
No Source Code? No Problem! Demystifying and Detecting Mask
Apps in iOS

Yijun Zhao∗
Institute of Information Engineering,

Chinese Academy of Sciences
School of Cyber Security, University
of Chinese Academy of Sciences

Beijing, China
zhaoyijun@iie.ac.cn

Lingjing Yu∗
Institute of Information Engineering,

Chinese Academy of Sciences
Beijing, China

yulingjing@iie.ac.cn

Yong Sun
Institute of Information Engineering,

Chinese Academy of Sciences
Beijing, China

sunyong@iie.ac.cn

Qingyun Liu
Institute of Information Engineering,

Chinese Academy of Sciences
Beijing, China

liuqingyun@iie.ac.cn

Bo Luo
Department of Electrical Engineering

and Computer Science
The University of Kansas

Lawrence, KS, USA

ABSTRACT
The rise of malicious mobile applications poses a significant threat
to users and app stores. While iOS apps have generally been con-
sidered more secure due to strict review processes and limited
distribution avenues, developers have found ways to evade scrutiny
by disguising malicious apps as benign “Mask Apps”. Mask Apps
activate hidden functionalities after the user downloads or with a
trigger event. The malicious and potentially illegal hidden function
poses significant risks, including privacy breaches, security vul-
nerabilities, and harm to legitimate businesses. However, existing
defenses are ineffective against Mask Apps developed in web or hy-
brid models. In this paper, we propose Mask-Catcher, an automated
approach that uses four filtering mechanisms to detect Mask Apps.
Mask-Catcher leverages inconsistencies between app descriptions
and user reviews, inter-app recommendation relationships, and
code similarities to discover and identify Mask Apps. Experimental
results show that Mask-Catcher achieves high recall and precision
when applied to real-world datasets from the Apple App Store.

CCS CONCEPTS
• Security and privacy→ Software and application security.

KEYWORDS
Mobile app security, Mask Apps, automated detection

ACM Reference Format:
Yijun Zhao, Lingjing Yu, Yong Sun, Qingyun Liu, and Bo Luo. 2024. No
Source Code? No Problem! Demystifying and Detecting Mask Apps in iOS.
In 32nd IEEE/ACM International Conference on Program Comprehension (ICPC

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICPC ’24, April 15–16, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0586-1/24/04.
https://doi.org/10.1145/3643916.3644419

’24), April 15–16, 2024, Lisbon, Portugal. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3643916.3644419

1 INTRODUCTION
With the rapid growth of smartphone apps, the presence of mali-
cious apps also increases correspondingly. In response, app markets
have implemented a range of countermeasures aiming at curbing
such malicious applications. For instance, according to Apple’s App
Store Transparency Report in 2022 [7], out of 6,101,913 applica-
tions submitted for review, a substantial 679,694 applications were
rejected by Apple’s screening process. In contrast to Android ap-
plications, which could be easily distributed through third-party
platforms to bypass Google’s security review, the pathways to dis-
tribute iOS apps besides the official App Store are associated with
significant intricacies and costs. In particular, publishing apps on
TestFlight entails a less extensive review process, but the apps are
only valid for 90 days. iOS Super Signing offers another avenue
for app distribution without undergoing a formal review. However,
developers are charged based on the number of app installations,
resulting in a substantial financial burden to achieve widespread
distribution. Moreover, users tend to exhibit a strong preference
for acquiring apps exclusively from the App Store. This collective
trend in user behavior, the rigorous scrutiny of applications, and the
elevated cost of third-party distribution methods play a pivotal role
in fortifying the overall security of the iOS application ecosystem.

In response to the stringent security protections of the App Store,
malicious developers employ a strategy that involves attaching a
“mask” to malicious applications (referred to as “Mask Apps” here-
after), thereby concealing them as benign apps. This approach al-
lows these malicious applications to escape Apple’s official scrutiny
and make their way to the iOS App Store. The Mask Apps typically
feature very simple user interfaces (UIs) to provide benign function-
alities that are somewhat naive, such as a straightforward game, so
that they could quickly pass the review process for inclusion in the
App Store. The hidden functionalities and the corresponding con-
cealed UIs are only unveiled after users install the app and “activate”
the hidden UIs/functions, using methods that are pre-configured
by the developer, e.g., search for a specific text string.

ICPC ’24, April 15–16, 2024, Lisbon, Portugal Yijun Zhao, Lingjing Yu, Yong Sun, Qingyun Liu, and Bo Luo

In practice, a considerable number of users exhibit a preference
for the Mask Apps, primarily because the concealer features of-
ten align with their specific needs, such as gambling or accessing
pirated content. These users learn the activation methods for the
hidden functionalities through various grey channels, including
online forums and chat groups. This situation may initially appear
to be a “mutually beneficial collaboration”, where developers and
users collude to circumvent iOS App Store regulations in order to
fulfill their respective needs. However, beyond the apparent engage-
ment in distributing potentially illegal content, this arrangement
introduces additional risks. To remain profitable, the developers of
Mask Apps frequently incorporate grey market advertisements or,
in some cases, even malware into such Mask Apps. Users, in their
pursuit of immediate gratification, tend to overlook potential risks.
This oversight can lead to privacy breaches, financial fraud, device
compromise, and other security concerns.

Lee et al. identified a type of Mask Apps for the first time in their
measurement study on iOS apps with hidden crowdturfing UIs[19].
These apps display “innocent-looking UIs” during iOS App Store
review process and convert to a hidden, potentially harmful illicit
UI with crowdturfing content after they are published. They employ
binary analysis to identify the conditionally triggered hidden UIs,
and then further examine UI layout and content to confirm the ma-
licious crowdturfing functionalities. Lee et al. further extended the
work to detect all types of malicious hidden behaviors in iOS apps
(denoted as Chameleon Apps) [20]. However, Chameleon-Hunter
[20] only works for Native Apps, while most Mask Apps are now
developed with hybrid mode (please refer to Section 2 for details).
Meanwhile, the reverse engineering and analysis of the binaries
are very time-consuming (29.11 seconds/app in [20]), hence, the
scalability of Chameleon-Hunter is a concern.

In this paper, we present Mask-Catcher, which is designed to
automatically and efficiently identify Mask Apps.Mask-Catcher
constitutes a two-step filtering mechanism. In the suspicious app
discovery module, it utilizes a series of highly efficient, high recall,
and relatively low precision filters, which exploit the discrepancies
between app descriptions and user reviews and the inter-app rec-
ommendation relationships to identify a pool of candidate Mask
Apps. In the Mask App identification module, it employs code simi-
larity analysis among Mask App families to confirm the Mask Apps.
To evaluate the efficacy of Mask-Catcher, we first explored side
channels to discover a labeled dataset of 180 Mask Apps. Mask-
Catcher was evaluated and demonstrated a recall of 99.12% and a
precision of 100%. Furthermore, we applied Mask-Catcher to an
unlabeled dataset collected over six months from the iOS App Store.
Mask-Catcher further identified 31 new Mask Apps, underscoring
the real-world effectiveness of Mask-Catcher.

The contributions of this paper are three-fold: (1) we present an
analysis of the three distinct development models of the Mask Apps
and a measurement study of the state-of-the-art Mask Apps. Our
analysis underscores the inadequacy of relying solely on native code
examination for the detection of Mask Apps. (2) We are the first to
identify the discrepancies between the app descriptions and the app
reviews, as well as the inconsistencies in the app recommendations
for these Mask Apps. We argue that such discrepancies could be
employed for efficient filtering of potential Mask Apps. And (3) we
introduceMask-Catcher, a relatively lightweight tool that efficiently

and accurately detects Mask Apps. Unlike previous methodologies,
Mask-Catcher can successfully identify Mask Apps developed using
all three development methods. Finally, we share the source code of
Mastk-Catcher at https://github.com/Junzy71/Code_of_Mask_App,
and the dataset of known mask apps at https://github.com/Junzy71/
Dataset_of_Mask_Apps.

The rest of this paper is organized as follows: we introduce
app development models, define and examine the Mask Apps, and
illustrate the discovery process of 180 Mask Apps in Section 2. We
present the technical details of Mask-Catcher in Section 3, followed
by experiments and discussions in Section 4. We summarize the
literature in Section 5 and conclude the paper in Section 6.

2 MASK APPS: DEFINITION AND DISCOVERY
2.1 Preliminaries: Three Models of Mobile App

Development
Mobile apps are developed in three models: native, web, and hybrid.

The native model is the most conventional app development
approach. Apps are developed with the official languages (Swift
and Objective-C for iOS, and Java for Android), libraries, and tools.
They are capable of directly accessing the hardware of the phone,
e.g., camera, microphone, messaging, and geolocations. Native apps
usually provide better stability, performance, and interactive user
experiences. However, they require higher development costs, sub-
stantial storage spaces, and frequent updates. They cannot achieve
cross-platform compatibility due to the divergence in official pro-
gramming languages across different platforms. Consequently, de-
velopers must develop native apps individually for each platform,
which introduces challenges in compatibility and higher costs.

Web apps are developed using web technologies such as HTML5,
JavaScript, and CSS, enabling them to be seamlessly accessed through
web browsers on all platforms. Web apps have gained popularity
among developers due to their low development costs, short devel-
opment cycles, and ease of maintenance. Nonetheless, web apps
come with inherent limitations attributed to the nature of web tech-
nology. They rely on browser support for both display and user
interaction, they require consistent internet connectivity, and they
cannot be included or advertised in the app marketplace.

Hybrid apps blend the strengths of both native and web apps.
Similar to web apps, hybrid apps leverage HTML and CSS to design
user interfaces, establish core functionalities, and manage user
interactions. These components are then rendered via a webview
to ensure cross-platform versatility. Furthermore, they tap into
native device features, e.g., camera and GPS, via the integration
of APIs facilitated by a JavaScript Bridge (JSBridge). Hybrid app
development has evolved into the mainstream of app creation, as it
enjoys the advantages of web-based app development but still has
access to native device capabilities.

2.2 An Introduction to Mask Apps
We define a Mask App as a mobile application that exhibits the
following characteristics:
1. The app successfully navigates through the official review pro-
cess, gaining approval for publication in the App Store.
2. In the official App Store description, it claims benign functions.

No Source Code? No Problem! Demystifying and Detecting Mask Apps in iOS ICPC ’24, April 15–16, 2024, Lisbon, Portugal

Figure 1: An Example of a Mask App. Left and middle: the
“Center of Triangle” app, which appears to be benign. Right:
the app transforms into “3721.VIP”, a gambling app.

3. The app includes a concealed activation mechanism, which is
used to trigger its hidden functionalities. These mechanisms can
include actions like clicking on specific locations, searching for
specific text strings, or simply restarting the app.
4.Upon activation, the app transforms to unveil a new user interface
and expose its hidden functions, which often involve activities that
are either malicious, prohibited by the appmarketplace’s policies, or
even illegal. In essence, the app would not pass the review process,
if these hidden functions were disclosed during the process.

In theory, the Mask Apps may appear in any platform or app
marketplace. However, all the Mask Apps discovered in this project,
as well as the Chameleon Apps discovered in [20], are iOS apps
in the Apple App Store. This could be explained by the fact that
Android devices allow third-party apps to be installed through
alternative Android markets or using apk files downloaded from
any website. Therefore, the adversaries do not need to spend a lot
of effort to deliver their apps through the official Play Store.

An example of a typical Mask App is shown in Figure 1. The
app, named “Center of Triangle”, appears to have an appropriate
icon, a concise description, and all necessary declarations such as
developer, version, age rating (4+), and even permission requests. It
claims to provide simple functions to compute the centroid, circum-
center, incenter, and orthocenter of triangles. Consequently, it was
placed in the “Utilities” category of the App Store. However, once it
is installed on the user’s device, it transforms into “3721.VIP” upon
the first launch. As shown in the figure, 3721.VIP is a gambling app,
which is illegal and not allowed on Apple’s App Store in China.

2.3 Mask App Discovery
The Mask Apps always appear to be benign on the App Store,
however, they obviously do not intend to attract users with their
benign functions. Therefore, the developers still need channels
to promote the hidden functionalities and attract interested users
to download the Mask Apps. To collect a dataset of Mask Apps,
we exploited various channels including covert websites and chat
groups that are utilized by developers to distribute the App Store
links to the Mask Apps and the activation methods. These channels
are typically not accessible through search engines.

Our initial sources for collecting Mask Apps were the iOS Re-
source Sites [23]. The managers of these sites regularly collected

and posted data regarding Mask Apps, including the activation
methods for the hidden functions. Their underlying motivation for
this practice was to leverage these resources to entice users to pay
for the premium content on their websites. Notably, the Mask Apps
featured on these platforms were primarily providers of pirated
movies, music, and e-books. This focus was due to the perception
that promoting pornographic and gambling apps carried a higher
risk that outweighed the potential benefits.

We followed the iOS Resource Sites to collect the first batch of 97
Mask Apps. We expanded the collection by exploring the websites
and advertisements contained within these apps. The developers’
official websites featured in the Mask Apps emerged as the most
reliable and stable source for the Mask Apps. The developers often
first release new Mask Apps or re-produced Mask Apps on their
official websites. They may proactively notify users of new apps
through in-app announcements, especially when they fear that the
current app may be banned by the App Store.

The advertisements within the Mask Apps served as a signifi-
cant source of new Mask Apps. Notably, such ads often promote
Mask Apps with pornography and gambling functions, which are
often deemed illegal or at least inappropriate on public platforms.
While such in-app advertisements generate additional revenue for
the Mask App developers, they also helped us collect samples of
gambling and pornography-related Mask Apps.

After obtaining these apps and learning their activation methods,
we manually verified them with the participation of four authors
(two students and two faculty). In the verification process, we con-
firm their activation and distinct hidden functions. The activation
process and functional distinctions of Mask Apps are quite evident,
leading to a high level of verification confidence.

Over ten months, we successfully collected 180 Mask App sam-
ples and activated their hidden features.We sharemetadata of all the
mask apps at https://github.com/Junzy71/Dataset_of_Mask_Apps.
As of the submission of this manuscript, only three of them remain
accessible in the iOS App Store. To facilitate future research, we
have stored all metadata and binary files of apps, to be shared with
the research community.

2.4 Mask Apps: Features and Measurements
For all 180 apps in our dataset, we track their existence in the App
Store on a daily basis and report their lifespan statistics in Figure
2. 5% of the Mask Apps remain on the App Store for less than a
week, and 36% of them vanish in a month. These Mask Apps are
non-compliant with the regulations of the Apple App Store or even
prohibited by law. Hence, they are often quickly removed from the
App Store when they are detected or reported.

Next, through our analysis of the collected mask apps, we ob-
served that the majority of them were developed using the hybrid
mode. This development model is consistent with their short lifes-
pan: once a Mask App is removed by the App Store, its developer
needs to promptly create and publish a new app with the same
concealed functionalities to sustain profitability. Hybrid apps, with
their advantages of lower cost and shorter development cycles,
align well with their needs.

During the design phase of the project, we closely monitored
iosre.com (an iOS technical forumwhere discussions related tomask

ICPC ’24, April 15–16, 2024, Lisbon, Portugal Yijun Zhao, Lingjing Yu, Yong Sun, Qingyun Liu, and Bo Luo

Figure 2: Lifespan of Mask Apps: 5% of Mask Apps remain in
the App Store for less than a week, 36% vanish in a month.

apps can be found through search [3]) and www.freelancer.com (a
platform for recruiting developers and project discussions [2]). We
have sporadically seen messages on mask apps or hidden function-
alities on these forums. We have engaged with 6 developers who
posted messages on the development of Mask Apps or hidden func-
tionalities. We also contacted 5 very active app developing service
providers each on taobao.com and zbj.com, who advertised for mask
app development. We asked about the basic mechanism they use to
develop these apps. We asked about the basic mechanism they use
to develop these apps. They suggested that we provide H5 links
for the hidden functions and opt for a hybrid development model,
citing the convenience and cost-effectiveness of this approach.

In the development of Mask Apps, developers generate H5 pages
for hidden, malicious functions. They then quickly produce distinct
UIs (the “masks”) to conceal these H5 pages using development
frameworks, resulting in different Mask Apps. These “masks” are
typically simple pageswithminimal functionalities and interactions,
often comprising H5 pages or native UIs with few components.

It is important to note that the code for the hidden functions in
Mask Apps developed in web or hybrid modes does not appear in
the binary or UI layout files. Depending on the developer’s choice,
this code may be stored as HTML or JavaScript files in a separate
local folder or on a remote server. Consequently, when we adopted
the detection mechanism in Chameleon-Hunter [20] to analyze the
apps in our dataset, only 28 of the 180 Mask Apps contained binary
code with hidden functions in the IPA files or hidden UI elements
with hidden functions in their UI layout files. This implies that the
other 152 apps were not developed in native mode, which is why
the binary code and UI analysis approach in Chameleon-Hunter
cannot detect these Mask Apps. The authors of Chameleon-Hunter
have also acknowledged this limitation in [20].

Finally, we observed that the client-side native code for Mask
Apps with similar hidden functions demonstrates a significant de-
gree of similarity. This similarity can be attributed to their utiliza-
tion of the same development framework and/or code architecture,
where the hidden functionalities constitute only a small fraction
of the overall codebase. We were able to classify the Mask App
samples into distinct Mask families and employ code similarity as-
sessments to determine if an app bears a resemblance to a specific
Mask family. This method is applicable to apps developed in native,
web, and hybrid modes.

3 MASK-CATCHER: MASK APP DETECTION
3.1 Challenges, Design Rationale, and Solution

Overview
The identification of Mask Apps on iOS faces several key challenges:
(1) iOS does not provide access to the source code of applications,
making it difficult to directly analyze the code to uncover hidden
functionalities. Despite the possibility of conducting binary analysis
or decompilation, these methods do not provide as much informa-
tion as the source code would. (2) The emergence of web and hybrid
apps has presented a new trend in Mask App development. Unlike
native apps, many of these web and hybrid apps include concealed
functions that are not directly embedded in the app’s source code.
These hidden functions are typically displayed through web inter-
faces or other external mechanisms rather than being explicitly
coded within the app itself. Consequently, traditional approaches
relying solely on code inspection become ineffective in identifying
Mask Apps developed using web or hybrid techniques. (3) There is
a significant number of apps in the App Store (∼1.8 million in Nov
2023), while many Mask Apps often have very short lifespans. An
effective detector must be highly efficient and scalable.

To tackle these challenges, we have observed two key features
that inspired the design of the proposed approach:
1. Advertising Reviews posted by the Developer. We observed
that app developers may provide subtle “hints” to users regarding
the hidden functionalities. They achieve this by posting reviews
since these user-generated reviews are not strictly monitored by
Apple. By exploring app reviews, we can identify patterns and
clues that deviate from the app’s declared purpose. For instance,
the reviews of a simple game (Mask App) may mention “abundant
video resources.” This approach becomes particularly relevant when
we notice reviews that are posted soon after the app’s release, as
they are likely to have been generated by the app’s producers.
2. Users’ Discussions in the Reviews. We also found that some
users also post reviews that inadvertently “reveal” the hidden func-
tionality of the Mask App. These reviews tend to discuss features
or functions that are completely unrelated to the app’s officially
declared purpose. For example, app com.carte.feflmlsy claims to be
an app to design, manage, and share business cards, but we can see
that it has user reviews such as “The videos can’t play,” and “you
have to watch ads before every episode.” These sentences should
theoretically be used to review movies. By analyzing such reviews,
we can gather insights into the app’s actual capabilities.
3. App Store Recommendations. Additionally, the recommen-
dations provided by the App Store itself can implicitly reveal the
actual functionality of an app, e.g., the recommended apps for an
emoji app (Mask App) may have several video player apps in the
list. These recommendations, which are generated based on various
factors, including user behavior, app characteristics, and potentially
app source code (Apple has access to the code), can often provide
valuable hints about the app’s hidden functions. By considering
these aspects, our proposed approach leverages app reviews and
App Store recommendations to uncover the true nature of Mask
Apps, bypassing the limitations posed by source code unavailability
and the complexities associated with web and hybrid app develop-
ment methods.

No Source Code? No Problem! Demystifying and Detecting Mask Apps in iOS ICPC ’24, April 15–16, 2024, Lisbon, Portugal

Figure 3: Overview of Mask-Catcher.

An overview of Mask-Catcher is illustrated in Figure 3, which
includes a data preparation module, a Mask Apps Library, and four
filters to identify Mask Apps. In Mask-Catcher, we first employ
methods with high efficiency, high recall, but lower precision to
filter a large number of apps and discover only a small number
of suspicious apps. Then the static analysis method with higher
accuracy and higher cost is used to eventually identify Mask Apps.

In the data preparation module, we employ a crawler tool to
acquire app metadata from the App Store. If an app is identified as a
suspicious Mask App by Filter 0 or Filter 2, we proceed to crawl the
IPA file of this app from iTunes. Subsequently, we decrypt the file
and extract the binary file from it. The data preparation module also
analyzes the collected Mask App samples and categorizes them into
various Mask families based on their concealed functionalities and
UIs. They are subsequently integrated into the Mask Apps Library.

The suspicious app discovery module consists of three filters.
Filter 0 serves as a complementary component to Filter 1 and Filter
2 in detecting Mask Apps that closely align their hidden functions
with their claimed function, e.g. a pirated movie app (Mask App)
that claims to be a viewer of legitimate movies. They specifically
target apps in categories such as movies, comics, music, and books.
Filter 1 extracts the claimed function from the app descriptions and
the hidden function from user reviews. It then identifies candidate
apps with significant inconsistencies between these two sets of
functions. Filter 2 employs the identified candidate apps as seeds to
establish a graph convolutional network using inter-app recommen-
dation relationships. Suspicious apps are detected by evaluating
the consistencies in the attributes of the graph nodes. This filter is
especially effective for apps that lack user reviews as well.

Finally, the Mask App identification module (Filter 3) evaluates
the code similarity of suspicious apps. If a suspicious app exhibits
high similarity with any Mask family, it is identified as a Mask App
and is subsequently incorporated into the Mask Apps Library.

3.2 Data Collection and Preparation
We developed a custom crawler to collect a comprehensive dataset
of apps available in the App Store. The crawler randomly selects 10
apps from each category of the App Store as seeds. It follows the
inter-app recommendations to crawl additional apps. Only apps
that were added or updated within the past six months are retained

for further examination since the Mask Apps are quickly removed
from the App Store as we discovered in Section 2.3. For the selected
apps, we collect their most recent 500 reviews and other metadata,
such as app descriptions and inter-app recommendations.

We eliminate information from the app descriptions and user
reviews that are not related to the app’s functionalities. For ex-
ample, some developers include subscription service information,
official account details on other platforms, or email addresses and
telephone numbers in the app description. We manually developed
rules to filter out sentences containing this redundant information,
thereby retaining only those sentences relevant to the app’s func-
tionalities. Meanwhile, a substantial proportion of user reviews in
the app’s review section typically consist of compliments or criti-
cisms that express emotions without directly relating to the app’s
functionalities, such as “it’s great,”“recommended,” or “can’t open
it at all.” We also employ manually crafted regular expressions to
eliminate these uninformative user reviews.

We further tokenized the descriptions and reviews and removed
any stopwords. In line with the specific characteristics of the de-
scriptions and user reviews, we have deliberately constructed both
a reserved word list and a list of approximately 100 stopwords,
which are specifically compiled for app reviews.

Compared to binary code analysis, metadata in text format is
notably faster to collect, process, and analyze. This efficiency is a
key reason why Mask-Catcher is capable of rapidly discovering and
identifying Mask Apps at a large scale.

3.3 Filter 0: Pirated Resource Provider
The suspicious app discovery module is primarily designed to de-
tect suspicious Mask Apps by analyzing the inconsistencies be-
tween their claimed functionalities and their hidden functionalities.
However, we have observed that a small portion of Mask Apps
intentionally conceal their actual functionalities by closely aligning
them with their claimed functionalities. For instance, an app that
primarily offers pirated movies may claim to provide legitimate
subscription service to movies. In such cases, the consistence-based
filters are unlikely to identify inconsistencies between app reviews
and app descriptions, or inconsistencies with app recommendations.
To address this issue, we introduce Filter 0 as a complementary
component to flag this small amount of apps to be directly fed to
the Mask App Identification module for further analysis.

We utilize regular expressions on app descriptions to identify
apps from the following categories: movies, comics, music, and
books (categories that may have pirated content). Among these cat-
egories, we manually verify and exclude the top-ranked apps from
reputable developers or companies. Next, we identify apps within
these categories that had a significant number of user reviews
containing specific content indicating the provision of abundant
resources, e.g., “lots of book sources,” “you can watch movies by
just searching”, or “you can watch VIP content for free.” The rich
resource offering would typically appear only in top apps with
significant investments. It is quite suspicious for a small vendor to
receive such reviews. Furthermore, we observed that some users
even asked questions in their reviews such as “how to activate?” or
“What’s the activation code?” These inquiries further strengthen
the suspicion that an app might be a Mask App. If an app from the

ICPC ’24, April 15–16, 2024, Lisbon, Portugal Yijun Zhao, Lingjing Yu, Yong Sun, Qingyun Liu, and Bo Luo

specified categories exhibits multiple such reviews, we label it as
suspicious and directly send it to Filter 3 for identification.

3.4 Filter 1: Suspicious App Discovery Based on
Description-Review Inconsistency

For a Mask App, there is often a disparity between the functional-
ities claimed in the app description and those mentioned in user
reviews. For a benign app, the claimed and the hidden function-
alities should be consistent. However, in the case of a Mask App,
the claimed functionalities specified in the description serve as a
disguise, while the functionalities discussed in user reviews are
its true/hidden functionalities. This discrepancy provides a basis
for discovering suspicious Mask Apps. Filter 1 leverages this ob-
servation to identify suspicious apps quickly and cost-effectively,
thereby reducing the volume of data that needs to be processed by
the subsequent, more resource-intensive modules.

We employ Latent Dirichlet Allocation (LDA) to extract topics
from app descriptions and user reviews. LDA condenses a prede-
termined number of topics, each consisting of a topic probability
and a set of associated topic words. Also, each topic word has a
topic-word probability which represents how likely the the word
belongs to this topic. We apply LDA on full app descriptions to
identify 25 topics, which matches the number of categories in the
App Store. We extract topic words with a topic-word probability
exceeding 0.005 within each topic, constructing a topic word list
based on these selections. Simultaneously, we include words that
describe app functionalities in this topic words list (e.g. “notes”,
“copies” and “fonts”), with the objective of encompassing common
functionalities that may not be covered within the training corpus.
This adaptation allows Mask-Catcher to be flexible and applicable
in various scenarios. Subsequently, descriptions are processed in
accordance with the topic words list, retaining only the topic words
present in the list as the claimed functionalities of the apps.

Given the inherent differences in the hidden functionalities of
apps even within the same category, we opt for an individualized
approach for user reviews. For each app, we employ LDA with a
set number of topics, which in this case is 5. The hidden function-
alities of the app are determined as the topic words whose sum
of topic-word probabilities surpasses 0.005 among all topics with
topic probabilities exceeding 0.01. Any remaining words are then
excluded from the user reviews.

Upon functionality extraction, the original descriptions are trans-
formed into a set of words representing the claimed functionalities,
while the original user reviews are represented as another set of
words corresponding to the hidden functionalities.

Next, Word2vec is utilized to map the representative words of
claimed and hidden functionalities to two sets of 64-dimensional
vectors (𝑉𝑑 and𝑉𝑎). The cosine similarity of word pairs is calculated
as: 𝑆𝑖𝑚𝑖 𝑗 = (𝑣𝑑𝑖 · 𝑣𝑎𝑗)/(∥𝑣𝑑𝑖 ∥∥𝑣𝑎𝑗 ∥), where 𝑣𝑑𝑖 represents the i-th
word vector in 𝑉𝑑 and 𝑣𝑎𝑗 represents the j-th word vector in 𝑉𝑎 .
We then employ three methods to calculate the cosine similarities
between these two sets of vectors as follows:

(1) Average Similarity 𝑆𝑖𝑚𝑎𝑣𝑔 : we calculate the cosine similarities
of all the word pairs from claimed and hidden functionalities.
The average similarity, 𝑆𝑖𝑚𝑎𝑣𝑔 , reflects the overall similarity
between the claimed and hidden functionalities.

(2) Similar-words similarity 𝑆𝑖𝑚𝑠𝑤 : we calculate the cosine similar-
ities of all word pairs and rank them in descending order, and
then take the average of the top 10% as 𝑆𝑖𝑚𝑠𝑤 . This similarity
focuses on similar word pairs and therefore reduces the num-
ber of false positives caused by the neglect of small but highly
similar word pairs.

(3) High-frequency-words similarity 𝑆𝑖𝑚ℎ𝑓 𝑤 : we calculate the co-
sine similarities of all word pairs, and rank them in descending
order according to the frequency of word pairs. We take the
average of the top 10% of them as 𝑆𝑖𝑚ℎ𝑓 𝑤 . This similarity pays
more attention to the words that frequently occur in the claimed
and hidden functionalities, which reduces false positives due to
low-frequency word pairs.

Finally, we set thresholds for each of the three similarities at 0.3,
0.3, and 0.6, and we consider an app to be benign if it has more than
two similarities above the thresholds.

Following this filtering process, a significant portion of benign
apps are eliminated, resulting in a small number of candidate Mask
Apps progressing to Filter 2 for subsequent investigation.

3.5 Filter 2: Suspicious App Discovery Based on
Recommendation Relationship Graph

Apple’s App Store employs a recommendation system between
apps, often referred to as “You Might Also Like.” While the de-
tailed mechanism behind the recommendations is not released, it is
expected that it is based on user behaviors (e.g., frequently down-
loaded by users with similar preferences) and functionalities (since
Apple has the code). Leveraging this inter-app recommendation
relationship among Mask Apps, Filter 2 utilizes the candidate apps
identified by Filter 1 and apps without user reviews as seeds to
construct a recommendation relationship graph. Filter 2 attempts
to discover the true identities (i.e., functions) of the apps through
graph analysis. For instance, when an app declares itself as a utility
app but many of its recommendations fall in the category of movies,
the app is very likely to have a hidden function as a (pirated) movie
app, thus it is suspicious. Meanwhile, Filter 2 may also introduce
additional Mask Apps that were not included in the seed set since
Mask Apps are often recommended by other Mask Apps.

A recommendation relationship graph is an undirected graph
𝐺 = {𝑁, 𝐸,𝐶𝑑 ,𝐶𝑎}, where the set of nodes 𝑁 denotes the Apps and
the set of edges 𝐸 represents the recommendation relationships
between apps. If App A’s recommendation list includes App B,
then an edge is drawn between node A and node B. Each node
has two attributes: the claimed categories set (𝐶𝑑) and the hidden
categories set (𝐶𝑎). The set of categories can have values within a
range of 25 categories, which we redefine based on the clustering
results of the K-Means algorithm applied to the descriptions. The
complete redefined categories can be found in [1]. The reason for
this redefinition is that the categories of apps in the App Store
are typically chosen by developers, and the functionalities of many
apps can span multiple categories, e.g., a children’s song app mostly
is categorized into “Kids”, but it also belongs to Music. The claimed
categories set of each app is obtained through two mechanisms: (1)
directly extracted from App Store Categories; (2) mined from app
descriptions and app names using Random Forest.

No Source Code? No Problem! Demystifying and Detecting Mask Apps in iOS ICPC ’24, April 15–16, 2024, Lisbon, Portugal

We train a three-layer graph convolutional network (GCN) to
discover the hidden categories set of nodes. The feature vectors of
nodes are initialized to the hidden functionalities vectors calculated
in subsection 3.4, denoted 𝑋 . The layer-wise propagation rule of
GCN is defined as follows:

𝐻0 = 𝑋

𝐻1 = 𝑅𝑒𝐿𝑈 (𝐴𝐻0𝑊 0 + 𝐵0)
𝐻2 = 𝑅𝑒𝐿𝑈 (𝐴𝐻1𝑊 1 + 𝐵1)
𝐻3 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐻2𝑊 2 + 𝐵2)

where𝐴 is the adjacency matrix of the recommendation graph with
added self-connections.𝑊 is the weight matrix for each layer, 𝐵 is
the bias. The activations 𝑅𝑒𝐿𝑈 and 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 are defined as:

𝑅𝑒𝐿𝑈 (𝑥𝑖) =𝑚𝑎𝑥 (0, 𝑥𝑖)

𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑥𝑖) = 𝑒𝑥𝑝 (𝑥𝑖)/
∑

𝑗 𝑒𝑥𝑝 (𝑥 𝑗)
For training, we used a cross-entropy loss function, defined as:

𝐿(𝑌, 𝐿𝑎𝑏𝑙𝑒) = −∑𝑖 𝑙𝑎𝑏𝑙𝑒𝑖𝑙𝑜𝑔𝑦𝑖

The predicted result of the GCN for the 𝑖-th node is denoted as 𝑦𝑖 ,
and the label for the 𝑖-th node is denoted as 𝑙𝑎𝑏𝑒𝑙𝑖 . Nodes for apps
in the unlabeled dataset are initialized with the claimed categories.

The model generates a category-probability vector representing
the probability that apps belong to each category. If the probability
that an app belongs to a category is higher than a predetermined
threshold, the category is added to its hidden categories set. Note
that the significantly smaller number of Mask Apps compared to
benign apps leads to the data imbalance issue. Therefore, we do
not use GCN to directly determine whether an app is a Mask App.
Instead, we use GCN to predict the set of hidden categories.

Filter 2 proceeds to detect suspicious apps by examining the in-
consistencies between the claimed and hidden category sets. If there
is no commonality between the claimed and hidden categories for a
node, the corresponding app is deemed suspicious. Note that Filter
2 can discover suspicious Mask Apps without user reviews, solely
based on inter-app recommendation relationships. This highlights
the versatility and effectiveness of the approach.

3.6 Filter 3: Mask Apps Identification Based on
Code Similarity

The hidden functionalities of the Mask Apps often deviate from
the expectations outlined in the App Store’s guidelines and, in
many cases, may even be unlawful. App Stores routinely review
apps using methods like user reports or random inspections, Mask
Apps often do not last long in the App Store. Hence, developers
of Mask Apps need to quickly create and publish new versions to
sustain profitability. Since the claimed functionalities (the “masks”)
of Mask Apps are not their primary focus but need to be replaced
and updated frequently, developers often use simple user interfaces
and basic functionalities developed with the same development
framework, which make up a small portion of the app’s codebase.
The true/hidden functionalities of a Mask App can be re-published
multiple times by the same developer or by different developer
accounts. Consequently, multiple Mask Apps may have similar
or even identical hidden functionalities, despite having different
“masks”. This similarity in development process functionalities leads

to similar code blocks of these apps being alike. A suspicious app
can be identified as a Mask App if its code is similar to that of
previously verified Mask Apps.

Due to the closed source nature of iOS, precise reverse engi-
neering of iOS apps can be challenging. To preserve information
and enhance accuracy, we identify Mask App directly by the the
assembly code. We employ BinDiff [12] of IDA Pro to compare the
similarities and discrepancies between two files in terms of func-
tions, calls, basic blocks, jumps, and instructions. It then calculates
the similarity of the two files and provides a confidence score.

The data preparation module constructs a library using the col-
lected Mask Apps and categorizes them into 22 families based on
their concealed functionalities and user interfaces. We compute
the code similarity between Mask Apps within each family. We
then chose the Mask App in each family that exhibits the highest
similarity to other members of the family as the representative.

For each suspicious app identified in Filter 0 and Filter 2, we ob-
tain a similarity vector representing the likeness of the app to each
of the Mask family representatives. We then utilize a random forest
classifier to categorize these app similarity vectors and determine
whether the app is a Mask App or not.

The method may not always accurately identify newly emerging
Mask Apps with hidden functionalities and UIs that differ signifi-
cantly from the samples in the Mask App library, which is a natural
limitation of the approach. In our future work, we plan to con-
tinuously collect Mask Apps from various sources such as news,
forums, and other channels to expand the library and enhance the
effectiveness of Mask-Catcher.

4 EXPERIMENT RESULTS
4.1 Data Collection and Metrics
We collected metadata of 70,678 apps from all 25 categories in
the App Store using the approach described in Section 3. Out of
these apps, 43,868 had user reviews. 3,545 apps were identified as
suspicious by Filter 0 and Filter 2 in Mask-Catcher, and their IPA
files were also crawled through ipatool [5]. We decrypted these
IPA files using frida [6] on an iPhone 7 (14.0.0) and extracted the
binary files. We selected apps that ranked within the top 100 of
the App Store’s rankings for a continuous period of more than 90
days, and labeled the top 1,500 as benign. In order to accurately
assess the effectiveness of each filter of Mask-Catcher, we used
the dataset consisting of the 1500 benign apps and the manually
collected 180 Mask Apps mentioned in Section 2 as our labeled
dataset. We have made our dataset publicly available on Github:
https://github.com/Junzy71/Dataset_of_Mask_Apps.

We evaluate the four filters using 𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅) and 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑃),
and also considered the 𝐹𝑖𝑙𝑡𝑒𝑟𝑅𝑎𝑡𝑒 (𝐹𝑅) particularly for Filters 0,
1, and 2. This is because the suspicious app discovery module is
designed to efficiently filter out the majority of benign apps.

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
𝑃 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
𝐹𝑅 =

𝑇𝑁

𝑇𝑁 + 𝐹𝑃

where, 𝑇𝑃 (true positive) denotes number of Mask apps labeled
as suspicious (or Mask Apps for Filter 3), 𝐹𝑁 (false negative) de-
notes Mask apps labeled as benign, 𝑇𝑁 and 𝐹𝑃 denotes benign
apps labeled as benign and suspicious (or Mask Apps for Filter 3),
respectively.

ICPC ’24, April 15–16, 2024, Lisbon, Portugal Yijun Zhao, Lingjing Yu, Yong Sun, Qingyun Liu, and Bo Luo

Table 1: Performance of Mask-Catcher on Labeled Dataset

TP FN TN FP R FR P

Filter 0 2 0 349 4 100.00% 98.87% 33.33%
Filter 1 161 1 1432 56 99.38% 96.24% 74.19%
Filter 2 179∗ 1 390 129 99.44% 75.14% 58.12%
Filter 3∗∗ 180.4 0.6 133 0 99.67% - 100.00%

Mask-Catcher 180.4 1.6 1624 0 99.12% - 100.00%

*: These 179 apps contain 161 TP samples from Filter 1 that are
confirmed by Filter 2, plus 15 additional apps that do not have any
review (thus not processed by Filter 1), plus 3 apps newly added
through graph analysis, one of which was misclassified by Filter 1.
**: Cross-validation is used for Filter 3, and the metric here is the
average of 10 validations. These 181 apps (TP+FN) contain 179 TP
samples from Filter 2, plus 2 additional apps from Filter 0.

4.2 Performance of Mask-Catcher
4.2.1 Performance on labeled dataset. We evaluate Mask-Catcher
on the labeled Mask Apps and benign apps to assess the effective-
ness of each filter and to compare its overall performance with that
of Chameleon-Hunter.

We first evaluate Filter 0 on the entire labeled dataset and identi-
fied 6 apps (4 benign apps and 2 Mask Apps) as suspicious. These
6 apps were directly forwarded to Filter 3 for further evaluation,
bypassing the intermediate stages of Filters 1 and Filter 2.

In the remaining apps, 162 Mask Apps and 1488 benign apps had
user reviews.We evaluate Filter 1 with these apps as Filter 1 relies on
user reviews to identify suspicious apps. The labeled apps without
user reviews will be handled by Filter 2. As shown in Table 1, Filter 1
successfully identified 161 labeled Mask Apps and 56 labeled benign
apps as candidate Mask Apps. This indicated a recall of 99.38% and
a filter rate of 96.24%. The precision, which is less important in this
step, is 74.19%. In particular, filter 1 effectively handles 73 labeled
Mask Apps with fewer than 20 reviews, showcasing its effectiveness
with sparse user data. We examined the app com.lovely.photo, which
was misclassified by Filter 1, and found that it has similar claimed
functionalities (video editing) and hidden functionalities (video
playback) thus it is difficult for Filter 1 to determine whether it has
a “Mask” only through the description and user reviews.

Filter 2 utilized the 217 candidate apps discovered by Filter 1 (161
were labeled Mask App and 56 were labeled benign apps), along
with 24 labeled apps without user reviews, as seeds to construct a
recommendation relationship graph with an inter-app recommen-
dation depth of 1. The constructed graph consisted of 699 nodes
and 1,799 edges, with 14 nodes being isolated and directly classified
as suspicious apps. Ultimately, Filter 2 identified 182 seed apps (176
Mask Apps and 5 benign apps) as suspicious. Additionally, 126 apps
in the graph that were not part of the labeled dataset were also
labeled as suspicious. After manual verification, 2 out of these 126
newly discovered suspicious apps were real Mask Apps. In total,
Filter 2 achieved a 99.44% recall, a 58.12% precision and a 75.14%
filtering rate.

For the 16 Mask Apps without user reviews, Filter 2 labeled 15
as suspicious. The misclassified app com.yskdt.tools, whose claimed
and hidden functionalities are both movie-related, and therefore
the inter-app recommended apps also belong to the Entertainment

category, resulting in mis-identification in Filter 2. Meanwhile, the
app com.lovely.photo, which was misclassified by Filter 1, was in-
cluded in the recommending lists of other Mask Apps and therefore
was re-discovered by Filter 2 and labeled as suspicious, as shown
in Table 2. This demonstrates that Filter 2’s ability to extract addi-
tional information from app recommendation relationships played
a key role in identifying the app’s true identity. Filter 2’s enhanced
capability to leverage these inter-app relationships contributes to a
more accurate and comprehensive detection of Mask Apps.

It is important to note that our prioritization in the development
of suspicious app discovery module (including Filters 0, 1 and 2) is
to maximize the recall, while accepting a relatively high filtering
rate and a lower precision. This approach is chosen to ensure that a
higher number of Mask Apps could be fed to Filter 3 for further iden-
tification, while also ensuring the efficiency of the Mask-Catcher
by filtering out benign apps before they reach Filter 3.

All suspicious Mask Apps were evaluated by Filter 3 to make a
final determination of whether they were indeed Mask Apps. To
assess the performance of Filter 3, we employed cross-validation.
In each iteration, 60% of the labeled apps were randomly chosen as
the training dataset for training the random forest classifier. The
remaining 40% of the labeled apps were then used as the testing
dataset. This process was repeated ten times.

The evaluation results demonstrated that Filter 3 accurately iden-
tified all 133 benign apps. However, in six out of ten repetitions, it
misclassified one Mask App, specifically the “XinYee.Com” app, as
benign. This misclassification occurred because the family to which
this app belonged had only one sample in our Mask App Library,
whereas most other families had 5 to 10 different samples. When
this app was not included in the training dataset, the classifier failed
to learn the features of the family, leading to misclassification in
Filter 3. In summary, Filter 3 achieved an average recall of 99.67%
and 100% precision.

An additional noteworthy observation is that a considerable num-
ber of the newly suspicious apps discovered by Filter 2 have names
that are strikingly similar to the Mask Apps we have collected.
Moreover, the user reviews associated with these apps predomi-
nantly contain phrases such as “Fake” and “Can’t activate.” This
pattern suggests that the developers behind these apps are attempt-
ing to deceive users by posing as legitimate Mask Apps. However,
through the utilization of our detection method, these apps were
correctly identified as not beingMask Apps. By distinguishing these
deceptive apps from authentic ones, our approach demonstrates the
robustness and proficiency in identifyingMask Apps andmitigating
the risks posed by such fraudulent applications.

4.2.2 Performance Comparison with Chameleon-Hunter. To com-
pare Mask-Catcher with a state-of-the-art Mask App detector, we
applied themechanism of Chameleon-Hunter on our labeled dataset,
and the results are shown in Figure 4. Mask-Catcher had a better per-
formance with 99.12% recall and 100% precision, while Chameleon-
Hunter had the performancewith 15.38% recall and 75.68% precision.
This is because almost all Mask Apps in this dataset are developed
inWeb or Hybrid mode, while Chameleon-Hunter only analyzes the
native UIs of the apps, and thus cannot achieve better performance.

4.2.3 Performance on unlabeled dataset. We applied Mask-Catcher
to all collected apps that were unlabeled, which included 69,178

No Source Code? No Problem! Demystifying and Detecting Mask Apps in iOS ICPC ’24, April 15–16, 2024, Lisbon, Portugal

Table 2: Result Examples of Mask-Catcher on Labeled Dataset

Bundle ID Category Claimed Functionality Hidden Functionality Filter 0 Filter 1 Filter 2 Filter 3

cn.onedayapp.onedayNovelRedesign Utilities local reader pirated book reader ✓ - - ✓
com.fymjtv Entertainment drama community pirated movies ✓ - - ✓

com.lovely.photo Utilities video editing pirated movies - × ✓ ✓
com.yskdt.tools Utilities movie knowledge quiz pirated movies - - × -

com.mahuaFunAgeAdver.summerrain Utilities cycling record pirated movies - - new ✓
com.eightfive.zhizuoqrcode Utilities QR code generation pirated movies - - new ✓

Figure 4: Performance comparison of Mask-Catcher and
Chameleon-Hunter on Labeled Dataset.

apps, 42,376 of which had user reviews. Filter 0 labeled 399 apps
as suspicious. Filter 1 labeled 6,870 apps as suspicious, and they
were used by Filter 2 as a seed to construct the recommendation
relationship graph along with 26,802 apps without user reviews.
The graph consisted of 112,954 nodes and 407,233 edges, of which
92 nodes were isolated. Eventually, 1,217 apps in the seeds were
continued to be labeled as suspicious and 1,615 additional apps were
labeled as suspicious. In the Mask App identification module, 31
suspicious apps, which were not included in the set of 180 known
Mask Apps, were identified as Mask Apps. Examples of the new
Mask Apps are shown in Table 3. The complete table can be found in
[1]. The majority of these newly identified Mask Apps had emerged
only after August 1st, 2023.

In manual verification, we successfully activated the hidden func-
tions of 28 apps, which were found to be substantially different from
their claimed functionalities. However, there were 3 apps for which
we could not find the activation methods through conventional
means. Therefore, we manually examined their metadata for further
insights. The user reviews for the app com.llc.weeingcarManager fell
into three main categories. Firstly, there were reviews containing
only the phrase “cute girl”, which was a popular activation code
in the labeled Mask Apps. Secondly, there were queries regarding
app activation, such as “Why can’t I activate?” and “What’s the
activation code?”. Lastly, there were responses to the above queries,
providing instructions such as “Enter the code word in the text box
feedback”. These findings strongly suggest that the apps in ques-
tion are indeed Mask Apps, as the activation method was explicitly
mentioned in the user reviews. However, it appears that the app
developers have subsequently changed their activation methods.

We also examined the Mask Apps discovered from the unlabeled
dataset using Chameleon-Hunter, which successfully identified

6 out of the 31 Mask Apps. Chameleon-Hunter’s performance is
limited, primarily because hybrid apps are dominant in Mask App
development due to their convenience and cost-effectiveness.

Finally, as shown in [20] and in our observations, the Mask Apps
are extremely sparse in the App Store. It is impractical to manually
validate all apps labeled as benign by Mask-Catcher. Hence, we ran-
domly selected 200 apps from benign apps labeled by Mask-Catcher
and manually validated these apps using the following methods:
(1) inspecting their metadata, including descriptions, user reviews,
authors, etc., (2) examining the user interface, and (3) searching in
online communities and developer forums. The process was very
time-consuming, which again confirms that it is impractical to man-
ually identify the Mask Apps. Eventually, we did not find any hint
of Mask App behaviors in these 200 samples.

4.2.4 Time Consumption of Mask-Catcher and Chameleon-Hunter.
We measured the time consumption of each filter using 14 pro-
cesses (same setup as Chameleon-Hunter [20]). As shown in Table
4, the computational cost for Filters 0 to 3 increased as expected.
Notably, the time consumption for the metadata-based suspicious
app discovery module (Filters 0 to 2) was considerably lower than
the code-similarity-based Mask App identification module (Filter
3). This observation highlights the effectiveness of the progres-
sive filtering approach in Mask-Catcher, leading to a significant
improvement in overall efficiency.

In total, Mask-Catcher spent approximately 117.5 hours on data
processing and the four filters, resulting in an average processing
time of 6.11 seconds per app. This is notably faster compared to the
29.11 seconds per app achieved by Chameleon-Hunter [20].

4.3 Discussions
4.3.1 Attack Against Mask-Catcher. Mask-Catcher relies on app
metadata, including app descriptions, user reviews, and inter-app
recommendations in discovering and identifying Mask Apps. A
knowledgeable attacker may deliberately manipulate the metadata
in an attempt to compromise the effectiveness of Mask-Catcher.
However, it is indeed challenging for attackers to interfere with
inter-app recommendations as they are primarily governed by Ap-
ple’s proprietary algorithms. The recommendations are influenced
by numerous factors, including user patterns, app categories, and
more. Influencing app recommendations would require significant
resources and costs beyond what Mask App developers may be
willing to invest. Regarding user reviews, developers of Mask Apps
typically want users to use their apps, and they cannot control the
users’ feedback on the hidden functionality of the app, which can
be captured by Mask-Catcher.

ICPC ’24, April 15–16, 2024, Lisbon, Portugal Yijun Zhao, Lingjing Yu, Yong Sun, Qingyun Liu, and Bo Luo

Table 3: Newly Discovered Mask Apps by Mask-Catcher from Unlabeled Dataset

Bundle ID Category Claimed Functionality Hidden Functionality Lifespan verified

duoduo.video.generator Utilities video and photo editing pirated movies 2022-06-01 to 2023-10-21(208 days) ×
com.tristan.aichat Lifestyle AI assistant pirated music 2023-06-06 to 2023-10-17(133 days) ×

com.llc.weeingcarManager Utilities wedding car rental pirated movies 2023-07-03 to 2023-08-27(55 days) ×
com.crz.beishuChallenge Games calculation game pirated movies 2023-09-04 to 2023-10-10 (36 days) ✓
com.learnsindhialphabets Education Sindhi alphabets learning pornographic video 2023-09-14 to 2023-10-07 (23 days) ✓
com.yefad.FACEGIJU Lifestyle emoticon stickers pornographic video 2023-09-20 to 2023-10-09 (19 days) ✓
com.ineya.ROLINXUE Entertainment emoticon stickers pornographic video 2023-09-20 to 2023-10-09 (19 days) ✓

com.xtxgj.tools health & Fitness hypoglycemia record pirated movies 2023-09-25 to 2023-10-17 (22 days) ✓

Table 4: Time consumption of each filter.

Module/Filter Total Number of apps Average

Data preparation 40min 69,178 35ms/app
Filter 0 23s 42,376 0.5ms/app
Filter 1 4min 41,977 6ms/app
Filter 2 46min 112,954 24ms/app
Filter 3 116h 3,231 129s/app

The attackers have more control over App descriptions. They
can provide descriptions that are closely aligned with the hidden
functionality of the app. However, this attack method is only viable
for apps that have similar functions as legal apps so that they can
declare such legal functions. For example, an app providing pirated
movies could pretend to be a movie app. However, if the hidden
functionality falls into an illegal category, such as gambling, the
description can hardly describe a function that is both “consistent”
with gambling and does not trigger alerts to Apple’s reviewers. In
response, Mask-Catcher employs a specific analysis for this type of
Mask Apps, i.e. Filter 0, which is detailed in Section 3.

Regarding the source code, Mask App developers could employ
different masks in each iteration of their development process. How-
ever, as described in Section 2, the short lifespan of Mask Apps ne-
cessitates frequent mask changes. Developing new mask templates
for each iteration would result in prohibitively high costs, which
do not align with the cost requirements of Mask App developers.

4.3.2 Limitations. The limitations of Mask-Catcher primarily re-
main in the following two aspects: (1) Accessing metadata, espe-
cially collecting reviews, in the app discovery module requires some
delay after the app has been published on the App Store. During
this time, potentially harmful apps may already have been down-
loaded and used by users, leading to potential damage. Filter 3
partially mitigates this issue by directly analyzing apps without
reviews using more comprehensive code analysis techniques. This
filter could be utilized as soon as an app is published in the App
Store, thus minimizing the time gap between app publication and
analysis, allowing for more timely identification of Mask Apps and
reducing the risk to users. In practice, the choice of which filters to
use can be adjusted based on the specific circumstances. If there is
a need for more immediate detection, the focus can be shifted to-
wards utilizing Filter 3 to prioritize code analysis methods if higher
overhead can be accepted. This flexibility allows for a customizable

approach that balances efficiency and accuracy while mitigating po-
tential harm to users. (2) While Filter 3 in Mask-Catcher uses code
similarity as an identification criterion, it is true that new Mask
App families may emerge, which cannot be accurately identified
due to the evolving nature of the threat landscape. As new Mask
App families emerge with unique code patterns, it may take time
for Mask-Catcher to adapt and accurately identify them. It is our
future work to add a novelty detector in Filter 3 to identify new
app samples with moderate similarity to existing Mask Apps and
pass them to human evaluators to confirm. It is also our plan to
maintain and expand the Mask App library.

To address this limitation, continuous efforts are required to col-
lect samples of newly discovered Mask App families. By regularly
updating the database with these samples, Mask-Catcher can grad-
ually narrow down the identification gap and improve its ability to
detect and classify emerging Mask App families.

5 RELATEDWORK
In this section, we summarize research works in the literature
that are most relevant to this paper: (1) app metadata analysis, (2)
identification of suspicious app behaviors, and (3) the detection of
disguised apps.

The metadata of apps contains extensive information pertain-
ing to their functionalities. AUTOREB [18] leverages user reviews
to analyze whether an app exhibits security and privacy-related
behaviors. CHAMP [16] employs a semi-automated approach to
construct semantic rules from developer policies across multiple
app markets and utilizes the semantic rules to identify malicious
app behaviors. [25] detects excessive permission requests based
on comparisons with similar apps. PRISharer [11] further catego-
rizes apps based on their metadata and subsequently examines user
reviews of similar apps to identify potential permission misuses.
KEFE [33] uses a regression model to identify the key functions of
apps from the descriptions and reviews. In this paper, we extract the
hidden functions of the apps from user reviews and then compare
them with the claimed functions in app descriptions to identify
potentially suspicious apps.

Several studies have employed feature-based deep learning meth-
ods [13] or static and dynamic binary code analysis [8, 9, 21, 22,
30, 37, 39] to identify malicious apps. WHYPER [28] selects three
commonly used permissions for protecting sensitive resources and
uses NLP methods to identify the reasons behind their usage based

No Source Code? No Problem! Demystifying and Detecting Mask Apps in iOS ICPC ’24, April 15–16, 2024, Lisbon, Portugal

on app descriptions. AutoCog [29] extends WHYPER to 11 permis-
sions, significantly improving recall and precision by considering
description-to-permission fidelity. Wang et al. [31] extract features
from decompiled code and train classifiers to evaluate two sensitive
permissions. Instead of detecting malicious permissions or behav-
iors, CHABADA [14] directly examines whether an app provides
the declared functionalities. Zhang et al. [36] consider the impact
of third-party libraries, reducing CHABADA’s false positives by
54%. Le et al. [35] simultaneously analyze privacy policies, byte-
code, descriptions, and permissions to evaluate app permission
requests. IoTProfiler [27] and IoTPrivComp [4] examine data col-
lection and sharing practices in IoT companion apps through static
and dynamic analysis, and then evaluate them against the apps’ pri-
vacy policies. ACODE [32] summarizes the four main factors that
contribute to inconsistencies between textual descriptions and the
use of privacy-sensitive resources. In addition to metadata, other
studies [17, 34, 38] utilize text found in user interfaces to detect
suspicious app behaviors. However, these research efforts primarily
focus on the Android platform and do not specifically address the
detection of Mask Apps in iOS.

Several reports in recent years have highlighted the presence and
the risk of Mask Apps [10, 15, 24, 26]. Cruiser [19] made the first
attempt to identify iOS apps with hidden crowdturfing UIs, which
shed light on the mobile-based crowdturfing ecosystem and the
tactics employed by underground developers to evade app review.
They further introduced Chameleon-Hunter [20], which uses static
analysis to examine the binary files andUI layouts of apps to identify
hidden UIs. Features derived from these UIs and metadata are then
utilized to ascertain the legality of these hidden UIs.

In comparison with Cruiser [19] and Chameleon-Hunter [20],
Mask-Catcher has the following advantages: Mask-Catcher is capa-
ble of handling apps developed in native, web, and hybrid models,
while Cruiser and Chameleon-Hunter only handles native apps.
As we have observed in the recent trend, the vast majority of the
Mask App are developed using the hybrid model. (2) The metadata-
analysis mechanisms in Mask-Catcher (Filters 0, 1, and 2) efficiently
eliminates ∼90% of the benign apps with extremely low overhead
(30ms/app). With this filtering mechanism, it becomes practical to
continuously monitor and examine all the apps in the App Store.

6 CONCLUSION
In this paper, we propose a novel approach called Mask-Catcher
for the discovery and identification of Mask Apps, a type of ma-
licious smartphone apps that claim a set of benign functions to
pass the App Store review and transform into a different set of
malicious/illegal functions after they are installed on users’ de-
vices and triggered by a specific activation activity. Mask-Catcher
autonomously collects metadata, including app descriptions, user
reviews, and inter-app recommendation relationships, along with
the app IPA files from the App Store. It initially detects suspicious
apps by analyzing the inconsistency in their claimed functions
and the reviews and inter-app recommendations. It then employs
highly accurate code similarity checking to identify Mask Apps.
This progressive filtering approach significantly improves detection
efficiency while maintaining high accuracy.

ACKNOWLEDGMENTS
Yijun Zhao, Lingjing Yu, Yong Sun, andQingyun Liuwere supported
by the Scaling Program of the Institute of Information Engineer-
ing, CAS (Grant No. E3Z0191101) and the Scaling Program of the
Institute of Information Engineering, CAS (Grant No. E3Z0041101).

REFERENCES
[1] 2023. Dataset. https://anonymous.4open.science/r/Dataset_of_Mask_Apps-

Anonymize/readme.md.
[2] 2023. Hire Freelancers & Find Freelance Jobs Online | Freelancer.

https://www.freelancer.com/.
[3] 2023. Re Forum - Internet people’s Roman square. iosre.com.
[4] Javaria Ahmad, Fengjun Li, and Bo Luo. 2022. IoTPrivComp: A Measurement

Study of Privacy Compliance in IoT Apps. In European Symposium on Research
in Computer Security. Springer, 589–609.

[5] Majd Alfhaily. 2021. ipatool. https://github.com/majd/ipatool.
[6] Alone_Monkey. 2021. frida-ios-dump. https://github.com/AloneMonkey/frida-

ios-dump.
[7] Apple. 2023. 2022 App Store Transparency Report. https://www.apple.com/legal/

more-resources/docs/2022-App-Store-Transparency-Report.pdf.
[8] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,

Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick D. McDaniel. 2014.
FlowDroid: precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for Android apps. In ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’14, Edinburgh, United Kingdom - June
09 - 11, 2014, Michael F. P. O’Boyle and Keshav Pingali (Eds.). ACM, 259–269.
https://doi.org/10.1145/2594291.2594299

[9] Feng Dong, Haoyu Wang, Li Li, Yao Guo, Tegawendé F. Bissyandé, Tianming Liu,
Guoai Xu, and Jacques Klein. 2018. FraudDroid: automated ad fraud detection
for Android apps. In Proceedings of the 2018 ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November 04-09,
2018, Gary T. Leavens, Alessandro Garcia, and Corina S. Pasareanu (Eds.). ACM,
257–268. https://doi.org/10.1145/3236024.3236045

[10] TechNode Feed. 2023. Porn apps disguised as learning apps on China’s iOS App
Store. https://technode.com/2023/10/08/porn-apps-disguised-as-learning-apps-
on-chinas-ios-app-store/.

[11] HongcanGao, Chenkai Guo, Guangdong Bai, DengrongHuang, ZhenHe, Yanfeng
Wu, and Jing Xu. 2022. Sharing runtime permission issues for developers based
on similar-app review mining. J. Syst. Softw. 184 (2022), 111118. https://doi.org/
10.1016/j.jss.2021.111118

[12] google. 2023. bindiff. https://github.com/google/bindiff.
[13] M. Gopinath and Sibi Chakkaravarthy Sethuraman. 2023. A comprehensive

survey on deep learning based malware detection techniques. Comput. Sci. Rev.
47 (2023), 100529. https://doi.org/10.1016/j.cosrev.2022.100529

[14] Alessandra Gorla, Ilaria Tavecchia, Florian Gross, and Andreas Zeller. 2014.
Checking app behavior against app descriptions. In 36th International Conference
on Software Engineering, ICSE ’14, Hyderabad, India - May 31 - June 07, 2014,
Pankaj Jalote, Lionel C. Briand, and André van der Hoek (Eds.). ACM, 1025–1035.
https://doi.org/10.1145/2568225.2568276

[15] Răzvan GOSA, Albert ENDRE-LASZLO, Vlad Sebastian CRET, U, Marius
TIVADAR, and Silviu STAHIE. 2023. Tens of Thousands of Compromised
Android Apps Found by Bitdefender Anomaly Detection Technology.
https://www.bitdefender.com/blog/labs/tens-of-thousands-of-compromised-
android-apps-found-by-bitdefender-anomaly-detection-technology/.

[16] Yangyu Hu, Haoyu Wang, Tiantong Ji, Xusheng Xiao, Xiapu Luo, Peng Gao, and
Yao Guo. 2021. CHAMP: Characterizing Undesired App Behaviors from User
Comments based on Market Policies. In 43rd IEEE/ACM International Conference
on Software Engineering, ICSE 2021, Madrid, Spain, 22-30 May 2021. IEEE, 933–945.
https://doi.org/10.1109/ICSE43902.2021.00089

[17] Jianjun Huang, Xiangyu Zhang, Lin Tan, Peng Wang, and Bin Liang. 2014. As-
Droid: detecting stealthy behaviors in Android applications by user interface
and program behavior contradiction. In 36th International Conference on Soft-
ware Engineering, ICSE ’14, Hyderabad, India - May 31 - June 07, 2014, Pankaj
Jalote, Lionel C. Briand, and André van der Hoek (Eds.). ACM, 1036–1046.
https://doi.org/10.1145/2568225.2568301

[18] Deguang Kong, Lei Cen, and Hongxia Jin. 2015. AUTOREB: Automatically Under-
standing the Review-to-Behavior Fidelity in Android Applications. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications Security,
Denver, CO, USA, October 12-16, 2015, Indrajit Ray, Ninghui Li, and Christopher
Kruegel (Eds.). ACM, 530–541. https://doi.org/10.1145/2810103.2813689

[19] Yeonjoon Lee, Xueqiang Wang, Kwangwuk Lee, Xiaojing Liao, XiaoFeng Wang,
Tongxin Li, and Xianghang Mi. 2019. Understanding iOS-based Crowdturf-
ing Through Hidden UI Analysis. In 28th USENIX Security Symposium, USENIX
Security 2019, Santa Clara, CA, USA, August 14-16, 2019, Nadia Heninger and

ICPC ’24, April 15–16, 2024, Lisbon, Portugal Yijun Zhao, Lingjing Yu, Yong Sun, Qingyun Liu, and Bo Luo

Patrick Traynor (Eds.). USENIX Association, 765–781. https://www.usenix.org/
conference/usenixsecurity19/presentation/lee

[20] Yeonjoon Lee, Xueqiang Wang, Xiaojing Liao, and XiaoFeng Wang. 2021. Un-
derstanding Illicit UI in iOS Apps Through Hidden UI Analysis. IEEE Trans.
Dependable Secur. Comput. 18, 5 (2021), 2390–2402. https://doi.org/10.1109/TDSC.
2019.2950253

[21] Li Li, Alexandre Bartel, Tegawendé F. Bissyandé, Jacques Klein, Yves Le Traon,
Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick D.
McDaniel. 2015. IccTA: Detecting Inter-Component Privacy Leaks in Android
Apps. In 37th IEEE/ACM International Conference on Software Engineering, ICSE
2015, Florence, Italy, May 16-24, 2015, Volume 1, Antonia Bertolino, Gerardo
Canfora, and Sebastian G. Elbaum (Eds.). IEEE Computer Society, 280–291.
https://doi.org/10.1109/ICSE.2015.48

[22] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2017. DroidBot: a
lightweight UI-guided test input generator for Android. In Proceedings of the
39th International Conference on Software Engineering, ICSE 2017, Buenos Aires,
Argentina, May 20-28, 2017 - Companion Volume, Sebastián Uchitel, Alessandro
Orso, and Martin P. Robillard (Eds.). IEEE Computer Society, 23–26. https:
//doi.org/10.1109/ICSE-C.2017.8

[23] Mr. Lin. 2023. Movie Watching - Mr. Lin’s Apple Toolkit. https://lin.mrlin.vip/
index.php?m=home&c=Lists&a=index&tid=76.

[24] Ben Lovejoy. 2018. China accuses Apple of failing to counter pornography,
gambling and counterfeit goods. https://9to5mac.com/2018/07/31/apple-china-
filtering-banned-content/.

[25] Prashanthi Mallojula, Javaria Ahmad, Fengjun Li, and Bo Luo. 2021. You Are (not)
Who Your Peers Are: Identification of Potentially Excessive Permission Requests
in Android Apps. In 2021 IEEE 20th International Conference on Trust, Security
and Privacy in Computing and Communications (TrustCom). IEEE, 114–121.

[26] Elizabeth Montalbano. 2023. 60K+ Android Apps Have Delivered Adware Un-
detected for Months. https://www.darkreading.com/application-security/60k-
android-apps-adware-undetected-months.

[27] Yuhong Nan, XueqiangWang, Luyi Xing, Xiaojing Liao, RuoyuWu, JianliangWu,
Yifan Zhang, and XiaoFeng Wang. 2023. Are You Spying on Me?{Large-Scale}
Analysis on {IoT} Data Exposure through Companion Apps. In 32nd USENIX
Security Symposium (USENIX Security 23). 6665–6682.

[28] Rahul Pandita, Xusheng Xiao, Wei Yang, William Enck, and Tao Xie. 2013. WHY-
PER: Towards Automating Risk Assessment ofMobile Applications. In Proceedings
of the 22th USENIX Security Symposium, Washington, DC, USA, August 14-16, 2013,
Samuel T. King (Ed.). USENIX Association, 527–542. https://www.usenix.org/
conference/usenixsecurity13/technical-sessions/presentation/pandita

[29] Zhengyang Qu, Vaibhav Rastogi, Xinyi Zhang, Yan Chen, Tiantian Zhu, and
Zhong Chen. 2014. AutoCog: Measuring the Description-to-permission Fidelity
in Android Applications. In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, Scottsdale, AZ, USA, November 3-
7, 2014, Gail-Joon Ahn, Moti Yung, and Ninghui Li (Eds.). ACM, 1354–1365.
https://doi.org/10.1145/2660267.2660287

[30] Kimberly Tam, Salahuddin J. Khan, Aristide Fattori, and Lorenzo Cavallaro.
2015. CopperDroid: Automatic Reconstruction of Android Malware Behav-
iors. In 22nd Annual Network and Distributed System Security Symposium,

NDSS 2015, San Diego, California, USA, February 8-11, 2015. The Internet So-
ciety. https://www.ndss-symposium.org/ndss2015/copperdroid-automatic-
reconstruction-android-malware-behaviors

[31] Haoyu Wang, Jason I. Hong, and Yao Guo. 2015. Using text mining to infer
the purpose of permission use in mobile apps. In Proceedings of the 2015 ACM
International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp
2015, Osaka, Japan, September 7-11, 2015, Kenji Mase, Marc Langheinrich, Daniel
Gatica-Perez, Hans Gellersen, Tanzeem Choudhury, and Koji Yatani (Eds.). ACM,
1107–1118. https://doi.org/10.1145/2750858.2805833

[32] Takuya Watanabe, Mitsuaki Akiyama, Tetsuya Sakai, Hironori Washizaki, and
Tatsuya Mori. 2018. Understanding the Inconsistency between Behaviors and
Descriptions of Mobile Apps. IEICE Trans. Inf. Syst. 101-D, 11 (2018), 2584–2599.
https://doi.org/10.1587/transinf.2017ICP0006

[33] Huayao Wu, Wenjun Deng, Xintao Niu, and Changhai Nie. 2021. Identifying Key
Features from App User Reviews. In 43rd IEEE/ACM International Conference on
Software Engineering, ICSE 2021, Madrid, Spain, 22-30 May 2021. IEEE, 922–932.
https://doi.org/10.1109/ICSE43902.2021.00088

[34] Shengqu Xi, Shao Yang, Xusheng Xiao, Yuan Yao, Yayuan Xiong, Fengyuan Xu,
Haoyu Wang, Peng Gao, Zhuotao Liu, Feng Xu, and Jian Lu. 2019. DeepIntent:
Deep Icon-Behavior Learning for Detecting Intention-Behavior Discrepancy in
Mobile Apps. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2019, London, UK, November 11-15, 2019, Lorenzo
Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz (Eds.). ACM,
2421–2436. https://doi.org/10.1145/3319535.3363193

[35] Le Yu, Xiapu Luo, Chenxiong Qian, Shuai Wang, and Hareton K. N. Leung. 2018.
Enhancing the Description-to-Behavior Fidelity in Android Apps with Privacy
Policy. IEEE Trans. Software Eng. 44, 9 (2018), 834–854. https://doi.org/10.1109/
TSE.2017.2730198

[36] Chengpeng Zhang, Haoyu Wang, Ran Wang, Yao Guo, and Guoai Xu. 2018.
Re-checking App Behavior against App Description in the Context of Third-
party Libraries. In The 30th International Conference on Software Engineering and
Knowledge Engineering, Hotel Pullman, Redwood City, California, USA, July 1-3,
2018, Óscar Mortágua Pereira (Ed.). KSI Research Inc. and Knowledge Systems
Institute Graduate School, 665–664. https://doi.org/10.18293/SEKE2018-180

[37] Yichi Zhang, Guoxing Chen, Yan Meng, and Haojin Zhu. 2023. Understanding
and Identifying Cross-platform UI Framework based Potentially Unwanted Apps.
In IEEE Global Communications Conference, GLOBECOM 2023, Kuala Lumpur,
Malaysia, December 4-8, 2023. IEEE. https://yan4meng.github.io/files/paper_
globecom_23_xpua.pdf to be published..

[38] Qingchuan Zhao, Chaoshun Zuo, Brendan Dolan-Gavitt, Giancarlo Pellegrino,
and Zhiqiang Lin. 2020. Automatic Uncovering of Hidden Behaviors From Input
Validation in Mobile Apps. In 2020 IEEE Symposium on Security and Privacy,
SP 2020, San Francisco, CA, USA, May 18-21, 2020. IEEE, 1106–1120. https:
//doi.org/10.1109/SP40000.2020.00072

[39] Cong Zheng, Shixiong Zhu, Shuaifu Dai, Guofei Gu, Xiaorui Gong, Xinhui Han,
and Wei Zou. 2012. SmartDroid: an automatic system for revealing UI-based
trigger conditions in android applications. In SPSM’12, Proceedings of theWorkshop
on Security and Privacy in Smartphones and Mobile Devices, Co-located with CCS
2012, October 19, 2012, Raleigh, NC, USA, Ting Yu, William Enck, and Xuxian
Jiang (Eds.). ACM, 93–104. https://doi.org/10.1145/2381934.2381950

