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Analytical and Numerical Techniques for Analyzing an Electrically Short Dipole witha
Nonlinear Load

MOTOHISA KANDA, MEMBER, IEEE

Abstract—An electrically short dipole with a nonlinear dipole load is
analyzed theoretically using both analytical and numerical techniques. The
analytical solution is given in terms of the Anger function of imaginary
order and imaginary argument and is derived from the nonlinear
differential equation for the Thévenin’s equivalent circuit of a dipole with a
diode. The numerical technique is to solve the nodal equation using a
time-stepping finite difference equation method. The nonlinear resistance
of the diode is treated using the Newton—Raphson iteration technique. A
comparison between the analytical and numerical solutions is given.

I. INTRODUCTION

T IS WELL accepted that microwave radiation can pro-

duce biological effects. Although it is very difficult to
determine the biological hazards associated with electromag-
netic (EM) fields, the biological effects resulting from the EM
fields can be adequately described from the knowledge of one
or more parameters that characterize the EM field. One of the
advocated field parameters for quantifying hazardous EM
fields is an electric energy density which can be easily calcu-
lated from the electric field strength [1]. For this reason the
National Bureau of Standards has recently developed a broad-
band isotropic electric energy density meter (EDM). The EDM
consists of three orthogonal electrically short dipoles with
diode detectors between thé arms of the dipoles. To synthesize
such an EDM in terms of its frequency response and its dy-
namic range one needs to theoretically analyze an electrically
short dipole with a nonlinear load such as a diode.

Traditionally, the characteristics of an antenna with a non-
linear load have been analyzed in the frequency domain by
considering the spectral components of the solutions at har-
monic frequencies [2]. For example, Sarkar and Weiner [3]
have used the Volterra series analysis to obtain the scattering
due to nonlinearly loaded antennas. The nonlinear transfer
function of a nonlinearly loaded antenna was determined at
several harmonic frequencies. The calculation of the non-
linear transfer function is generally tedious, particularly when
the circuit model of the nonlinear load is complicated and its
nonlinearity is strong. Recent analyses of nonlinearly loaded
antennas have been considered using direct time-domain tech-
niques. Schuman [4] has described the application of the
time-domain method of moments technigue to determine the
scattering current on a thin wire with discrete nonlinear resis-
tive loading. Liu and Tesche [5], [6] have used frequency-
domain data to compute the time-dependent currents and volt-
ages across a nonlinear load by means of the Laplace transform.
A unified numerical procedure was recently proposed by
Landt [7]. The antenna characteristics were derived from a
time-domain electric field integral equation, whereas the non-
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linear network analysis was performed in a simple time-domain
nodal analysis.

Two techniques for analyzing an electrically short dipole
with a nonlinear load are described here. The first technique,
described in Section II-A, gives an analytical solution to the
first-order nonlinear time-domain differential equation in
terms of Anger functions. The second technique, described in
Section II-B, is a time-stepping finite difference solution tech-
nique for obtaining a numerical solution to the time-domain
nonlinear differential equation. The nonlinear effect due to a
diode is solved by the Newton-Raphson iteration method. This
numerical technique gives the physical insight for nonlinear load
effects on antennas in terms of the time-domain waveform and
also permits the consideration of certain problems which are
too complicated to be treated by an analytical technique.

The nonlinear effects on an electrically short dipole are first
investigated in Section III in the time domain using a time-
stepping finite difference solution technique. The frequency
responses and the dynamic ranges of the dipole with a non-
linear diode are then compared using the two different tech-
niques described above.

II. THEORY

Using the frequency-domain concept of the effective length
and the driving point impedance of an electrically short dipole
without a nonlinear load, the Thévenin’s equivalent circuit for
a diode with a nonlinear load is shown in Fig. 1. The element
v;(t) is the induced open-circuit voltage at the dipole terminal
and is given by

vi(t) = einc(t)hea (1)

where e;, is the normal incident electric field strength and
h, is the effective length of the dipole. The element C, is the
equivalent driving point capacitance of the dipole. A parallel
combination of a linear capacitance Cy and a nonlinear resis-
tance R4 represents a simplified model of a diode.

For an electrically short dipole antenna (i.e., kh <1 where
k is the free-space wavenumber), the effective length A, and
the driving point capacitance C, of an antenna are given by

(8]

h(Q— 1)
he=—"T——""" 2)
2Q—2 +1n4)

and

47T€0h
Cy =
§—2—1nd)

(3)

Thé symbols have the following meanings: h is half the physical
length of a dipole antenna in meters, €g is the free-space
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Fig. 1. Thévenin’s equivalent circuit of an electrically short dipole

with a diode.

permittivity in farads/meter, and £ is the antenna thickness
factor (i.e., Q = 2 In(2h/a), where a is the antenna radius in
meters). When & = 0.02 m and ¢ = 2.84 X 1075 m (i.e., the
antenna thickness factor £ = 14.50), the effective length A,
and the equivalent antenna input capacitance of the antenna
C, become, respectively, 9.72 X 1073 mand 0.2 X 10712 F.
A beam lead Schottky barrier diode is chosen as a nonlinear
load detector since it has a natural high-frequency perform-
ance due to small junction capacitance, high sensitivity, and
low noise characteristics. When an electrically short dipole is
terminated with a beam lead Schottky barrier diode, the effect
of loading on an antenna can be analyzed using the simple
equivalent circuit shown in Fig. 1, which consists of a parallel
combination of a nonlinear resistance R4 and a linear capaci-
tance C,. Here, the nonlinear resistance Ry of the diode is
characterized by its v-i characteristic, i.e., )

i(f) = I,(e*vo(H — 1). @)

The symbols have the following meanings: i(¢) is the current
{ampere) and vq(¢) is the voltage (volt) across the diode junc-
tion; I, is the saturation current which is assumed to be 2 X
1072 A;and @ = q/nkT = 38 V—1 where g is the electronic
charge (1.6 X 107192 (), n is the diode ideality factor (~1.05),
k is Boltzmann’s constant (1.38 X 10—23 J/K), and T is the
temperature (~290 K).

The junction capacitance C; and the package capacitance
C, are combined and are shown as Cy in Fig. 1. The exact
value of C; varies from diode to diode and is very difficult
to determine. In this paper, Cy is assumed to be constant and
equal to 0.34 pF for a beam lead Schottky barrier diode. In a
more elaborate diode model the junction capacitance C; is
nonlinear and is a function of the built-in potential V}, as

C;(0)
G(V)= '<——’V—F (5)
1 — ———

for a step junction. The package capacitance C, is generally
constant. The more general treatment of an antenna with
linear and nonlinear loads, such as a nonlinear resistance and a
nonlinear junction capacitance as well as a linear package in-
ductance and a linear series resistance of a diode, is being
pursued. A simple nonlinear resistance R,; with a constant
diode capacitance Cy for the beam lead Schottky barrier diode
shown in Fig. 1 is used in the following sections for analyzing

1
the loading effect of an electrically short dipole with a non- g
linear diode using analytical and numerical techniques. :

A. Analytical Technique

Using Thévenin’s equivalent nonlinear circuit shown in -
Fig. 1, the voltage equation and the corresponding current
equation are

4(8) _ 44(®)

v (1) + = vg(?) (6)
a d
and
dqq(?) N dqq(t) riH)=0, )
dt dt

where g, and g4 are the charges on C, and Cgq, respectively,
and i is the current through the nonlinear resistance Ry. With
the substitution

y(t) = e*vo(t), €)

(4), (6), and (7) reduce to

dy(t
—‘c;) +ay2(t) + y(O)f(t) =0, ©)
where
Y
T ve’ (10)
0 —a I + dui(1) "
)= ——— | — — .
(1 +C4/Cy) | Ca dt ()

Equation (9) is a first-order nonlinear differential equation.
The original investigations for solving the equation have been
performed by P. F. Wacker, and the detailed mathematical
steps involved are given in Appendix A. When the induced
voltage v;(¢) is a periodic sinusoid, i.e., v;(#) = V; sin wt, the
detected dc voltage V averaged over a complete cycle is given
by

112 GU)
In ——,

— 1
Vo=—"— ,
a sinh 7T

(12)

where J;p(jU) is the Anger function of imaginary order (jT)
and imaginary argument (fU), T is the normalized period

ol
T= ——o) (13)
w(C, T Cg)

and U is the normalized induced voltage

aV;

U= ——t—. (14)
1+ C4/C,

Using the series representation for the Anger function one can
show from Appendix B that the detected dc voltage averaged
over a complete cycle is given by

—_ 1
Fo=—— In[S1(T, U) = TS5(T, D)), 9
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. with 2 non- |  where In order to deal with nonlinear equations which result from
Jues. 1 nonlinear elements such as a diode, the general approach to a
‘ 4 = um solution of suchproblems is by the Newton-Raphson iteration.
‘ S5i(T,U)=1 E_ m ’ (16)  The basic technique used is discussed below. Given a nonlinear
it shown in || ::/;3 H (k2 + T2?) system f(i,0), the solution of f(i,v) = 0 yields the solution for the
\ding current | i k=2 system response. First f(i, v) is expanded at an initial solution
even
0
and '
6 . - WO |
So(T, U) = 21 —m——z‘— . a7 that is,
m=
n=l [T w2+ 1) )
%) k=1 ] o 0 ] Ai
odd fG, vy = f(i%, v°) + J[ (, v0)) , (24)
Av®
, respectively, At high frequencies where

ance Ry. With

(8)

(9)

(10)

(1)

:ntial equation.
tion have been
| mathematical
:n the induced
V; sin wt, the
e cycle is given

(12)

nary order (jT)
ed period

(13)

(14)

‘unction one can
voltage averaged

(15)

OJS
T= ———— <1, (18)
w(Ca+Cd)

one can show from Appendix C that for small V;

— o3 Vi 2
Vop=—o | ———1, (19)
41 1+ C4/C,

and for large V;

_ Vi
Vop=— ———. (20)
1+ Cd/Ca

Equation (19) indicates that for the small induced steady-
state voltage V;, the output dc voltage V is a square-law func-
tion of the induced voltage V;. On the other hand, (20) indi-
cates that for the large induced voltage V;, the output dc volt-
age is proportional to the induced voltage V;.

B. Numerical Technique

A time-stepping difference equation technique can be used
for solving the nonlinear network shown in Fig. 1. The basic
idea of a time-stepping finite difference equation technigue is
briefly discussed below. More detailed discussion on this sub-
ject is given by Calahan [9].

The linear and nonlinear elements are converted into resis-
tance-current source equivalent networks in the nodal equa-
tion method. For instance, in a regular R, C, and L circuit we
have

v, = Rip, (21)
Upe1 — U
ey =C Ltl__l, (22)
T
and
iney —1
tne1 =1 —~‘T— (23)

where 7 is a sampling time interval. Once the initial vy or i is
given, one can determine vy and iy, then vy and iy, etc.; such
a method is, therefore, called a time-stepping finite difference
equation method.

where J is the Jacobian of fand has the form

r .

o ., O
a—i: Wpem
7=\ :
Ofnem Ofp+m
] 21y Opem |

Now f(i, v) = 0 determines
A
Av®

JLfGO, v®)) [

as

Ai a0 0
Ao - f(lav)-

v

The solution of
Ai®
Av®
updates the initial value of

i0
v J
n+l fid Ain
= + .
[vn+ l:l [:U"] l:Avnj|

via

The operation is repeated for n = 0, - until the change

2]

is significantly small.

(25)

(26)

@7) |
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Fig. 3. Time-domain waveform of tenth detected 100-MHz sinusoid.

III. RESULTS

In this section the time-domain waveforms of a sinusoidal
wave at various nodes are shown first using the time-stepping
difference equation technique discussed in Section II-B. Here
a single time-domain sinusoidal wave is divided into 16 discrete
digitized points (17 points including both ends) in the analysis.
Then the detected sinusoidal wave averaged over many cycles
which correspond to dc output of an electrically short dipole
with a beam lead Schottky barrier diode is given.

Fig. 2 shows the time-domain waveform of the first sinus-
oidal wave at 100 MHz at various nodes. At node 1 an applied
sinusoidal wave V; is shown with unit amplitude. At node 2
the detected sinusoidal wave, which is skewed or distorted due
to the nonlinearity of the diode, is shown. It is obvious that at
node 2 the detected voltage starts developing in the negative
polarity, which eventually leads to dc negative output for the
dipole with the diode.

Fig. 3 shows the time-domain waveform of the dipole with
the diode due to the tenth sinusoidal wave driving voltage.
Again, a sinusoidal wave at node 1 is an applied driving votlage
with unit amplitude. The detected time-domain waveform at
node 2 after diode detection indicates a much more pro-
nounced negative charge accumulation. Finally, an almost d¢
detected voltage starts appearing in the negative polarity after
a ten-cycle time average.

Fig. 4 shows the time-domain waveforms of the dipole with
the diode due to the 100th sinusoidal wave induced voltage.
The negative charge accumulation is much more pronounced,
and constant detected dc voltage appears after a 100-cycle
time average. To arrive at the steady-state time average of
these sinusoidal wave excitations using the time-stepping finite
difference equation technique with the Newton-Raphson itera-
tion method, 400 sinusoidal waves, which correspond to 6400

RELATIVE AMPLITUDE

-.8p \.\ ./
<10k o
Fig. 4. Time-domain waveform of 100th detected 100-MHz sinusoid.
102 -
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J
]0_7 = ./
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Fig. 5. Detector voltage response at 100 Mhz.

discrete points (16 points per one cycle), are applied successively
to compute 6400 discrete output voltages, which are then nu-
merically time-averaged.

Fig. 5 shows the detected dc voltage V¢ from the dipol
with the diode as a function of induced voltage V(= ejnc he
where e, is the normal incident electric field and A, is the
dipole effective length). The detected dc voltages Vy as a func
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tion of induced voltage V; are calculated using both the anal-
ytical technique given in Section II-A and the numerical tech-
nique described in Section 1I-B. Below an induced voltage V;
of about one volt, the detected dc voltage Vg is equal to the
square of the induced voltage ¥;. On the other hand, above an
induced voltage V; of about one volt, the detected dc voltage
Vo is proportional to the induced voltage V;. Thus the diode
detection is square-law at a small signal level but becomes
linear at a large signal level.

Fig. 6 shows the transfer function of an electrically short
dipole with a beam lead Schottky barrier diode as a function
of frequency. Here the transfer function is defined as a ratio
of the detected dc voltage Vo to the amplitude of the induced
voltage V(= ejne o) expressed in decibels when e, is equal
to 1 V/m rms. Thus the transfer function so defined is for a
detected dc voltage 70 of several millivolts, which corresponds
to a square-law signal level. As indicated in (2), the effective
length of an electrically short dipole is independent of fre-
quency. The transfer functions of the dipole with the diode
are calculated both analytically and numerically.

Time-domain waveform of detected sinusoids at various frequencies.

The sharp cutoff (20 ~ 40 dB per octave) below 10 kHz in
the transfer function predicted from both analytical and nu-
merical results can be explained as follows. Fig. 7 shows the
detected time-domain sinusoidal waveforms at node 2 at
various frequencies. Since the induced voltage V; becomes very
small at low frequencies below 10 kHz, the diode provides a
very high and almost linear impedance for both the positive
and negative cycles of the sinusoids. Therefore, the detected
time-domain sinusoidal waveform becomes very similar to the
original sinusoidal wave excitation. For example, Fig. 7 clearly
shows that the time-domain waveform at 1 kHz (whose ampli-
tude is magnified by a factor of 10) is almost sinusoidal for
both the positive and negative cycles. On the other hand, at
high frequencies above 10 kHz, during the positive cycle the
diode conducts and provides a very low impedance, whereas
during the negative cycle the diode does not conduct and
provides a very high impedance. Therefore, the time-domain
waveforms at high frequencies above 10 kHz are more skewed
or distorted compared with the original sinusoidal waveforms.
Fig. 7 clearly shows that the detected time-domain waveforms
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at 1 and 100 MHz are more skewed or distorted compared
with those at 1 kHz. The detected time-domain sinusoidal
waveform is less strongly skewed or distorted at lower fre-
quencies than at higher frequencies. Because the skewness of
the detected waveform and the rate of charge accumulation
decrease in the lower frequency range below 10 kHz, the trans-
fer function of the dipole with the diode also decreases as
shown in Fig. 6.

IV. CONCLUSION

This paper introduces two independent techniques to anal-
yze an electrically short dipole with a nonlinear load. The
nonlinear load considered in this paper is a beam lead Shottky
barrier diode. The analytical solution, given in Section II-A in
terms of the Anger function of imaginary order and imaginary
argument, was derived from the nonlinear differential equation
for the Thévenin’s equivalent of the dipole with the diode. The
numerical technique, explained in Section II-B, is basically to
solve nodal equations using a time-stepping finite difference
equation technique. The nonlinear resistance of a diode was
treated by the Newton-Raphson iteration method.

The transition from thé square-law detection region to the
linear detection region was observed as the induced voltage
was varied. The transfer function of an electrically short dipole
with a diode was also investigated. The decrease in the transfer
function at frequencies below 10 kHz was explained through
the time-domain sinusoidal waveforms obtained from a time-
stepping finite difference equation technigue.

One of the advantages of using the analytical solution in
terms of the Anger function of imaginary order and imaginary
magnitude is that the solution is given in the closed form and
is very easy to evaluate. However, it is very difficult, or maybe
even impossible, to find the closed-form solution of a non-
linear differential equation for much more complicated models
of an antenna and a diode, e.g., including a nonlinear capaci-
tance, a linear inductance, as well as nonlinear and linear re-
sistances, and a linear capacitance. In such cases a time-
stepping finite difference equation technique along with the
Newton-Raphson iteration method provides an accurate time-
domain solution for more general nodal equations. The analysis
of a linear antenna with a nonlinear load (in which a diode
model consists of a parallel combination of a nonlinear resist-
ance and a nonlinear junction capacitance along with a linear
series inductance, a linear series resistance, and a linear package
capacitance) has been carried out using a time-stepping finite
difference equation technique along with the Newton-Raphson
iteration method and will be presented in the future.

APPENDIX A

THE SOLUTION FOR A FIRST-ORDER NONLINEAR
DIFFERENTIAL EQUATION

With the following substitution

1 du(?)
= , (A1)
) au(t) dt
(9) reduces to
2 d d
d=u(?) +7 u(t) —o= w(t)+ (o), (A2)
dt? dt dt

where

d';(:) = w(t). (A3)

The solution of (..2) is given by

t
In w(t) =— / f(r)dr=bv)(t) tat+c, (A4)
0
where
a
b=—", (A5)
1+ C4/C,
o,
a=—t (A6)
C, + Cq4

and from the initial condition

c=0. (A7
Then
bui(t)+at
y(t) = ervod) = L du) _ ebuitore
au(t) dt t .
a /ebv,-('r)+a1—d7_ +4d
0
(A8)

Hence the detected output voltage vg(2) is given by

bu; (¢ 1 t
vo(t) = ;( )—; In I:de_“t + ge— ot f ebvi(T) 4ar d‘r}
0 .

(A9)

When the induced voltage v;(¢) is a periodic sinusoid, i,
vi(t) = V; sin wt, the second term in the natural logarithm
can be integrated analytically. The integration over a complett
cycle becomes

[t/p]1—1

t
ebui(t)+ar dr =
[ 5

p
enap/ ebvi(r)+ar gr
n=0 0

1 —elt/iplap

P
e [ e
(1]

1 —elt/Plap
= —1,

" (A10)

where p is the period, [¢/p] is the largest integer in ¢/p, and

Aan)

P
I= / ebu,~(1’)+a'rd7-_
0

F
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By substituting (A10) into (A9),

1 al al
——1In d+ e at + R
o 1 —e%% e%? — 1

(A12)

(A3 bu;(t)

vo(t) =

(A9 | Note that the first term in the natural logarithms goes to zero
for large positive ¢.
By taking a time average of vo(#) over a complete cycle, the

detected dc voltage becomes

(A5)

(A13)

since
u(H) = 0.

Equation (A11) can be integrated analytically for a sinusoidal
induced voltage v;(¢) = V; sin wt:

(A6)
(Al14)

(AT P
I= / ebVisinwr+ar 4o
0
)Y+at " R ' g]I'+1r'
] =1 ebVisin (7'+m)+ = dar
—_
*aT dr | +d
m
= LenT / e b VisinT'+T1’ 4!
(A8) -
1oy = e 1en T (U), (A15)
where J;p(U) is the Anger function of imaginary order (jT)
vi(T) +ar gp i} and imaginary argument (jU), T is the normalized period

(A9) ==, (Al6)

ic sinusoid, i.e.,
tural logarithms B
over a complete

=y, = — i
Yty (AL7)
y(r)+ar gr Substituting (A15) into (A13) the detected dc voltage average
- over a complete cycle becomes
- 1 21ae™TJ;pGU) 1 aTJ;
N ) B L L N
vi(T)+at go v w(e? — 1) o sinhnT
which is given in (12).
PPENDIX
(A10) APPE B
SERIES REPRESENTATION FOR THE DETECTED
DC VOLTAGE

ter in t/p, and The detected dc voltage averaged over a complete cycle is

given by (12)

- 1 | nTJ; T(/U)
—In ————
o sinh T

(A11) B1)

77

Using the series representation for the Anger function

sin vw
s1(v,2) +

sin v
‘IV(Z) = SZ(V! Z): (Bz)
vm
where
oo 1 m/2zm
51, 2) =1+ 2 (—)———— (B3)
even H (k2 - Vz)
even

and

s (_1)(m—1)l2zm

S2(V,Z)— 2
add H (kZ_VZ)

(B4)

odd
Since
i sinh 7T jsinhaT
Jir(GU) = 51GT,jU)+ ———s2(/T,jU), ~ (B3)
we have
11J;7(U) .
——2= [, T, jU) + jT53GT, jU)]
sinh 7T
= Sl (Ta U) - TSZ(Ta U)’ (B6)
where
= um
ST, U)=1+ Z ——, (B7)
H (k2 + T2)
even
and
> um
So(T, U) = E —_— (B8)
vad H(k2 +72)
odd

By substituting (B6) into (B1) the detected dc voltage averaged
over a complete cycle becomes

=—_‘ln [851(T, U) — TSy(T, V)]
which is given in (15).

APPENDIX C
HIGH-FREQUENCY APPROXIMATION

At high frequencies where

o
= —— <1,

W(Cq + Ca) €1
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(16) and (17) are approximated as

U2 U4

2242 i ©2
TS,(T, U) = 0. (C3)

For small V;, ie., small U, the detected dc voltage averaged
over a complete cycle becomes

— 1
Vo =—;ln [SI(T,U)—TSZ(T,U)]
U2
=——In{l+ —
o 22
U2 o Vi 2
E——— =" |T— (C4)
4 411+ Cy4/C,

which is given in (19). For large V;, i.e., large U, the detected
dc voltage averaged over a complete cycle becomes

- 1
VO =——I [SI(T: U) - TSZ(Ta U)]

o
vz Ut
——In{l+—+
a 22 2242
1
=——Inlp(V), (C5)
64

where [o(U) is the modified Bessel Function of zeroth order.
Applying asymptotic expansion for Iy (U) for large arguments
U, the dc voltage becomes

— 1 eU U Vi (C6)
Vo =——1n et
07 o VU a1+ Cy/C,

which is given in (20).
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