonable estimation is that OIR ∈ [0.884,0.975].
From another angle, our true groundtruth dataset has very
similar device/protocol distributions with testing data. OWL
achieved 90.98% OIR on groundtruth data. Therefore, OIR
on annotated data is expected to be similar: OIR≈ 0.9098.
Performance on Sanitized Data. We generated a sanitized
dataset to test OWL’s performance in extreme conditions,
where all human-interpretable contents are removed from raw
data. OWL’s coverage, accuracy and OIR on the sanitized
dataset are shown in Figure 3 (c). In particular, category 1
({manufacturer}) was evaluated against all 26,478 sanitized
samples. Category 2 was evaluated on 10,583 samples with
{manufacturer, type} labels; while category 3 was evaluated
against 4,064 samples with all three labels. OWL achieved
100% coverage in the later two categories, since the basic
protocol features still existed after data sanitization. However,
after removing MAC prefixes, some samples in category 1
cannot be identified since no meaningful feature was left.
OWL’s accuracy is still high, in the range of [0.75,0.88].
Performance Comparison with Other Classifiers. We
have explained the rationale of choosing multi-view learn-
ing in Section 4.1. Meanwhile, the choice of specific classifier
and fusion strategy is mostly empirical: (1) we have enough
features and samples to support deep learning, which demon-
strated superior performance in ML literature; (2) we need
a late-fusion component to measure inconsistencies among
views for anomaly detection; (3) we need to handle the differ-
ent distinguishability of different protocols against different
device types. Now we experimentally compare MvWDL with
other popular classification algorithms. The Gradient Boost-
ing Decision Tree (GBDT) [26] is among the best non-NN
classifiers for categorical features. The fastText [31] is a state-
of-art word embedding and classification library by Facebook.
We also employ a generic deep neural network (DNN). We
use 10-fold cross validation on annotated data, which has
significantly more samples than other datasets. Figure 4 (a)
shows the average accuracy of each classifier over all labels.
MvWDL achieves the best performance, while DNN is a close
second. fastText was the least accurate, which may be caused
by the smaller training set than fastText’s expectations.
Device Detection Speed. Another important metric is the
time for OWL to recognize all the devices in a WiFi net-
work. While it only takes mini-seconds for a trained MvWDL
model to classify a new device, packets/features come to OWL
slowly in real world settings. We tested the real-time perfor-

64 29th USENIX Security Symposium USENIX Association

Figure 3: Experiment results: (a) Performance comparison of ARE [24], WDMTI [64] and OWL on ground truth data (X-axis: C: coverage;
A: accuracy; OIR: overall identification rate). (b) Performance comparison on annotated data. * Note that accuracy and OIR was only evaluated
on partial data in the later two categories (please see detailed discussions in Section 5). (c) Performance of OWL on sanitized data.

Figure 4: (a) Performance comparison with other classification
algorithms. (b) Device detection speed in ground truth data.

mance of OWL on the ground truth data. We assumed that
OWL was connected to the network at t0, and gradually fed
packets to it according to their timestamps. We assessed OIR
at 1-second intervals. As shown in Fig. 4 (b), OIR increased
rapidly for approximately 240 seconds, when 80% of the de-
vices were correctly identified at all granularity levels. OWL
reached its peak performance in approximately 500 seconds.
Supplementary Data and Labelless Data. The supplemen-
tary testing data contains 78 device descriptions from URLs
in SSDP notify messages. Device descriptions confirmed the
classification of 63 devices, partially supported 14 devices
(e.g. device labeled Samsung Galaxy while description says
“Android”), and denied the classification of one device.

Last, devices in the labelless dataset did not provide enough
features for labeling, however, we still attempted to validate
the predicted labels with the limited information in the pack-
ets. 71% of the labels were supported, while only 1% of the
labels were denied (e.g., a sample was classified as a camera
but one packet contains keyword “windows”).
Misclassified Devices. We manually examined the misclassi-
fied samples to identify their causes. First, most misclassifi-
cations at {model} level were classified into a similar model
from the same vendor, e.g., Samsung Galaxy-note8 phones
identified as Galaxy-note9, and HP M1536dnf printers identi-
fied as M227fdw. Many devices misclassified at {type} level
were classified into the vendor’s other product line, e.g., some
Apple Watches with limited BC/MC packets were identified
as iPhone. Finally, third-party WiFi modules of some devices
caused confusions at {manufacturer} level.

Low confidence classifications are often unknown or forged
devices, which may be sent to system admins for manual

evaluation. Classifying them into “unknown” will decrease
OWL’s coverage but increase its accuracy. They are also very
likely to be detected by OWL’s malicious device identifier.

6 Malicious Device Identification

As discussed in Section 4, when a device demonstrates incon-
sistent features in different protocols, it could be malicious.
OWL makes the first attempt to utilize view inconsistency to
identify abnormal devices, as denoted in Eq. 15. We apply
the algorithm on all the samples in our dataset, and manually
examine the devices that trigger the alarm. We present three
cases of suspicious devices identified in our experiments, as
well as the case of (hidden) camera detection using OWL.
“Spoofed” AppleTVs. A group of 31 devices demonstrated
similar abnormal behaviors that triggered the alarm. The mDNS
view classified all these devices into AppleTV with strong
confidence; however, none of the other views predicted these
devices as AppleTV, and their confidence levels were all rela-
tively high. We further manually examined these devices.

First, the devices were labeled as various models of TVs or
stream casting receivers. Some samples were from the ground
truth dataset so that their labels were physically checked
with the device. Others were manually verified in the semi-
automatic labeling process, especially, their MAC prefixes
were consistent with the labeled manufacturers. Hence, the
labels, as listed in Table 4, appear to be consistent with the
actual device model. However, we further scrutinized the orig-
inal mDNS packets from these devices, and confirmed that they
are very similar to other AppleTV devices in our database.

Further investigation ties the behaviors from these devices
to Apple’s AirPlay feature. AirPlay is Apple’s proprietary
protocol suite for multimedia streaming over WiFi. Since
Apple never open-sourced or licensed AirPlay, this feature
is supposed to be seen on Apple devices only. However, the
proprietary AirPlay protocol has been reverse engineered,
and several open-source implementations are available on
Github, e.g., open-airplay4. Our investigation also discover
that the AirPlay protocol in all the malicious “counterfeit
AppleTVs”, except {MTN, TV}, was developed by a corpo-

4https://github.com/jamesdlow/open-airplay/

USENIX Association 29th USENIX Security Symposium 65

https://github.com/jamesdlow/open-airplay/

Table 4: Devices pretending to be AppleTVs.
Xiaomi,TV,4 Leshi,TV,x55 Leshi,TV,x65s
Gaoshengda,TV Funshion,TV Chuangwei,TV
Hisense,TV,vidaa PPTV,TV Changhong,TV,43s1
whaley,TV,w50j MTN,TV Changhong,TV,LED50
Rflink,TV Nebula,TV Tianmao,Magiccast,m18

ration named Lebo (or HappyCast) 5. The homepage of Lebo
corporation claims that they independently researched the
protocol for casting streaming media from iOS system and
developed the Lebo software suite.

For validation, we deployed the open-airplay library on
a Windows laptop as a “simulator”. Apple devices in the same
network identified it as a valid AirPlay receiver. We captured
BC/MC packets from the simulator, and further examined the
mDNS packets. The mDNS Resource Records of the simulator,
counterfeit AppleTVs, and the authentic AppleTVs were al-
most identical. The simulator and the counterfeit AppleTVs
even shared higher similarities than that between the counter-
feit and the authentic AppleTVs. All other BC/MC packets
from the simulator behaved the same as the host laptop.

In this case, OWL was able to identify abnormal incon-
sistencies across views for a group of seemingly malicious
devices. We discovered the root causes of the inconsistency
through further manual investigation. Set aside legal implica-
tions of counterfeiting, this case demonstrates the capability
of OWL in identifying spoofed devices in the real world.
Fake DHCP Server and Gateway. Another device in the
labelless dataset also triggered the alarm in the experiment.
The DHCP view labeled it as a router with high confidence,
which was not agreed by other views. Further investigation
showed that the device broadcast DHCP Offer and DHCP ACK
messages to inform other devices the gateway of the network
is itself. This behavior clearly resembled routers or gateways
in WiFi networks. However, mDNS and SSDP views classi-
fied this device as a Microsoft laptop (model: surface_book).
The MAC prefix also confirmed its vendor as Microsoft.

A reasonable explanation is that the Microsoft surface book
spoofed a gateway to lure others to connect through it. Exami-
nation of the DHCP request packets from other devices in the
network revealed that some devices did connect through this
fake gateway, which could easily launch man-in-the-middle
attacks, or use a captive portal to phish the victims.

To confirm our speculation, we simulated the same attack
in our lab network. We employed Yersinia in Kali Linux to
send DHCP Discover to exhaust the IP resource of the au-
thentic router. DHCP service was then started on the Kali
computer using itself as the gateway. Very soon, we observed
new devices requesting IP addresses from the spoofed gate-
way. We sniffed the BC/MC packets from this gateway, and
fed them to OWL, which generated an alarm that was very
similar to the one for the rogue gateway in our dataset.
Virtual Machines. OWL identified several devices that

5http://www.hpplay.com.cn/index_english.jsp

demonstrated strong discrepancy between mDNS and LBN
views. For example, several devices were identified as Mac-
books on mDNS view and MAC prefix. Meanwhile, LBN
view classified them to be computers manufactured by other
vendors. Through further investigation, we concluded that
these were computers running virtual machines that connected
to the networks with Network Address Translation (NAT).

In practice, a virtual machine has three mechanisms to con-
nect to the network: (1) NAT, (2) bridged network, and (3)
host-only network. With NAT, the VM and the host system
share a single network identity, so that packets from the VM
are directly disseminated by the host. With bridged network
mode, the VM may get its own IP while sharing the same
MAC with the host. The VM may also get its own MAC,
where the VM vendor could be identified by the MAC pre-
fix. For example, MAC prefix “00-05-69” denotes VMware
and “00-1c-42” denotes Parallels. Last, VMs with host-only
network only communicates within a private network on the
host, hence, they do not connect to the external network at all.

When a VM runs in NAT mode or shared MAC in bridged
mode, OWL is able to detect the inconsistencies caused by
the shared identity. OWL is only effective when the guest
OS differs from the host OS, so that discrepancies in the im-
plementations of network protocols could be discovered. We
further tested other guest/host OS combinations, including An-
droid x86 VM running on MacBooks or Windows desktops,
and confirmed that OWL was able to detect all of them given
enough sniffed BC/MC packets. Last, for VMs with their own
MAC addresses, they were correctly annotated as VMs in our
dataset and accurately detected in the experiments.
Hidden Cameras. Surveillance cameras, especially the hid-
den ones, are often considered as sensitive/malicious devices
that infringe users’ privacy. Efforts have been made in the liter-
ature to detect hidden cameras based on their unique network
traffic patterns during video streaming [10, 61, 61]. Mean-
while, we observed that the adversaries may set the (hidden)
cameras to stand-by mode or to store videos locally to avoid
traffic-based detectors. They only transmit real-time or stored
video streams when they receive remote commands from their
owners, who may pick a time when the victims’ detectors are
likely to be offline, e.g., late night or after hotel checkout.
Nevertheless, these cameras still connect to the network in
order to receive remote commands, therefore, they send out
BC/MC packets and they can be detected by OWL.

In our experiments presented in Section 5, OWL achieved
100% accuracy in detecting cameras at {manufacturer,
type} granularity, when the training set contains samples
with the same {manufacturer, type}, but not necessarily the
same model. For example, when we have {dlink, camera,
dcs-930lb} in the training data, OWL can correctly identify
DLink DCS-935l cameras as {dlink, camera}, even though
it has never seen the DCS-935l model before, i.e., it does not
have {dcs-930lb} in its label set. This is explained by the
fact that the same manufacturer often reuses the hardware and

66 29th USENIX Security Symposium USENIX Association

http://www.hpplay.com.cn/index_english.jsp

software modules, especially for products in the same line.
Meanwhile, OWL also identified several examples of OEM
cameras in our dataset. For example, when we put only one
camera {lenovo, camera, snowman} in the training data,
a Xiaomi Dafang-DF3 camera and a Qihoo360 D302 camera
were both classified as Lenovo cameras. Further examination
of raw data confirmed that all three products shared nearly
identical features in several views. Note that these two new
cameras were also significantly different from other Xiaomi
or iQhoo360 devices. We could confidently infer that all three
products shared certain software modules or they might be
OEM devices from the same original manufacturer. Last, al-
though they were correctly labeled as cameras, these devices
also triggered alarms of unknown/malicious devices, which
calls for the attention of the administrator or user.

7 Attacks Against OWL

In this section, we discuss three potential attacks against OWL:
the naive attacks, the knowledgeable attacks, and the expert
attacks. They share the same objective: to hide the identities
of (potentially malicious) devices by confusing the device
classifier and escaping from the malicious device detector.

7.1 The Naive Attacks
The Threat Model. The naive adversaries do not have the
knowledge or capability (e.g., root privilege) to change sys-
tem code/driver or privileged files/attributes. They can only
employ OS-provided GUI to modify user-defined attributes
that are adopted by the network modules. With the lowest
technical barrier, naive attacks are highly feasible to novices.
The Approach. We examine the most popular OSs for con-
sumer mobile/IoT devices (Android, iOS, Windows, and Ma-
cOS) to identify the system attributes that could be changed
through system settings and then adopted in BC/MC packets.
Naive attackers could configure the “device name” attribute in
iOS (un-rooted) and MacOS (admin-only), which is adopted
in the HostName field of DHCP, mDNS, and other protocols.
Although users could change “device name” in Android, the
attribute is only used as device identifier in Bluetooth, WLAN
Direct, hotspot, and USB, while all BC/MC protocols use a
manufacturer-assigned value in HostName. We also examine
user settings of IoT devices in our lab and identify how the
user-entered values are adopted in BC/MC messages. The
devices and settings in IoT devices are more ad-hoc, as users
could only change one or two attributes in a few devices that
impact the MC/BC packets (mostly HostName). Note that
we do not consider virtual machines, use of hacking tools or
command line methods in the naive attacks.
Experiment Results. In the experiments, we randomly se-
lected 1,000 devices with user-editable attributes from the
annotated dataset with all {manufacturer, type, model} la-
bels. For each device, we overwrite all user-editable attributes
with values from another random device with different labels.

Figure 5: The knowledgeable attacks: (a) Device identification accu-
racy of OWL under attack. (b) Malicious device detection accuracy
and recall of OWL. X-Axis: percentage of modified features.

As a result, OWL achieved OIR = 0.985, OIR = 0.964 and
OIR = 0.902 at three granularity levels, respectively.

7.2 The Knowledgeable Attacks

The Threat Model. The knowledgeable adversaries have full
control of the system and understand OS hacking. However,
they do not have the system source code (e.g., Windows or
proprietary IoT devices), so that they need to reverse engineer
the system or to hack on OS/application binaries. Therefore,
it could be challenging to completely overwrite all attributes
from all BC/MC protocols, since the attributes could be de-
rived or scatteredly distributed in the system. This represents
the majority of the advanced adversaries against OWL.
The Approach. The knowledgeable adversaries always at-
tempt to forge a specific device instead of randomly modi-
fying each attribute, since this gives them the best chance to
escape from correct identification. Formally, an adversary at-
tempts to hide a suspicious device S by replacing n attributes
(out of N total attributes) from its BC/MC packets with values
from a benign device B. We want to answer two questions
through experiments: (1) When n increases from 0 to N, how
would OWL’s device identification performance change? (2)
How would OWL detect the suspiciously altered device?
Experiment Results. In the experiments, we randomly sam-
pled 1000 devices with all three labels from the annotated
data set. For each device S, we randomly selected another
device B from a different {type}, and overwrote n attributes
of S with corresponding values from B. Figure 5 (a) shows the
device identification accuracy of OWL at three different gran-
ularity levels. When 20% of the features of S are overwritten
by values from B, OWL’s accuracy drops to 91.5%, 88.9%
and 85% for manufacturer, type, and model, respectively.

We added 1,000 random benign devices to the above dataset
to serve as negative samples. Recall (aka. detection rate) R
is defined as: R = T P

T P+FN , i.e., ratio of correctly detected ma-
licious samples out of all malicious samples. Accuracy A is
defined as A = T P+T N

ALL , i.e. the ratio of corrected classified
samples out of all samples. Figure 5 (b) shows the malicious
device detection performance under the knowledgeable at-
tacks. When 20% of the attributes are modified, R reaches
92.2% while the A is 95.95%. When majority or all of the
features are modified (n→N), S essentially becomes (almost)
identical to B, hence, both A and R drops.

USENIX Association 29th USENIX Security Symposium 67

Table 5: OWL’s performance against the expert attacks.
#view 1 2 3 4 5 6
Amanu f .929 .806 .509 .208 .101 .001
Atype .893 .793 .505 .212 .118 0
Amodel .878 .786 .502 .227 .136 0
A .952 .977 .985 .976 .950 .500
R .906 .957 .973 .955 .903 .003

7.3 The Expert Attacks

The expert adversaries have full control of the OS and they
are capable of making arbitrary changes to the system. They
can override all attributes of any BC/MC protocol from a
(suspicious) device S with attributes from a benign device B.

Rows 2 to 4 of Table 5 show OWL’s device classification
accuracy against the expert attacks on 1,000 devices, when
n ∈ [1,6] randomly selected views are forged. When 3 or
more views are forged, OWL’s accuracy drops significantly at
all levels. Rows 5 to 6 show OWL’s malicious device detec-
tion performance against the set of 1,000 benign and 1,000
attacked devices. Both accuracy and recall peaks when half of
the views are forged. When a malicious device successfully
mimics all 6 views, its MC/BC packets essentially becomes
identical to a benign device. Hence, OWL’s detection recall
drops to almost 0, while accuracy drops to 0.5, i.e., benign
devices are correctly identified as negative (true negative),
while malicious devices are also classified as negative (false
negative). However, when the adversary fakes 5 views but
misses one, OWL effectively detects the malicious device.

We also discuss two weaker versions of expert attacks: (1)
MAC modifiers: privileged users may easily modify devices’
MAC addresses, which is equivalent to overwriting half of
View #6. (2) Software installers: privileged users may in-
stall software(s), e.g., DHCP server, which interferes with
the device’s native fingerprint. Note that the original BC/MC
packets from the device stay intact. This is equivalent to
partially modifying view(s). In our experiments, OWL’s per-
formance against both attacks is similar to the performance
against expert attacks with same number of affected views.

Adversarial machine learning could be employed to attack
the MvWDL model. However, attackers need to carefully
engineer the BC/MC packets to generate adversarial attributes.
In practice, it could be easier to perform expert attacks to
overwrite all BC/MC packets in a device to hide its identity.

8 Discussions
In this section, we discuss several important issues: the secu-
rity properties of malicious device detection, the undetectable
devices, performance tradeoffs, OWL’s limitations, etc.
Security Analysis. We first provide a brief security analysis
of OWL, corresponding to the adversary model and two types
of malicious devices introduced in Section 2. (1) For genuine
devices that are disallowed in a network, such as hidden cam-
eras or unauthorized routers, OWL detects them with high

coverage and accuracy, as shown in Sections 5 and 6. More
discussions on performance trade-offs and undetectable de-
vices will be presented in this section. (2) When a fabricated,
counterfeit, or forged device attempts to hide its original iden-
tity (e.g., laptop) and report a fake identity (e.g., network
gateway), it is difficult to completely and accurately forge the
entire software/protocol suite at all layers. OWL detects the
subtle discrepancies among features from essential network
protocols. Meanwhile, virtual devices are often employed in
real-world attacks [52]. In OWL, virtual devices are either cor-
rectly detected as VMs, or trigger alarms due to dual identities
on the same MAC, as discussed in Section 6. Effectiveness of
OWL is shown in theory in Section 4, and demonstrated by
case studies in Section 6. However, due to the unavailability
of ground truth data, we are unable evaluate the recall of ma-
licious device detection. Note that the threshold ε in Equation
15 could be tuned with real world data to improve detection
rate. Meanwhile, false positives in malicious device detection
are more tolerable than false positives in network IDS, since
the number of devices in the WiFi network is significantly
smaller, so that a few false alarms would not exhaust network
administrators. Meanwhile, false alarms (mostly unknown
devices) could be labeled and used to retrain OWL to improve
classification accuracy and reduce false positives.
Silent Devices. Some devices are silent that they do not ac-
tively send BC/MC packet. They pose challenges to OWL’s
coverage. We discuss this issue from two aspects: (1) com-
pletely quiet devices, i.e., devices that send nothing at all,
are very rare. In the controlled environment, we compared
the ground truth data with the DHCP allocation table. We
found that laptops in sleep mode were the only devices that
did not generate any packet. Moreover, three TPLink smart
switches/plugs only sent DHCP packets when they first con-
nected to the network, and kept silent for more than 30 min-
utes thereafter. We also observed that printers sent BC/MC
messages even in sleep mode. (2) Devices-of-interest are
mostly not quiet. In our ground truth data, devices with more
computational power and devices that are discoverable in the
network all kept sending BC/MC packets. We have 93 cam-
eras that sent BC/MC packets in our dataset. Meanwhile, we
further examined 20+ popular webcams on the market and
they all continuously transmit BC/MC packets, even when
they were not capturing video streams. Last, some public wire-
less networks restrict BC/MC packets from being delivered to
the network. In such networks, regular users cannot employ
OWL to explore other (malicious) devices, however, system
administrators could still deploy OWL for device identifica-
tion, e.g., by mirroring traffic to the sniffing device.
The Trade-off between Coverage and Accuracy Besides
the silent devices, some devices only send very few packets
in their regular operation mode. For instance, 34.1% of the
devices in our dataset only sent BC/MC packets in one proto-
col during our data collection process (Figure 1 (c)). Further
examination showed that ARP, mDNS, DHCP and SSDP pro-

68 29th USENIX Security Symposium USENIX Association

tocols were used in 26.9%, 31.3%, 6.8%, and 4.3% of such
devices, respectively. Even with one packet, MvWDL could
extract features (protocol features and MAC prefix) and clas-
sify the device into a known label. However, in some cases,
this classification is like an “educated guess” with relatively
low confidence. In practice, mDNS and DHCP protocols are
both very informative, while ARP packets do not carry any
device-specific information except MAC prefix. In OWL,
there is a trade-off between coverage and accuracy: exclud-
ing the featureless devices will increase OWL’s accuracy, but
decrease its coverage. We can define various heuristics to
identify featureless devices, for example, utilizing trivial fea-
tures (as we have done in Section 5.1), or using simple rules
on feature count and feature types, etc. We do not further
elaborate on this aspect since it is more performance tuning
than technical contribution. Last, devices frequently join and
leave the network during our data collection process. When a
device happened to join at the end of a data collection session,
we were less likely to get full set of features. If we sniffed for
a little longer, we would have obtained more features.
MAC Randomization. To defend against device tracking at-
tacks (e.g. [14]), MAC randomization has been employed by
mobile devices to hide their universally administered MAC
addresses (UAAs) [39, 58]. As discussed in [39] and veri-
fied with our experiments on iOS and Android devices, MAC
randomization is only employed at probing – randomized, lo-
cally administered addresses (LAA) are used in probe frames.
When devices are associated to APs, their UAAs are used
for all subsequent communications. In theory, a locally as-
signed MAC, identified by its 7th bit of the most significant
byte, cannot be used in non-local communications since they
are not guaranteed to be unique. In OWL, packets are only
collected after devices are associated with APs, hence, OWL
always sees real MACs. However, [39] noticed a portion of
Windows/Linux devices using LAAs when associated to net-
works. This is also confirmed in our dataset: we found 140
devices (out of 31,850 devices) using locally assigned MACs.
Unicast Traffic. OWL solely relies on BC/MC traffic. Uni-
cast traffic has been used for device identification in the lit-
erature [24, 38, 57]. Unicast packets could be obtained using
active probing or eavesdropped at the gateways. Although not
available to normal users in the network, administrators may
extract additional features from unicast traffic, such as tim-
ing and flow features, application-layer protocols, DNS, TLS
handshakes, and textual features (banner grabbing). OWL
may be extended to: (1) extract features from unicast traffic
(such as [24, 42, 57]), and (2) add unicast-based views to the
MvWDL model to improve identification performance. How-
ever, consider the overhead to monitor unicast packets, it may
not be cost-effective to utilize them for device identification,
since OWL already provides very high OIR. However, using
unicast traffic enables the detection of software anomalies,
which are usually not detectable from BC/MC protocols.
Additional Info from BC/MC Packets. Besides manufac-

turer, type and model, we also found other information in
BC/MC packets that could be of interest to sys-admins. For
instance, we identified 6,343 devices with OS name, and 474
more with OS version, either from the textual information
revealed in BC/MC packets, or discovered from devices that
run only one OS, such as iOS on Apple phones. We extended
the MvWDL model with new labels, and tested the results
on our ground truth data. OWL’s identification accuracy was
98.2% on OS names and 78.4% on version. We also applied
keyword spotting in the sniffed packets, and found 8 types
of browsers from 1,021 devices and 9 video streaming appli-
cations from 101 devices, mostly from the User Agent field
in SSDP. As an application of OWL, we developed a tool to
match discovered devices, OS, and applications with CVE
database. Examples of potential device vulnerabilities and OS
vulnerabilities are shown in Tables 6 and 7. In practice, such
information is very useful to network administrators.
Limitations. Finally, we also acknowledge that the current
implementation of OWL has its own limitations, especially:
(1) Expert adversaries may escape from OWL by perfectly
mimicking all BC/MC packets from another device. For ex-
ample, if an emulator runs the genuine Samsung version of
Android including the original network module and full pro-
tocol stack, fakes a Samsung MAC, and ensures that the com-
munication is not interfered by the host machine, OWL would
report it as a benign Samsung device. (2) OWL is not de-
signed to detect software or application anomalies that do not
show any symptom in BC/MC traffic. However, as discussed
above, it is practical to include unicast traffic as additional
views in MvWDL, which has the potential to detect devices
that generate abnormal unicast traffic. (3) OWL will label
new devices (without any similar device in the training set)
as malicious devices. (4) The current design of OWL cannot
handle adversarial ML attacks against the MvWDL model.

9 Related Works

The problem of device identification has been studied from
various angles. Earlier approaches focus on fingerprinting or
authenticating individual devices. Various hardware features
have been used, such as clock skew [2, 16, 29, 32, 50], RF
parameters [46, 51], sensor imperfection/noise [3, 7, 15], etc.
A survey of wireless device fingerprinting is available at [62].
Devices are also identified from software features, e.g., [21,
27, 34, 35, 48, 59]. OWL is significantly different from this
group of approaches in objective, data, and methodology.

Network traffic has been used for both hardware and soft-
ware identification, such as network modules or OS [12, 13,
25, 54, 55, 58]. The Internet-wide IoT device discovery ap-
proaches, such as Censys [18], Nmap [37], SHODAN,ZMap
[20], and others [1, 19, 22, 63] mostly use banner grabbing
to actively scan for devices in the IP space, collect and ex-
amine textual features such as hard-coded keywords from
responses, and match them against known fingerprints. To

USENIX Association 29th USENIX Security Symposium 69

Table 6: CVE instances for collected device-types. (Score: CVE score; #: Device count)
manufacturer-type CVE ID score Vulnerability #
huawei_phone_p9 CVE-2016-8759 9.3 allow attackers to crash the system or escalate user privilege 25
huawei_phone_mate9pro CVE-2017-17320 9.3 allow attackers to execute malicious code 18
philips_bridge_huebridge CVE-2017-14797 7.9 allow remote attackers to read API keys 19
osram_light_lightify-home CVE-2016-5053 7.5 allow remote attackers to execute arbitrary commands 6
samsung_phone_galaxy-s6-edge CVE-2015-7888 7.8 allow remote attackers to create arbitrary files as the system-level user 4
apple_pad_ipad CVE-2013-3955 6.2 allow local users to cause a denial of service 15

Table 7: OS-related CVE instances relevant to our dataset.
OS CVE ID CVE score Vulnerability device count
android CVE-2018-9355 10 allow attackers to execute remote code with no additional execution privileges needed 1670
ios CVE-2018-4337 9.3 a memory corruption issue was addressed with improved memory handling 1690
linux CVE-2019-11683 10 allows remote attackers to cause a denial of service 129
mac_os_x CVE-2018-4259 10 multiple memory corruption issues 530
ubuntu CVE-2018-7584 7.5 allow attackers to copy a large string from stack-based buffer 11

tackle the scalability issue of manual labeling, ARE [24] cre-
ates a rule-discovery engine to mine labeling rules from text
corpora crawled from the web. OWL is different from device
discovery approaches that we only rely on passive traffic. Ac-
tive port scanning may be considered intrusive and forbidden
in many networks. OWL does not interrupt with the normal
operations of devices, nor does it intercept any peer-to-peer
traffic between the devices and their owners or clouds.

IoT Sentinel [43] extracts features from network traffic
and utilize a random forest classifier to identify device types.
Similarly, [53] employed six different classifiers on packets
streams for device type recognition. AuDI [38] developed an
unsupervised learning approach to cluster same type/model of
devices, without any labeled data. [42] identifies IoT device
types in a whitelist using features from TCP sessions. [28]
examines the network flows to the vendors’ servers for device
identification. [36] utilizes the requested domain names in
DNS traffic for the identification of vendors and device types.
WDMTI [64] uses Hierarchical Dirichlet Process on DHCP
features to classify IoT device types. OWL is different from
existing approaches that: (1) OWL utilizes passively collected
BC/MC packets, which does not require privileged access
to the network or using monitor mode at the WiFi adapter.
Existing approaches, except WDMTI, use peer-to-peer traffic.
(2) OWL integrates two important network management func-
tions, device identification and abnormal device detection,
into one comprehensive solution. And (3) OWL is tested on a
significantly larger dataset at three granularity levels.

Malicious IoT device detection have been studied [17,
41, 47, 49]. OWL is essentially different from them in the
objectives–OWL detects fabricated or forged devices, while
they mostly focus on devices’ adversarial behaviors.

10 Conclusion

In this paper, we present a novel mobile/IoT device identifica-
tion and abnormal device detection mechanism named OWL.
OWL extracts features from structural and textual informa-
tion embedded in the BC/MC packets. A multi-view wide and

deep learning (MvWDL) model is designed to identify the
manufacturer, type and model of devices. Meanwhile, OWL
also discovers the subtle evidence of inherent discrepancies
across views to detect fabricated/forged devices. Through
large-scale experiments, we show that OWL outperforms ex-
isting approaches in the literature in accuracy and coverage.

References

[1] M. Antonakakis, T. April, M. Bailey, M. Bernhard,
E. Bursztein, J. Cochran, Z. Durumeric, A. Halderman,
L. Invernizzi, M. Kallitsis, et al. Understanding the
mirai botnet. In USENIX Security, 2017.

[2] Chrisil Arackaparambil, Sergey Bratus, Anna Shubina,
and David Kotz. On the reliability of wireless finger-
printing using clock skews. In ACM WiSec, 2010.

[3] Zhongjie Ba, Sixu Piao, Xinwen Fu, Dimitrios Kout-
sonikolas, Aziz Mohaisen, and Kui Ren. Abc: enabling
smartphone authentication with built-in camera. In
NDSS, 2018.

[4] A Bartoli, J Hernández-Serrano, M Soriano, M Dohler,
A Kountouris, and D Barthel. Security and privacy in
your smart city. In Proceedings of the Barcelona smart
cities congress, volume 292, pages 1–6, 2011.

[5] Ron Bitton, Andrey Finkelshtein, Lior Sidi, Rami Puzis,
Lior Rokach, and Asaf Shabtai. Taxonomy of mo-
bile users’ security awareness. Computers & Security,
73:266–293, 2018.

[6] David M Blei, Andrew Y Ng, and Michael I Jordan.
Latent dirichlet allocation. Journal of Machine Learning
Research, 3:993–1022, 2003.

[7] D. Chen, N. Zhang, Z. Qin, X. Mao, Z. Qin, X. Shen, and
X. Li. S2m: A lightweight acoustic fingerprints-based
wireless device authentication protocol. IEEE Internet
of Things Journal, 4(1):88–100, 2016.

[8] H. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra,
H. Aradhye, G. Anderson, G. Corrado, W. Chai, M. Ispir,

70 29th USENIX Security Symposium USENIX Association

et al. Wide & deep learning for recommender systems.
In ACM RecSys Workshop on DLRS, 2016.

[9] Ningning Cheng, Xinlei Oscar Wang, Wei Cheng, Pras-
ant Mohapatra, and Aruna Seneviratne. Characterizing
privacy leakage of public wifi networks for users on
travel. In IEEE INFOCOM, pages 2769–2777, 2013.

[10] Yushi Cheng, Xiaoyu Ji, Tianyang Lu, and Wenyuan
Xu. Dewicam: Detecting hidden wireless cameras via
smartphones. In ACM AsiaCCS, pages 1–13, 2018.

[11] Cisco. Cisco visual networking index: Global mobile
data traffic forecast update, 2017–2022. Cisco White
Paper.

[12] Cherita Corbett, Raheem Beyah, and John Copeland. A
passive approach to wireless nic identification. In IEEE
International Conference on Communications, pages
2329–2334, 2006.

[13] Cherita L. Corbett, Raheem A. Beyah, and John A.
Copeland. Passive classification of wireless nics during
rate switching. Eurasip Journal on Wireless Communi-
cations & Networking, 2008(1):1–12, 2007.

[14] Mathieu Cunche. I know your mac address: Targeted
tracking of individual using wi-fi. Journal of Computer
Virology and Hacking Techniques, 10(4), 2014.

[15] A. Das, N. Borisov, and M. Caesar. Do you hear what i
hear?: Fingerprinting smart devices through embedded
acoustic components. In ACM CCS, 2014.

[16] L. Desmond, C. Yuan, C. Tan, and R. Lee. Identifying
unique devices through wireless fingerprinting. In ACM
WiSec, pages 46–55, 2008.

[17] Rohan Doshi, Noah Apthorpe, and Nick Feamster. Ma-
chine learning ddos detection for consumer internet of
things devices. In IEEE S&P Workshops, 2018.

[18] Zakir Durumeric, David Adrian, Ariana Mirian, Michael
Bailey, and J Alex Halderman. A search engine backed
by internet-wide scanning. In ACM CCS, 2015.

[19] Zakir Durumeric, Michael Bailey, and J Alex Halderman.
An internet-wide view of internet-wide scanning. In
USENIX Security, pages 65–78, 2014.

[20] Zakir Durumeric, Eric Wustrow, and J Alex Halderman.
Zmap: Fast internet-wide scanning and its security ap-
plications. In USENIX Security, pages 605–620, 2013.

[21] Peter Eckersley. How unique is your web browser? In
PETS, pages 1–18, 2010.

[22] Claude Fachkha, Elias Bouharb, Anastasis Keliris,
Nasir D Memon, and Mustaque Ahamad. Internet-scale
probing of cps: Inference, characterization and orches-
tration analysis. In NDSS, 2017.

[23] X. Feng, X. Liao, X. Wang, H. Wang, Q. Li, K. Yang,
H. Zhu, and L. Sun. Understanding and securing device

vulnerabilities through automated bug report analysis.
In USENIX Security, pages 887–903, 2019.

[24] Xuan Feng, Qiang Li, Haining Wang, and Limin Sun.
Acquisitional rule-based engine for discovering internet-
of-things devices. In USENIX Security, 2018.

[25] Jason Franklin, Damon Mccoy, Parisa Tabriz, Vicen-
tiu Neagoe, Jamie Van Randwyk, and Douglas Sicker.
Passive data link layer 802.11 wireless device driver
fingerprinting. In USENIX Security, 2006.

[26] Jerome H Friedman. Greedy function approximation: a
gradient boosting machine. Annals of Statistics, 2001.

[27] Alejandro Gómez-Boix, Pierre Laperdrix, and Benoit
Baudry. Hiding in the crowd: an analysis of the ef-
fectiveness of browser fingerprinting at large scale. In
WWW, pages 309–318, 2018.

[28] Hang Guo and John Heidemann. Ip-based iot device
detection. In Workshop on IoT Security and Privacy,
pages 36–42, 2018.

[29] Suman Jana and Sneha K. Kasera. On fast and accurate
detection of unauthorized wireless access points using
clock skews. In ACM MobiCom, 2008.

[30] Beth H Jones and Amita Goyal Chin. On the efficacy of
smartphone security: a critical analysis of modifications
in business students’ practices over time. International
Journal of Information Management, 35(5), 2015.

[31] Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. Bag of tricks for efficient text classifi-
cation. arXiv preprint arXiv:1607.01759, 2016.

[32] Tadayoshi Kohno, Andre Broido, and K. C Claffy. Re-
mote physical device fingerprinting. IEEE Transactions
on Dependable & Secure Computing, 2(2), 2005.

[33] D. Kumar, K. Shen, B. Case, D. Garg, G. Alperovich,
D. Kuznetsov, R. Gupta, and Z. Durumeric. All things
considered: An analysis of iot devices on home net-
works. In USENIX Security, pages 1169–1185, 2019.

[34] Andreas Kurtz, Hugo Gascon, Tobias Becker, Konrad
Rieck, and Felix Freiling. Fingerprinting mobile devices
using personalized configurations. PETS, 2016.

[35] Pierre Laperdrix, Walter Rudametkin, and Benoit
Baudry. Beauty and the beast: Diverting modern web
browsers to build unique browser fingerprints. In IEEE
S&P, pages 878–894, 2016.

[36] Franck Le, Jorge Ortiz, Dinesh Verma, and Dilip Kand-
lur. Policy-based identification of iot devices’ vendor
and type by dns traffic analysis. In Policy-Based Auto-
nomic Data Governance, pages 180–201. 2019.

[37] Gordon Fyodor Lyon. Nmap network scanning: The
official Nmap project guide to network discovery and
security scanning. Insecure, 2009.

USENIX Association 29th USENIX Security Symposium 71

[38] Samuel Marchal, Markus Miettinen, Thien Duc Nguyen,
Ahmad-Reza Sadeghi, and N Asokan. Audi: Toward
autonomous iot device-type identification using periodic
communication. IEEE JSAC, 37(6):1402–1412, 2019.

[39] Jeremy Martin, Travis Mayberry, Collin Donahue, Lucas
Foppe, Lamont Brown, Chadwick Riggins, Erik C Rye,
and Dane Brown. A study of mac address randomization
in mobile devices and when it fails. PETS, 2017.

[40] Jeremy Martin, Erik C Rye, and Robert Beverly. De-
composition of mac address structure for granular device
inference. pages 78–88, 2016.

[41] Y. Meidan, M. Bohadana, Y. Mathov, Y. Mirsky,
A. Shabtai, D. Breitenbacher, and Y. Elovici. N-
BaIoT—Network-based detection of IoT botnet attacks
using deep autoencoders. IEEE Pervasive Computing,
17(3):12–22, 2018.

[42] Y. Meidan, M. Bohadana, A. Shabtai, M. Ochoa, N. O.
Tippenhauer, J. D. Guarnizo, and Y. Elovici. Detection
of unauthorized IoT devices using machine learning
techniques. arXiv preprint arXiv:1709.04647, 2017.

[43] Markus Miettinen, Samuel Marchal, Ibbad Hafeez,
N Asokan, Ahmad-Reza Sadeghi, and Sasu Tarkoma.
Iot sentinel: Automated device-type identification for
security enforcement in iot. In IEEE ICDCS, 2017.

[44] Tomas Mikolov, Kai Chen, Gregory S Corrado, and Jef-
frey Dean. Efficient estimation of word representations
in vector space. arXiv:1301.3781, 2013.

[45] Keith W Miller, Jeffrey Voas, and George F Hurlburt.
Byod: Security and privacy considerations. IT Profes-
sional, 14(5):53–55, 2012.

[46] N. T. Nguyen, G. Zheng, Z. Han, and R. Zheng. De-
vice fingerprinting to enhance wireless security using
nonparametric bayesian method. In INFOCOM, 2011.

[47] Thien Duc Nguyen, Samuel Marchal, Markus Mietti-
nen, Hossein Fereidooni, N Asokan, and Ahmad-Reza
Sadeghi. DÏoT: A federated self-learning anomaly de-
tection system for IoT. IEEE ICICS, 2019.

[48] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel,
F. Piessens, and G. Vigna. Cookieless monster: Explor-
ing the ecosystem of web-based device fingerprinting.
In IEEE S&P, 2013.

[49] Jesus Pacheco and Salim Hariri. Anomaly behavior anal-
ysis for iot sensors. Transactions on Emerging Telecom-
munications Technologies, 29(4):e3188, 2018.

[50] Sakthi Vignesh Radhakrishnan, A. Selcuk Uluagac, and
Raheem Beyah. Gtid: A technique for physical device
and device type fingerprinting. IEEE TDSC, 12(5), 2015.

[51] Saeed Ur Rehman, Kevin W Sowerby, and Colin Coghill.
Analysis of impersonation attacks on systems using rf
fingerprinting and low-end receivers. Journal of Com-
puter and System Sciences, 80(3):591–601, 2014.

[52] SecureWorks. Virtual machines used to hide ac-
tivity. https://www.secureworks.com/blog/virtual-
machines-used-to-hide-activity, 2016.

[53] Mustafizur R Shahid, Gregory Blanc, Zonghua Zhang,
and Hervé Debar. Iot devices recognition through net-
work traffic analysis. In IEEE Big Data, 2018.

[54] Zain Shamsi, Daren B H Cline, and Dmitri Loguinov.
Faulds: A non-parametric iterative classifier for internet-
wide os fingerprinting. pages 971–982, 2017.

[55] Zain Shamsi, Ankur Nandwani, Derek Leonard, and
Dmitri Loguinov. Hershel: single-packet os fingerprint-
ing. Measurement and Modeling of Computer Systems,
42(1):195–206, 2014.

[56] R. Srikant and J. F. Naughton. Fast algorithms for
mining association rules and sequential patterns. 1996.

[57] Jianhua Sun, Kun Sun, and Chris Shenefiel. Automated
iot device fingerprinting through encrypted stream clas-
sification. In SecureComm, 2019.

[58] M. Vanhoef, C. Matte, M. Cunche, L. S. Cardoso, and
F. Piessens. Why MAC address randomization is not
enough: An analysis of Wi-Fi network discovery mech-
anisms. In ACM CCS, 2016.

[59] Antoine Vastel, Pierre Laperdrix, Walter Rudametkin,
and Romain Rouvoy. Fp-stalker: Tracking browser fin-
gerprint evolutions. In IEEE Security and Privacy, 2018.

[60] Ning Wang, Long Jiao, Pu Wang, Monireh Dabaghchian,
and Kai Zeng. Efficient identity spoofing attack detec-
tion for iot in mm-wave and massive mimo 5g commu-
nication. In IEEE GLOBECOM, pages 1–6, 2018.

[61] Kevin Wu and Brent Lagesse. Do you see what i see?
detecting hidden streaming cameras through similarity
of simultaneous observation. In IEEE PerCom, 2019.

[62] Qiang Xu, Rong Zheng, Walid Saad, and Zhu Han. De-
vice fingerprinting in wireless networks: Challenges
and opportunities. IEEE Communications Surveys &
Tutorials, 18(1):94–104, 2015.

[63] Kai Yang, Qiang Li, and Limin Sun. Towards automatic
fingerprinting of iot devices in the cyberspace. Com-
puter Networks, 148:318–327, 2019.

[64] Lingjing Yu, Tao Liu, Zhaoyu Zhou, Yujia Zhu, Qingyun
Liu, and Jianlong Tan. WDMTI: wireless device manu-
facturer and type identification using hierarchical dirich-
let process. In IEEE MASS, 2018.

[65] K. Zeng, K. Govindan, and P. Mohapatra. Non-
cryptographic authentication and identification in wire-
less networks [security and privacy in emerging wireless
networks]. IEEE Wireless Communications, 2010.

72 29th USENIX Security Symposium USENIX Association

	Introduction
	Problem Statement and the Threat Model
	Data Collection and Feature Extraction
	Data Collection and Initial Analysis
	Ethical Considerations
	Identifiers and Feature Extraction

	Device Fingerprinting and Classification
	MvWDL Algorithm Overview
	Device Fingerprinting
	Multi-view Wide & Deep Learning
	Deep Fusion
	Wide Fusion
	View Consistency and Malicious Device Detection

	Implementation and Experiments
	Dataset and Data Labeling
	Experiment Results

	Malicious Device Identification
	Attacks Against OWL
	The Naive Attacks
	The Knowledgeable Attacks
	The Expert Attacks

	Discussions
	Related Works
	Conclusion

