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INTRODUCTION

‘The 1limited resolution of radar antennas is
the reason for several errors. Besldes
ﬁracking errors for formations of targets or
jammers, we have multipath and glint errors,
which are caused by insufficient resolution.

An active antenna array offers the potential
for angular superresolution if the sequence of
spatial samples of the received waves 1is
available. From spectral analysis and other
fields superresolution methods like the
maximum~entropy method, Capon’s maximum-
likelihood method, or spectra generated by
eigenvectors are well known. These methods
can also be applied for angular resolution
with some modifications. Essentially these
methods generate a peaky estimate of the
angular spectrum. The resolution task then
is still left to the user who has to interpret
the spectrum. A decision rule for the
detection and resolution of peaks with these
superresolution wmethods 1s to date not knowne.
In addition these methods are only applicable
for stationary stochastic signals. The
important case of superposed pure sinusoids 1is
not in this class. For automatice signal
processing fixed algorithms with well defined
properties are necessary. Such algorithms can
be found by parameterising the signal with the
desired parameters and by fitting this signal
model directly to the measured data. The more
wé specialise the signal model, the better the
achievable resolution will be. But the
resolution may perhaps be much worse, 1if the
data do not belong to the chosen model. This
dilemma is common to all superresolution
methods. The signal model should just comprise
the essential features to give a powerful
superresolution method. For radar with
narrow-band receivers a point-target model
seems appropriate. This model leads to angular
spectral line fitting to the data.

RESOLUTION AS A DECISION PROBLEM

Model
formulation
problem has

fitting 1is a decision problem. The
of radar resolution as a decision
been attacked by several authors
e.g. Root (1), Ksienski and McGhee (2),
Birgenheier (3), and others. The output of an
antenna array is a time sequence of vectors.
It 1is essential to formulate the decision
problem for a given set not only of spatial
but also temporal samples. The narrow-band
point target signal model is still open for
several fluctuations of the signal amplitude
and phase. No assumptions should be made on
these fluctuations because they may differ
from one application to another. Therefore we
consider the amplitudes and phases as a
deterministic, but unknown sequence. Assunming
measured data of the form signal plus pure
receiver noise, we can formulate hypotheses
(i.e. families of distributions of the data)
and we have to
data were taken from.

decide from which class the

Multi-hypothesis
solution

test. It can be shown that a
of this multi-hypothesis problem can

be given by a sequence of likelihood-ratio
tests of the following form: We test the
hypothesis "the number of targets is « M"

agalnst the alternative "the number of targets
is > M" starting with M=0 and increasing the
number of targets M. Once we have accepted the
hypothesis "the number of targets is < M", we
stop testing. The decision for the target
number is M. In thig way the multi-hypothesis
test 18 sequential with respect to the number
M. The overall procedure is shown in figure 1.
A precise formulation of the hypotheses, the
test problem, and the solutiom can be given
and will be published elsewhere. The likeli-
hood ratio test has the advantage of giving a
fixed asymptotic error level, in contrast to
the general Bayes approach, For further data
processing, like tracking algorithms, this is
important. If the test procedure is terminated

at some stage M, before the decision has been
made, one has at least the dinformation that
the number of targets is greater than M. This
information may sometimes be useful. To com—

pute the likelihood ratio, at each stage M a
maximum likelihood parameter estimation has to
be carried out, which essentially estimates
the directions of the targets for the assumed
number M. There are several applications where
a test procedure is not needed, e.g.for multi-
path error reduction a two target model may
be sufficient. The procedure is then simpler.

ESTIMATION OF THE DIRECTION

Signal model. Suppose we have given M point
sources in the farfield of the antenna. For an

array with elements at the positions Xy Yy
i=1,...N, the complex sample ouput at the i-%h
element then can be written

z =

M
. T skej¢k eTd2m/ACxgupty Vi)

k=1
where Uy X denote the direction «c¢osines for
azimut dnd “elevation. X 1s the wavelength and
n the receiver noise sample (j2=-1). In vector
notation we can write this equation as

i

v

z = A b + n, where bk= Bke3¢k and the

transmission matrix A has the elements
e-ij/A(xiuk+yivk)

(i=1,+.N, k=1,..M)

(vectors and matrices are underlined).
Signal models other than Ab are also possible,
the matrix A can have another form.

Maximum likelihood estimation

For white gaussian uncorrelated receiver noise
maximum likelihood estimation leads to the
minimisation of the mean squared error between

the measured data and the signal model. For K
data vectors z we have to minimise
K
Iz - Ab 12 (@D
k=1
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the square norm for complex
minimisation with respect to b
daone for each ¢z , because the
and phases are assumed to be an
unknown, deterministic sequence. This is a
linear 1least squares problem and the solution
can be written down at once:
“—;k = (A* A) - g;k. (..¥ denotes complex- con-
jugate transpose ). We are thus left with the
minimisation of the function

denotes
The

(G |
vectors.,)
has to Dbe
amplitudes

X
Qu,¥) = £ 1z, - A (&4 7 A"z 12 (2)
k=1
Equivalently we could maximise
K
S(u,v) = £ zXA (a7 Az (3)
k=1

Function (3) shows that this estimation 1s a
generalisation of conventional beamforming
which is the case M=1. We have to maximise the
square of a vector of M simultaneous decoupled
sum—beans. For the derivation of these
functions we have assumed owmnidirectional
patterns of the antenna elements. If the
single elements have a directional, but equal
pattern, we would have to replace the matrix A
by a matrix AC , with € a diagomal
(MxM)-matrix, depending on the directions. The

form of the functions (3), (4) shows that
these functions are invariant wunder such
left-side transformations C of the matrix A
(as long as c 1is regular). Equal antenna

patterns therefore always lead to the
consequence

element
same minimisation problem. As a

mutual coupling effects do not influence
the estimation procedure, if the coupling
effects are the same for all elements (e.g.
for large arrays on a regular grid). One
single snapshot 2z 1is in principle sufficient
for this kind of resolution, if the signal-
to~noilse ratio is high enough. No assumptions
have been made on the b , they may be

deterministic or stochastic. Direction finding
by maximising (minimising) these functions may
be considered as the optimum procedure, but it
is very time consuming and for most radar
applications of less value. The main problem
of this kind of resolution is the maximisation
(minimisation) of the function (2) or (3).

Suboptimum estimation

From equation(2),(3) we can derive a simple,
suboptimum estimation algorithm. We can
minimise Q for only one observation (K=1) with
a gradient algorithm, but we use a new
observation 2z for each iteration step. Thus

the 1iteration proceeds in the direction of
steepest descent, but the underlying function
is time varying. This leads to a stochastic

approximation algorithm

Ve ¥ Toay G( zy» ¥, ) ;3 k=1,2,3... 4)

where ¥ = (gk, gk) and

g(‘_"k’ Ek) = grad Q (Ek’ Ek)

and ay is a sequence of real numbers with
= o 2

% ak , L ak < o to achieve

convergence with probability 1. A sequence

a, = const/k Thas the desired properties. The

déuble null tracker of White (4) is a special

case of this algorithm. Conditions for con-

vergence with probability I can be found in
the literature. The counvergence point is that
set of directions w with E{G(¥,z)} = Q. If
G = grad Q, coanvergence properties can there-
fore be studied by dicussing the fuunction E{Q}
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for various fluctuations of the signal ampli-
tude and phase. To ensure convergence, the
iteration has to be bounded to a convergence
region, which can be chosen to be the disk of
the antenna beamwidth. This reglon is found by
scanning the conventional sum~bheam (the stage

M=] in the procedure of fig.1). The iteration
(4) has the advantage that only one ob—
servation vector 2z has to be stored (in
contrast to equ.(2) or (3)). In effect the

gradient depends only on M simultaneous sum-—
and difference-beams 1in the directions w .
Figure 2 shows the computations for the
gradient G for the case M=2 and a linear

antenna. Without beamforming (which should be
done by special analog or digital hardware) 8
complex multiplications and 4 additions are
necessary for one iteration step for this
example. For M=1 the algorithm simply tries to
null the difference beam.

Experimental results

Computer Simpulations. For the simulations

shown here we wused an antenna consisting of
192 elements and a diameter of 37x . The
location of the elements with a slight
parabolic density tapering is shown in figure
3. Figure 4 shows the estimation of the azimut
direction cosines u with a version of the
stochastlic approximation algorithm for two

given targets. The elevation estimation looks
quite similar. The 2 targets are located at
9 = (-0.35 BW/2, 0.35 BW/2), ¥ = (-0.35 BW/2,

0.35 BW/2).The starting point of the iteration
is always u =(0,0), v = (-0.9 BW/2, 0.9 BW/2).

Figure 4(a) shows the estimation for un-
correlated targets with Rayleigh-fluctuating
amplitudes, figure 4(b) with fixed amplitudes

and a constant phase difference of (O degree.
The antenna output signal-to-nolse ratio 1s
19.8d4B. Large numbers of element outputs are
often pre-processed by forming subgroups. We
may consider these subgroups as new antenna
elements with <certain antenna patterns. The
estimation procedure can then be applied for

this element configuration.
are chosen to be all equal,

If the subgroups
these new elements

have equal patterns. The estimation therefore
remains the same as mentioned above. We have
only to use the center of gravity of the

subgroups as element positions.
groups affect the estimation.
matrix A

Unequal sub-
The transmission
then needs a correction. Figure 4(c¢)
shows the estimation using only subgroup out-
puts without any correction. The 192-element
antenna was divided 1into 24 subgroups, each
conslisting of 8 elements as indicated in
figure 3. This result shows that empirically
the estimation by stochastic approximation is
robust against small errors of the trans-—
mission matrix A.

Measured 2 target signals, Further tests were
made with an experimental setup. To measure
2-target configurations, a 6-element antenna
at S-band with 2) diameter was taken. 5
elements were located at the corners of a
pentagon and one element at the center. The 12
element outputs (I and Q "channels) were
converted analog to digital with 8 bits and
then processed by a desk computer. Targets
were simulated by two transmit elements of Im
separation. These were located in front of
the antenna at a distance of ca. 4m. Figure 5
shows the configuration. The 2 targets were
simulated by 2 doppler-shifted pure sinusoids.
Figure 6 shows the estimation. The above part
shows the conventional azimut sum—-beam
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patterns if only one of the 2 transmit
‘elements is active (gross lines) and 3
patterns by superposition of the two sources
“for some random phase differences. Below is
shown the azimut and elevation estimation of
“the directions by stochastic approximation
with 30 diterations. The circle indicates the
size of the 3 dB beamwidth. The estimated
“directions differ from the waxima of the

single~-target sum-beam patterns by 0.02 of the

S 3dB-beamwidth. The signal—-to—-noise ratio in
this case was very high. The main errors were
due to misadjustment, channel quantisation,
and multipath effects.

TEST FOR THE NUMBER OF TARGETS

With the directions
optimum

longer

estimated by the sub-
stochastic approximation, we are no
able to perform a likelihood-ratio
test, which would give a fixed asymptotic
error level. Nevertheless we can find a test
gtatistic which uses the suboptimum estimation
of the directions, for testing tke hypotheses
under consideration H: "M < M" against
K i"M > M". This statistic is the value of (2)
qQ( 4, v),where ( §i, §) are found by stochastic
approximation. In this case K can be small,
e.g. K=2,3,4. Q ( fi, ¥) measures the residual
energy after sigmal extraction.
Test at approximate error level. If the
estimation is sufficiently accurate, we can
approximate the distribution of Q@ by a x2 -
distribution with 2K(N-M) degrees of freedom,

because then Q is only a sum of squares of

2K(N-M) noise samples. This 1is because
(I-aa) ") s =0 (s = ab)

We are thus able to construct a sequence of

tests at an approximate level of probability

of error of the first kind for each stage M

(i.e. P{Q > nA'a} < a if HM is given). The
3

form of the multi-hypothesis test
of fig.l then yields that for the overall
type-l=-error probability Afor a given target
number M, we have also P{ M > M } < a ,because
if HM is valid, we have :

sequential

pP{M > M} = P{Q > N),otPLQ > ny  beRlQ > ;o)

< a . (5)

We have thus constructed a multi-hypothesis
test which _has approximately a given level of
error P{ ™M > M }. For target resolution the
computation of the set of thresholds LIV is

essential, because these thresholds cannot be
ad justed experimentally when the radar is in
operation , as is often done for single
target detection. Multiple target situations
are in general too rare. In the case of
Rayleigh-fluctuating targets with uniformly
distributed phase differences we can even
compute an approximation of the probability of

detecting the correct number, because under
H,, P{Q > n } for L<{M can be computed. If we
M . Lia
set P{Q < nM.u} =1 - a in equation (5), we
t}
get a lower bound of this overall proba-
bility of detection. Computer simulations
showed that for 2 targets the computed
probability of detection gave a reasonable
good approximation for the observed pro-
bability of detection . For targets with

fixed amplitudes the simulations gave a higher
probability of detection, so that the computed
probability in this case may also be con-
sidered as a lower bound. Figure 7 shows this
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computed probability of detection as a
function of the output signal~-to noise ratio
(SNR) for the 192-element antenva and 2 given
targets. The different are for

different target separations, irying from 1.2

to 0.4 degrees in steps of +2 degrees. The
3dB beamwidth of the 192-e¢lmment antenna 1is
approximately 1.6 degrees.  d&veraging of the
residual error was done with only 2 samples
(the function Q of equ. (2) %faken with K=2).
The level a is 0,04 and 0.08. Uue can see that
in this case a SNR of 20 dB gives a

sufficiently high probability of detection. By

the 1/R%-law we can reach such values for the
SNR at 0.4 times the distance with a SNR of
3dB. Further averaging increases the

probability of detection.

CONCLUSIONS

We have shown that using am active antenna
array a resolution enhancement over the
conventional 3—-dB beamwidth by signal

processing is in principle possible under the

assumption of a point target model. The
resolution procedure can be formulated as a
sequence of direction estimations and
hypothesis tests. The estimation of the

directions by the stochastic approximation is
a rather simple procedure aind compatible with
the common array signal processing, because
only independent steerable sum~ and
difference~beams are needed. The procedure 1is
flexible for modifications. A multihypothesis
test of sequential form (with respect to M)
for the number of targets can be constructed,
which has an approximate level of error for
overestimating the number of targets. Computa-
tions and simulations showed that to resolve
2 targets separated by 0.5 beamwidth a

reasonable signal-to-noise ratio of ca. 20dB

is sufficient.
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estimation of direction

compute Q

M: = M+ 1

Figure 1. Resolution Algorithm

Diameter 32 X\

192 antenna elements arranged in 24 subgroups

Figure 3. Antenna Array

This copy is supplied for the purpose of private study or research.

s
> ! decoupling
> is2 2x2-matrix
S T ¥
! i
> ! : difference
| . channel
> | estimation
> ‘ 2x2-matrix
! = =
' dz2 |-d1
> L
> di O
> d2; f.,.(
o/
I, N P,

antenna with sum-and difference
channels s, d

Figure 2. Computation of the Gradient

0.5 1s5

Us(BW/2)

-0.5

T L)
7 13 19 25
ITERATIONS

1.3

0.5

Us(BW/2)
-0.5

1.5

Us(BW/2)
0.3

—0a5

Figure 4. Computer Simulations



91

Figure 5. Arrangement of Measurement Equipment
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Figure 6. Estimation with measured Data
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Figure 7. Computed Probability of Detection for 2 Targets
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