NUWC-NPT Technical Report 10,817
19 January 1995

Approximate Capacitance Formulas for
Electrically Small Tubular Monopole Antennas

David F. Rivera
Dr. John P. Casey

Submarine Electromagnetic Systems Department

Naval Undersea Warfare Center Division
Newport, Rhode Island

Approved for public release; distribution is unlimited.

DUIC Guaialy sivbrnGisD &




Preface

This work was conducted under the Submarine Communications Exploratory Development
Project (SUBCOMMS), RC32C16. This work was conducted in support of the "Low Profile
Antenna" task under the SUBCOMMS Project. The Principal Investigator for this task is Keith
Lewis, Code 3433. The SUBCOMMS Project manager is Frederick Allard, Code 3496. The
SUBCOMMS Project sponsor is Dr. Sherman Gee, ONR 313.

The technical reviewer for this report was Kurt F. Hafner (Code 3413).

Acknowledgments
The authors wish to thank Mr. Kurt Hafner of the Communications Antennas Branch and Dr.
Rajeev Bansal of the University of Connecticut for their careful review of this report. In addition,

the authors wish to thank Mr. Mark Casati of the Antisubmarine Warfare Systems Department for
his assistance in obtaining the computed results. _

Reviewed and Approved: 19 January 1995
t T
St A Dieacrwe

D. M. Viccione
Head, Submarine Electromagnetic Systems Department




REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188

Pubiic reporting burden for this collection of information i eetimated to average 1 hour per response, INCiuding the time for revs g instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this coflection of information,
Including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davie Highway, Sute 1204,
Arlington, VA 22202-4302. and 1o the Otfics of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503,

1. AGENCY USE ONLY (Leave Blank) 2 REPORT DATE

19 January 95

3. REPORT TYPE AND DATES COVERED

Final

4. " TITLE AND SUBTITLE

Approximate Capacitance Formulas for Electrically

Small Tubular Monopole Antennas

5. FUNDING NUMBERS

6. AUTHOR(S)

David F. Rivera, Dr. John P. Casey

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8  PERFORMING ORGANIZATION

: REPORT NUMBER
Naval Undersea Warfare Center Detachment
39 Smith Street TR 10,817
New London, Connecticut 06320~5594
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

Office of Naval Research

Code 313
Washington, DC

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved fér public release; distribution unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Analytical approximations have been developed to compute the capacitance

of electrically small tubular monopole antennas. The expressions developed

are algebraically simple, facilitating manual calculations and rapid iteration

of designs when used in a computer program. Plots are given of the accuracy

of previous expressions and the approximations developed herein as a function

of the arguments. It is shown that the approximations are sufficiently

accurate, making them useful as tools to aid in the design of electrically

short cylindrical monopoles over a wide range of heights, lengths, and

diameters..

14. SUBJECT TERMS

15. NUMBER OF PAGES

Electrically small antennas Capacitance 70
Monopoles Moment Method 16. PRICE CODE
17. SECURITY 18. SECURITY 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
CLASSIFICATION OF CLASSIFICATION OF THIS OF ABSTRACT
- REPORT PAGE UNCLASSIFIED UNLIMITED
UNCLASSIFIED UNCLASSIFIED

NSN 7540-01-280-5500

Standard Form 298 (Rev 2-89)
Preecrbed by ANS! 5td 239-18




TR 10.817

TABLE OF CONTENTS

Section Page
LISTOFILLUSTRATIONS ... ii
LISTOFTABLES ..ot e v

1. BACKGROUND ..ottt e |
2. APPROACH ......otiiiiiiiiiiiiiii e 2

3. EXISTING APPROXIMATIONS AND THEIR REGIONS OF VALIDITY ... 3

3.1 ThINTUDES ..ottt 3
3.2 Thick TUDES ...uiuiiiiniiiii e 5
4. EXTENSION OF GROVER'SFORMULA .........ccccooiiviiiiiiiiniiiinns 6
5. APPROXIMATE EXPRESSION FOR INTERMEDIATE PARAMETER
RANGE ..ot 8
6. DISCUSSION OF RESULTS ......ouiiiiiiiiiiiiiiiiiee e 10
7. APPLICATION TO A TUBE OF NONCIRCULAR CROSS SECTION......... 11
8. SUMMARY ..ottt ittt ettt e 11
APPENDIX A -- CAPACITANCE FORMULAS FOR TUBULAR
MONOPOLE FEEDS AND OTHER EFFECTS ............... 25
1. Introduction .................. 25
2. Summary of Capacitance Formulas .................. e 25
APPENDIX B -- APPROXIMATION FOR THE RATIO OF THE
COMPLETE ELLIPTIC INTEGRALS K(k) / K(k) .......... 45
1. Background ........cocoeiiiniiiiiiiiiiii e - 45
2. Derivation of K(k')/K(K) Approximation ..............c.cveveiinininineninenn. 46
3. Discussion of Results.........c.coooviiiiiiiiiiiiiiii 49
APPENDIX C -- NUMERICAL CONVERGENCE OF THE METHOD
" OF MOMENTS ALGORITHM .........ccoviviiininiiinnnnnnn. 57
L INtroducCtion .......vveeninininininiini i 57
2. ReSUIS ..ttt 57
REFERENCES .......uouvitivetitenietesteseeeseseenesieeeeneasessiesineans s 65




TR 10,817

Figure

ii

LIST OF ILLUSTRATIONS

Page

(a) Tubular monopole.

(b) Coordinate system used for tubular monopole analysis ....................... 12
Typical methods of feeding tubular monopoles.

(a) Wire feed. (b) Conical feed ......c..oiviininiiiiiiiieiiieeeeeeeeeneeenenns 13
Charge distribution along a tubular monopole ..........cccovvivveninrninienenenen.. 14
Error contours for Grover's formula (6) ........ocvvvveiiniiiieieirinieenenenenenn. 15
Model used in the derivation of the conformal mapping approximation (8).

(a) Tubular dipole. (b) Equivalent coplanar striplin€ ..............cccovuvennnenen.s 16
Comparison of normalized capacitance using CMA formula (8) and
measured data. The dashed lines are the error bounds in the

MEASUTEIMENIS . uuueiuiiniiuitinitttisennieetateasasensensesonsansnssnsensssesesennsnns 17
Error contours for the conformal mapping approximation (8) .................... 18
Error contours for the extended Grover formula (17) .....ovvvviviiiininnennnn.. 19
Surface of the normalized tubular capac1tance used to determine ACF (23)..... 20
Error contours for the approximate capacitance formula (23)............cc.c.u... 21
Regions of validity (error < 10%) of tubular monopole capacitance formulas.. 22
Semi-infinite coplanar plate cross section.

(a) Symmetrical arrangement; (b) unsymmetrical equivalent ..................... 32
Thickness correction for symmetrically arranged coplanar plates................. 33
Lengthwise view of a capacitive iris in a waveguide. The nearest

extraneous surface in the ﬂlustranon is the waveguide wall ‘
13 (0 0] 111 B ) [ S 34
Thin-wire feed configuration ...........ccccoeeuiiiiiireiiiniiiiii e, 35
Cross section of coaxial line/monopole transition (w=0). The

quantities 2a and 2b denote the inner and outer diameters, respectively ........ 36
The normalized transition czpacifance for a monopole driven by a

coaxial line. Figure from King [27] .....cevviininiiiiiiiiiiiiiiiiiineineannnenns 37
Truncated cone with tip pointed toward the ground pléne.

Tip is close to, but does not touch the ground plane ..........cceveveecenenennans 38
Plate of arbitrary shape over a ground plane with interposed dielectric.

Thickness (or height) of dielectriCiSh ......coevviivrieiiiiiirrc e 39



Figure

A9

B-1

B-4

B-5
C-1

C-3

C-4

TR 10.817

LIST OF ILLUSTRATIONS (Cont'd)

Page
Arrangement of variables used in computing the function A;(P)
in (A-13a). From Kuester [18] ...cuvvriiriiiriiiiiiieeeeeeeeeeeeeeeeeeeeennens 40
Ratio of the complete elliptic integrals of the first kind, K(k")/K(k);
solid line. Shown in dotted lines are the limiting values of K(k")/K(k),
obtained from (B-3) ....iuiiniiiiiiiiiei it 50
Cross section of a curved plate transmission line used to derive the
first approximation, (B-6). The angular separation, 6, is related to
sand Dby sin O =58/D..c.ccuiieiiiiiniiiiiiiiiiriiiiiririr e .. 51
Values of 8 required to yield correct values of K(k)/K(K) .......... e 52
Relative error incurred in computing K(k)/K(k), using (B-7) .......ccvvveen.n. 53

Value of (B-7) relative to (B-3b) in the region of poorest accuracy (k — 1).... 54

Normalized capacitance of a tubular monopole versus the number of
basis functions for log;o(D) = 0 and log;o(H) = -1 as determined by
the method of moments algorithm..........coeevviiiiiiiiiiiiiiiiiieee e, 59

Normalized capacitance of a tubular monopole versus the number of
basis functions for log;o(D) = 0 and log;o(H) = -3 as determined by
the method of moments algorithm..........ccciviiiiiiiiiiiiiiiiiiiir e, 60

Number of basis functions required to insure a minimum of three
significant figure accuracy in the method of moments algorithm
used for computing tubular monopole capacitance ...........cceeeeueeneneenennennns 61

Variation of the normalized tubular monopole capacitance with height
(o) (o0, 1) R L RN 62

Variation of the normalized tubular monopole capacitance with height
for 10g10(D) =3 . iriieiiiiiiiii e e e e 63

Aceession Yor =~

BTIS GRAMI
DPIIC TAB
Unanooumced
Justificatio

afulc]

By ’
Distribution/
Availability Codes
vail apd/or
st Spoctial

“/ \ "«"':" X oA

iii




TR 10,817

iv

LIST OF TABLES

" Pa ge
Ranges of validity of tubular capacitance formulas (error < 10%) ............... 23
Comparison of coaxial end-effect approximation (A-9) with theory and
30015 01111 1| 41
Values of the coefficient A[(P) used with capacitance approximations
(A-12) and (A-13b) for various plate geometries..........ccceevimmmeenmvennnenns 42
Effective radius (a.) used with capacitance approximations (A-14)
and (A-15) for various plate gEOMELries.......cccevimievviiieiiinicniiiinniinens 43
Comparison of the approximation (B-7) with exact values, for
modulus K ClosSe tO UNILY ......civvueneininiiiiiiiiiiiii e 55



TR 10.817

1. BACKGROUND

A monopole antenna is said to be electrically small when its largest physical dimension is much
smaller than the wavelength at which it opefates: These antennas are commonly found in the
portion of the radio frequency spectrum spanning from VLF to MF (3 - 3000 kHz). At these
frequencies, such antennas are employed in maritime communications, air and coastal navigation,
as well as local broadcasting [1-3].

The input impedance of an electrically small monopole can be represented by a series circuit
comprising a resistance R and a capacitive reactance -1/wC, such that R « 1/0C [1]. The series

. resistance is the sum of the radiation resistance and other resistances attributed to ohmic
(dissipative) losses. The monopole capacitance C can be derived using electrostatic methods and
depends on three principal quantities: its diameter d, length /, and height h measured from the
bottom of the antenna to the ground plane. Such an arrangement is shown in Fig. 1(a), where the
wall thickness t of the tube is assumed to be very thin compared to the diameter.

In the design of such an antenna, the goal is to minimize the capacitive reactance and maximize
the radiation resistance. Achieving this goal usually involves an increase in the effective antenna
radius and/or length by. using, for example, a folded monopole with one or more input inipedance
transforming elements [4-5], a capacitive top load [6], or both [7]. In addition, the capacitance of -
the electrically small tubular monopole is extremely important for the determination of the antenna's
power handling ability (P,,,) and the bandwidth-radiation efficiency product (BW-n) [8-9] given

as follows:
640 T4 4 VZ h2 C?2
P = 20T L Vo be M)
c
' 3ear2
BW'n=320n f*hs C @)
c2
. where
h, = effective height,
. f = frequency,

C = antenna capacitance,
Vi, = maximum allowable base voltage before breakdown,

¢ = velocity of light.

In designing electrically small monopole antennas, the engineer must be concerned with these
antenna performance parameters as well as any number of mechanical requirements that may be
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imposed. The complete design process is therefore seen as highly iterative, involving the
examination of achievable electrical and mechanical properties until a satisfactory solution is
obtained.

A precise determination of the input capacitance of an electrically small antenna may be
obtained through the solution of the potential integral equation for the unknown charge distribution
using the method of moments [10]. However, such a numerical method does not lend itself to
rapid iterative design calculations.

Approximate analytical expressions for the input capacitance are available for two extreme
cases, i.e., for a thin wire (d/I « 1) and for a thick tube [(d/! » 1), with vanishingly thin walls],
each above a ground plane. The capacitance of a thin vertical wire above a ground plane was
determined by Grover [11]. By the use of a method originally proposed by Howe [12], Grover
obtained an analytical expression for the capacitance by assuming that the charge distribution along
the antenna was constant. The converse problem, that of the capacitance of a thick tubular
monopole, was solved by Casey and Bansal [13]. Through modification of the per-unit length
capacitance of a coplanar stripline given by Hanna [14], Casey and Bansal obtained an expression
for the equivalent tubular monopole in terms of elliptic integrals.

Although the expressions cited above have been experimentally validated for some specific
monopole dimensions, the extent of diameters, lengths and ground plane separations for which
they are accurate has been unknown. When used for the rapid iteration of a design, capacitance
values obtained with the known expressions will be of questionable value. A determination of the
regions of validity of the existing tubular monopole capacitance formulas is therefore necessary for
their successful implementation. It is the purpose of this report to summarize the results of such an
investigation and present new capacitance formulas for parameter ranges not covered by the
existing expressions. The end result of this study is a collection of formulas that, taken together,

" extend the parameter range so that the computation of capacitance can be facilitated with reasonable
accuracy for almost all design situations considered in practice.

2. APPROACH

The range of validity of Grover's formula for the capacitance of a thin wire or tubular
monopole and the range of validity of the thick tubular monopole formula developed by Casey and
Bansal will be examined by comparison with results obtained by a method of moments solution
[15]. (It may be noted that the method of moments results have been experimentally verified
[13,15].) The range of validity is defined here as that area where the formula agrees to within 10%
of the method of moments results. A 10% error region is chosen since influences such as the
antenna's proximity to other objects or irregularities in the ground plane may introduce variations
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of this magnitude in the observed capacitance.

With the regions of validity defined for the existing capacitance formulas, additional
expressions will be presented that are suitable for parameter ranges not covered by the existing
equations. An error analysis of these new capacitance formulas will follow.

Tubular monopoles can be fed in a variety of ways, two of which are shown in Fig. 2. In
general, the monopole capacitance is approximately the sum of the individual capacitances of both
the tube and the feed sections. The capacitance of a thin feed wire (Fig. 2(a)) is normally much
smaller than the tube capacitance and can be neglected. In contrast, the capacitance of the conical
feed as shown in Fig. 2(b) must usually be accounted for. Information on the computation of the
illustrated feed capacitances can be found in [16-17]. In the case where there is a plate attached to
both the feed wire and the lower end of the tube, a first order estimate of the monopole capacitance
is the sum of the individual capacitances. Information on the capacitance of a flat plate is gii?en in
[18]. The effects of top loading and base supports may be treated by techniques given by Belrose
[3] and are not considered here. Appendix A provides a listing of capacitance formulas for various
tubular monopole feeds along with other effects including the finite wall thickness of the tube.

3. EXISTING APPROXIMATIONS AND THEIR REGIONS OF VALIDITY

3.1. Thin Tubes
' Consider the tubular monopole and associated coordinate system as described in Fig. 1(b).
The electrostatic potential at any point along the tube surface due to an axisymmetric surface charge
density 6(z) = q(z)/nd induced on the tube is found by summing the contribution of the charge
. along the cylinder as [15]

h+! )
V(z) = L I Q@) [Kz-2)-Ke+D)|d, ze (hh+]) 3)

4re
°Jh

where

KQ) =5- ey’ . 4
Neeews

In (3), q(z) is the charge per unit length while K(z - z’) and K(z + z’) are the kernels associated

with the tube and its image, respectively. Note that a cylindrical coordinate system is used in (3)
and (4), where ¢ denotes the azimuthal variable while the primed and unprimed coordinates refer to

the source and observation points, respectively. Since the tube is highly conducting, it will be an
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equipotential surface with V(z) = V (a constant), where V is the potential of the tube with respect to
ground. ‘

The charge distribution that results from solving the integral equation (3) when the potential
V(2) is constant was calculated using the method of moments. A representative charge distribution
is shown in Fig. 3. The charge density is fairly constant across the interior of the interval (h,h+1)
with singularities at the edges. The charge density is asymmetric about its midpoint as more charge
accumulates on the ground plane side of the tube. This asymmetry becomes more apparent as the
separation h decreases.

For thin tubes or wires (d/! « 1), Grover derived a formula for the capacitance of a monopole
usihg Howe's method of approximation. In Howe's approximation (contrary to the physical
reality) the total charge Q is assumed to be uniformly distributed over the length of the tube,
thereby reducing (3) to

h+l '
V(z)s% f [Kz-2)-K@+2)dz', ze (h+) . )
h

Note that the potential becomes a function of position along the tube. The capacitance is estimated
as C = Q/V,,, where V,, is the average of V(z) over (h,h+]). Upon application of the above
procedure followed by further simplification under the condition d/I « 1, Grover derived the
following [11]:

2me,l
C= 0 6)
2).
In(8)-v
where D = d/I and vy is defined as
Y=1+(1+H)In(1+H)-(1+2H)In(1 + 2H) + H1n (4H) @)

where H = h/l. For simplicity, we will adopt the symbols D and H throughout the remainder of the
report. Note that as H — oo, ¥ — 1 - In 2 and Grover's formula yields the capacitance of a tube of
length [ in free space. However, as H — 0, Y — 1 and the capacitance does not diverge as
expected, but instead approaches a constant. '

A contour plot illustrating the percentage error of the capacitance per unit length of Grover's
formula based on a comparison with a method of moments solution is given in Fig. 4 for -4 <
log;o(H) £ 1 and -3 < log;o(D) < 0. Grover's formula produces data within 10% of the moment-
method results for D < 0.008 over the entire range of ground plane separations'cénsidered in this
study. Although Grover's formula does not produce the correct result in the limiting case as H —

0, it still yields sufﬁc_iently accurate data for the small values of H plotted with D < 0.008. AsH
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increases, Grover's formula generally improves until H = 0.04, where the contours begin to level
off. Grover's formula, though not based on assumptions that accurately describe the charge and
voltage distributions, provides a useful expression for the capacitance within the regions stated
above. ” |

The method of moments code that was used in this comparison is based on the solution of the
potential integral equation (3) for the unknown charge density q(z). The numerical procedure
employs pulsé expansion functions and point matching. The kernel K({) of the potential integral
equation, defined in (4), is expressible in terms of the complete elliptic integral of the first kind, for
which polynomial approximations exist [19]. For each data point computed, a sufficient number
of basis functions was chosen to ensure convergence to at least three significant figures. The
details of this program are provided in [15]. An examination of the numerical convergence of the
method of moments algorithm used in this repbrt is given in Appendix C.

3.2. Thick Tubes

Casey and Bansal [13] developed an expression for the capacitance of a tubular monopole
through comparison with a formula for the capacitance of a coplanar stripline. Figure 5 illustrates
the approximate equivalence utilized in this development. The expression is based on a conformal
mapping and is given by ' 4

3 K(k’)
C= 27'C€0d K_(.k) ’ (8)
where
k=13g ©)
and
k"= 1-k2 . (10)

K(k) is the complete elliptic integral of the first kind. An accurate approximation for the ratio of the
complete elliptic integrals in (8) is given as

K@) —Zcosh‘l{1+k’+ ki } (11)

k 4(1+x)

" The development and error analysis of (11) are given in Appendix B. Equation (8) will be referred

to as the conformal mapping approximation (CMA) formula. Figure 6 illustrates a comparison
between the CMA formula and experimental data for tubes of various dimensions and ground plane
separations. It can be seen that the data are in good agreement.
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A contour plot illustrating the percentage error of the capacitance per unit length of the CMA
formula based on a comparison with the method of moments solution is given in Fig. 7 for -4 <
log o(H) £ 1 and -2 < log;o(D) < 3. The CMA formula produces data within 10% of the method
of moments results for thick monopoles within the region D > 2/In[1 + (3/H)] and H > 10"4. The
former boundary was obtained by fitting a curve to the calculated boundary points. For
sufficiently thick monopoles (i.e., D > 10), the error contours are nearly vertical lines (independent
of D) since the differences in the electric field lines associated with the monopole and the
corresponding stripline change very little with increasing tube diameter.

For D > 10, the error in the CMA formula slowly oscillates with separation from the ground
plane over the entire range of H shown, and then monotonically increases for large H (not shown
in Fig. 7). The increasing error in the CMA formula for large H occurs because the electric field
lines extending from the inside surface of the tube are no longer the same shape as those extending
from the outside surface. The required symmetry is preserved for greater ground-plane separations
when the diameter of the tube is larger.

4. EXTENSION OF GROVER'S FORMULA

As discussed in the previous section, Grover's capacitance formula, based on Howe's method
of approximation, is valid only for thin tubes while the CMA formula is valid for thick tubes. In
an attempt to bridge the gap between the CMA and Grover formulas, the authors have extended the
Grover formula to include fewer restrictions on D and H. An outline of the development of this
formula along with results are given below.

Consider again expression (3) for the electrostatic potential along the surface of the tubular
monopole due to a surface charge density q(z)/nd. Since the surface charge distribution is
axisymmetric, the kernel K({) defined in (4) may be approximated as

=1 12
K©) C2+ (%)2 - (12)

The above approximation, sometimes referred to as the reduced kernel, is applicable to thin tubes.
Next we will apply Howe's approximation to the determination of the tubular monopole '
capacitance using the reduced kernel (12). The substitution of (12) into the potential integral (5)
yields
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h+1

V(z)z—z-n% { L L }dz Cze () (13)
h

V-27+ @2 V@) + @y

where Q is the total charge along the monopole. The evaluation of the integral in (13) yields

V=2 fm{ @-1) +V(z-h)?+ (@2)? }_m{(uhw +/@+h+ D2+ (d/z)z}}
4neol | |(z-h-D)+v(z-h-D2+(d2)2 (z +h) +4/(z + h)2 + (dR)2
= 41[201 ( sinh'l(%) - sinh'l(z—‘d-}/‘z;L) - sinh‘l(L—%ljlz—f—l—) + sinh‘l(%-n)} - (14)

Note that the final result follows since sinh™! (x) = In (x + Vx2 + 1 ). The average potential along
the monopole is

‘ "~ ph+l _
Va=1 f V@) &=~ ¥DH) , (15)
h

27e,l

where

¥(DH) = sinh‘l(%) (1 +H) sinh‘l(‘t(l‘+H)) + (1 +2H) sinh-l(z(l-‘g-@) - Hsintr{4H)

+ 122 -41+(DR)? + VH2 + (D/4)2 + /(1 + H)2+ (D/4)2 - /(1 + 2H)2 + (DI4)?  (16)

with D = d/l and H = b/l. The monopole capacitance is given by -

C= Q 2me,l %)

Vav WDH).

The extended Grover formula (17) is considerably more involved than Grover's formula (6). For
the case of very thin tubes (D « 1) it can be shown that (17) reduces to (6). ‘

A contour plot illustrating the percentage error of the capacitance per unit length of the extended
Grover formula based on a comparison with the method of moments data is given in Fig, 8 for -4
<logioH) £ 1 and -3 < log;o(D) £ 1. A comparison of Figs. 4 and 8 indicates that the extended
Grover formula provides a small improvement over Grover's formula for H 2 0.1. More
specifically, for H 2 0.1, one is able to model monopoles (within 10% of the moment-method
data) with the extended Grover formula for D < 1.0 in comparison to D < 0.35 with Grover's
formula. Both Grover's formula and the extended Grover formula produce similar results for H <




TR 10,817

0.1. _

The inability of the extended Grover formula to model much thicker tubes is attributed to the
approximate reduced kemnel (12) which is valid only for thin tubes. In addition, the Howe
approximation limits the ability of the extended Grover's formula to yield an improvement over
Grover's formula for small relative ground plane separations (H < 0.1). In conclusion, with the
added number of terms involved, the extended Grover formula does not appear to offer a
significant improvement over Grover's result.

S. APPROXIMATE EXPRESSION FOR INTERMEDIATE PARAMETER RANGE

In the previous sections, the capacitance formulas presented were for cases in which the
antenna is considered thin or thick. As a result, an expression was sought that produced a fit to the
capacitance data obtained from a moment-method calculation for regions not accurately represented
by either the CMA or Grover's formula. The area of interest is a rectangular region with
boundaries defined by -2.5 < log;o(D) < 1 and -4 < log;o(H) < 1. This region was chosen since it
was considered to cover most of the areas where the existing formulas fail and provides a sufficient
amount of overlap. A suitable form for an expression that adequately describes the capacitance
variation with variables D and H is arrived at by the observations that follow. o

To be useful, the desired capacitance expression must possess the limiting behaviors described
below.

i) Tube close to the groundplane

In this region, the capacitance can be represented by the behavior of the CMA (8) for H — 0.
Here one can utilize the asymptotic representation for the ratio of elliptic integrals K(k")/K (k) for
small modulus k [20]: o ’

(k®] 24 o
EXEE “®

‘The substitution of (9) into (18), followed by the application of (8) leads to the limiting behavior of
the normalized capacitance, givenas

1 H
gj—aSDln(Z)+4D1n(l+ﬁ—),H—>0- (19)

Grover's expression (6) was not considered for vanishingly small H because it is only a function
of D in this case.
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ii) Tube far from the groundplane :

In this region, the capacitance of the tube is independent of the height above the groundplane
and
é% —aD) , H- . (20)

(o)

In (20), ou(D) is a function determined from the method of moments data.

Expressions (19) and (20) can be combined to yield a function possessing the limiting
behaviors described above, as

ES7= a(D)+4D1n[1+—B%)—)] . 1)
In (21), the function oi(D) replaces 8D In(2) and B(D) is introduced in order to allow the second
term to remain valid for large values of D and H. The factor 4D in the second term has been
retained since it is valid for small values of H.

The normalized tubular capacitance, C/(gq/), was computed using the method of moments for
the parameter range of -2.5 < log;o(D) < 1 and -4 < log;o(H) < 1. A plot of C/(gy/) as a function
of Dand H resulting from the computation in this range is shown in Fig. 9. From the data, the
functions a(D) and B(D) were determined by nonlinear regression, with the following forms:

- _ 1 ~ 1+30D + 124D?

aD) = ——— , BD) = . 22

® = — -7 pm) = LB x (22)
D .

The substitution of the expressions in (22) into (21) results in an expression for the normalized

capacitance valid in the desired range, given by

C . 7 1 + 30D + 124D?
ed = n1+2) +eDin|1+ LD )
, D

Equation (23) will be referred to as the approximate capacitance formula (ACF). An error
contour plot of (23) is shown in Fig. 10. The plot indicates that the error in the ACF is within
10% of the method of moments results over virtually the entire region shown. In particular, the
error in the ACF is less than 3% for H < 0.1 and generally increases with H. The ACF is a simple
formula that provides an accurate estimate of capacitance over the designated region of interest.
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6. DISCUSSION OF RESULTS

Table I summarizes the ranges where the capacitance formulas discussed in this report are
within 10% of the method of moments results. The four formulas presented here are seen to be
accurate for wide ranges in the parameters D and H. In the case of the CMA formula, the lower
boundary defining the region in which the accuracy is better than 10% is given as an approximate
function of H. .

Although in practice monopoles are mounted close to the ground plane (H « 1), we observe
that the capacitance formulas are accurate over a wide range of H. Undoubtedly, the use of a
tubular monopole far removed from the ground is unlikely in most applications. In order to gauge
the utility of these formulas for large separations from the ground, it would be instructive to do a
simple comparison against known capacitance formulas for tubes of arbitrary diameters and iengths
in free space.

For the investigation of tubular monopole capacitance formulas for large H, we define a ratio R
as
Cep

R =
Cfs

=1+38 , 24)

where C,, and Cq, refer to the capacitances of a tube above a ground plane and in free spacé,
respectively, and & is the difference in the capacitances relative to the free space value. AsH
becomes large, R — 1 (i.e., 8 — 0). A "free space” boundary can be defined as the normalized
height H that corresponds to a predetermined small value of & (i.e., § « 1). A mathematical fit
describing the boundary for the height-to-length ratio Hg,, along which 8 = 0.01 is given by

Hep=—3 25)
ln(l + —25)
applicable for D > 10 3, Expression (25), obtained from an approximate fit to the method of
moments data, essentially separates two regions; for H < Hg,,, the monopole formulas are
appropriate, while for H > Hy, the free space expressions apply.
Expressions for the free space capacitance of thin and thick tubes have been derived by Howe
[12] and Butler [21], respectively. The expressions are given as follows:

27e,l
ChHowe = —-2— s D«l1 (26)
’ n(4)-1
D
_2n2e,d N )
CButler—°ln(16D) ) D 1. ( 7) v

10
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Butler [21] observed that the parameter range for each expression can be relaxed without serious
error. He noted that at D = 0.25 both expressions produce results within 4% of the precise value
obtained by the method of moments, thereby allowing one the means of computing the capacitance
by using the appropriate expression above or below D = 0.25.

Figure 11 shows the regions of acceptable accuracy of the tubular monopole capacitance
formulas and the free space tubular capacitance formulas. Some of the fine detail has been
removed for clarity. The extended Grover formula (17) is omitted since its useful region is close to
that of Grover. Note that the Grover formula overlaps with that of Howe while the CMA resuit
approaches the approximate free space boundary in an asymptotic fashion.

7. APPLICATION TO A TUBE OF NONCIRCULAR CROSS SECTION

The concept of modeling an antenna of noncircular cross section with one of circular cross
section having an effective radius that yields the same input impedance and radiation pattern was
first introduced by Hallen [22]. This concept applies to electrically small antennas. If the
capacitance of the feed region is negligible, the effective radius for a monopole of noncircular cross
section can be computed with the aid of expressions from several sources [23-25] and used in the
capacitance expressions given in this report. However, it must be emphasized that these results are-
approximate. ‘

8. SUMMARY

Formulas have been presented for the computation of the input capacitance of electrically small
tubular monopoles for a wide range of diameters and heights above ground. The regions of
validity for the existing formulas were determined through comparison with precise results
obtained from a standard method of moments code. Several regions lying between the thin and
thick tube domains were identified where the existing formulas are not applicable. As a result, an
approximate expression was constructed, effectively bridging the gap between the thin and thick
tube domains. Taken as a whole, such an assembly of formulas allows for the determination of
capacitance for a continuous range in terms of the normalized variables D and H for over six orders
of magnitude, with errors usually much less than 10%. For large ground plane separations, it was
shown that the monopole formulas approach the results obtained for a tube in free space.

For information on various relevant topics including capacitance formulas for several tubular
monopole feeds and the numerical convergence of the method of moments algorithm used in this
investigation, the reader is referred to the appendices.

11
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Figure 6. Comparison of normalized capacitance using CMA formula (8)
and measured data. The dashed lines are the error bounds in
the measurements.
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Table I. Ranges of Validity of Tubular Capacitance Formulas

Formula

Grover

(6)

Extended Grover
a7

Approximate Capécitance
Formula (ACF)
T @23

Conformal Mapping
Approximation (CMA)
®)

(Error < 10%)

Range of H
(H=h/1)

£ 0.0004
0.0004 <H £ 0.04
2 0.04

< 0.0005
0.0005<H<0.1

2 0.1

104<H<10

2 104

Range of D
(D=d/1)

< 0.008
< 0.27H 045
£0.35

< 0.007
<0.33vH

0.003<D<10

>__.2.__._
~m“+%

23/24
REVERSE BLANK
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APPENDIX A

CAPACITANCE FORMULAS FOR TUBULAR
MONOPOLE FEEDS AND OTHER EFFECTS

1. Introduction

In this report, the monopole was considered as a charged vertical tube above a ground plane.
The tube was considered to have an infinitesimally thin wall and no connecting wires. In actual
practice, a monopole antenna has some finite wall thickness, however small, and is fed in a
definitive fashion. The total input capacitance of a practical antenna must therefore account for
such effects. In this appendix, some capacitance expressions for these effects, suitable for
practical antenna analysis and design, are summarized.

2. Summary of capacitance formulas
2.1. Correction for finite wall thickness

A correction to account for the finite thickness of the tubular monopole is developed by solving
the analogous problem of the excess (or incremental) capacitance-per-unit length of two oppositely
charged coplanar plates of thickness t and separation s, as shown in Fig. A-1(a). The correction
AC is here defined as the difference of the per-unit-length capacitance C(t, s) of the coplanar plate
structure with finitely thick plates and the per-unit-length capacitance C(0, s) of the same structure
with plates having zero thickness :

AC=C((t,s)-C0,s) . . (A-1)

This result is then rearranged to yield the desired correction for the case of a charged vertical plate
whose edge is parallel and over a ground plane, as shown in Fig. A-1(b).
The plates in Fig. A-1(a) extend to infinity in both directions of the vertical plane and the
correction is computed in the direction normal to the page. The quantities C(t, s) and C(0, s) are
~ determined through conformal mapping. When combined with (A-1), an implicit solution results
and is given by Cohn [26] as ‘ '

5,2
Ac=%eoln{2E(k)2'5E K(k)} , (A-2a)

where k is related to t/s by

25
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- (1+k2) K{K') - 2E(k)’ | (A2b)

2[2BK) - ¥ K(K)

and
K=V1-k* . (A-2)

In (A-2), K(k) and E(k) are the complete elliptic integrals of the first and second kinds,
respectively [19]. A plot of AC as a function of t/s can be obtained by evaluating (A-2a) and (A-
2b) individually, by varying the modulus k from zero to one. A plot constructed in this way is
shown in Fig. A-2. In the plot, the value of the difference [AC-(got/s))/e, as a function of t/s was
obtained by varying k from 0.001 to 0.999, in increments of 0.001. The second term of the
difference, (€ot/s), is the capacitance-per-unit- 1ength of the gap region shown in Fig. A-1,
neglecting fringing effects.

An inspection of Fig. A-2 shows that for t/s > 1, [AC - (got/s)}/g, approaches a constant and is
negligible for t/s < 0.001. A good approximation for (A-2) that eliminates the intermediate
computations involving k and is applicable for all values of t/s > 0.001, has the following form:

=t == (&3)
0 24 >/1+ [ t
6(%)]

Expression (A-3) is accurate to three significant figures. Referring again to Fig. A-1(b), the
corresponding thickness correction for the vertical plate above a ground plane is obtained by
substituting 2h = s into (3), followed by a doubling of the right hand side of the expression. The
- correction for the unsymmetrical case thus becomes

AC = (L)s 1 o -
€ —(h) 12 3 1+[qlzﬂz (A4)
h

Expression (A-4) is accurate to three significant figures for t/h 2 0.001. The expression is
general enbugh so that it can be applied to a tubular monopole of arbitrary cross section when
multiplied by the mean perimeter of the tube. As an example, the thickness correction for a tubular
monopole with a circular cross section is obtained by multiplying the per-unit length correction (A-
4) by the mean circumference Ppeap Of the tube, i.e., »

Pmean=m(a +b) ,

where a and b are the inner and outer radii of the tube, respectively. Upon substitution of Pmean
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into (A-4), the correction is given as

ACzneo(a+b)[(ﬁ)+ L 2\ . (A-5)
12 21+ 1=
\ (&) |
h
The capacitance correction given by (A-5) is added to the capacitance computed for a thin walled
cylinder. In the application of an appropriate thin-wall capacitance expression to a tube of arbitrary

cross section and wall thickness, it is suggested that the mean effective diameter be used.
The range of validity of (A-2) is given by Cohn [26] as:

S% and

- Jun

<l
2 ’

> [

where s is the gap distance between the plates [see Fig. A-1 (a)] and r is the distance from the
center point of the configuration to the nearest extraneous surface. An example of an extraneous
surface is shown in Fig. A-3 for the case of a capacitive iris in a waveguide. In this figure, the
distance r is measured from the center line of the capacitive iris to the adjoining waveguide walls.
The range of validity for the corresponding case of the tubular monopole is found by setting 2h =s
and r = h+/ and substituting them into the above inequalities. The use of r = h+/ is made because
an extraneous surface (in the form of a top load) may be placed at this distance to increase the
effective height of the antenna. The ranges of validity for the corresponding tubular monopole case
are then

IA
0O [

and

o~ =
IA

> =
W j—

In the present application, the monopole is electrically small so that h+! < A/8, thereby satisfying
the first inequality. The second inequality is satisfied in most practical designs.

2.2. Thin wire feed capacitance

The geometry of a thin wire used to feed a tubular monopole is shown in Fig. A-4. As shown
in the figure, the wire is a continuation of the center conductor of a coaxial cable and is attached to
the lower end of the tube. The capacitance of the feed wire is given by King [16] as ’

2neh In2
Cteed = 0 1 , A-6
SR R -

—~

where h and a are the height and radius of the feed wire, respectively. Expression (A-6) is valid

27




TR 10,817

forh/a > 75 and h £ \/8.
2.3. End correction. for a coaxial line

In conventional transmission line theory, for a given cross section, it is assumed that the
charge-per-unit-length on each conductor is equal in magnitude but opposite in sign. The
capacitance per-unit-length derived under this assumption becomes a function of only the cross
section. However, if the same line is connected to an antenna, the charge distribution in the region
of transition undergoes a change. This has the effect of altering the antenna admittance measured at
some distance from the antenna, compared with the admittance predicted using standard
transmission line expressions. ‘ ‘

Figure A-5 provides a view of the transition from a coaxial cable to a thin monopole antenna.
The portion of the transmission line along which the charge distribution differs from that usually
assumed, will be referred to as the transition region. The transition region extends from w =0 to
w = d, where w is defined in Fig. A-5. The measured apparent admittance Y, of a monopole
antenna is given approximately by King [27] as '

. Yo=Y, +jwCr, for bla>1, (A7)
where
d
CT=I [c(w)-co]dw . (A-8)
0 .

In (A-7), Y, is the ideal theoretical admittance, Cr is the lumped equivalent transition capacitance,
that is placed at w=0 (see Fig. A-5) to account for the disturbance in charge distribution in the
transition region of the transmission line. The per-unit-length capacitances c(w) and ¢, in (A-8) are
for the transition region and coaxial line, respectively. Note that Yqa — Yoasb/a — 1. In(A-8),d
is the range over which the difference c(w) - ¢, is significant, extending to d = 10b. It is seen from
(A-7) that the determination of the lumped transition capacitance Ct, which has a negative value, is
important in order to accurately quantify the antenna's input admittance.

" King [27] theoretically determined the normalized transition capacitance, - C1/cob , in the limits

of large and small outer-inner conductor ratios b/a. A plot of the approximate computation, along -

. with an extrapolated curve joining the two regions (derived by King), is shown in Fig: A-6.

Included in this figure are some measured data obtained by Hartig [28]. From the figure, it can be
seen that the measured values display the same general trend as the theoretical ones but are larger
for b/a 2 2. Because of the approximate nature of the theory used to predict the lumped transition
capacitance, and the discrepancy in the scaling of Hartig's measurement values, King suggests
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that either curve may be used to determine - C1/cob.

In the absence of theoretical or measured data, a useful approximation for C that yields values
intermediate between those of King and Hartig has the form

In{b/a)

Cr=-2mneb } , 2<bla<30. (A-9)
3+In%(b/a)

Table A-1 is a chart comparing (A-9) against both theoretical and measured values.

2.4. Capacitance of a conical feed

Aside from the thin wire feed, another common way of feeding a monopole uses a cone, as
shown in Fig. A-7. The classical method of determining the capacitance-per-unit length of an
infinite cone above a ground plane has been derived by Schelkunoff [29] as:

C=— 2T (A-10)

(%)

The complicated natﬁre of the boundary conditions on the edges of the truncated region prohibits

an analytical treatment of the problem; recourse to numerical techniques becomes a practical

alternative. Toward this end, Wilton [17] determined the capacitance of finite-length cones with
and without a topcap above a ground plane using the method of moments for 2.5° < 6, < 87.5°.

The capacitance data from Wilton's study was used to obtain an approximate expression for the
capacitaﬂce of a conical feed. In deriving the approximate expression, an approach was taken
whereby the normalized capacitances of the infinite cone (C/g,) and truncated cone (C/e,L) were
plotted against the infinite cone half angle 6,, to observe the deviation between the two cases.
While some deviation in the capacitance curves for the two cases was noted, the curves were
observed to be very similar in shape, suggesting that the functional dependence given by (A-10)
was applicable. The deviation in capacitance between the two cases was consequently corrected by
the substitution of an effective infinite cone half-angle 0 in place of the original cone half-angle
8 in (A-10). The approximate expression for the capacitance of a truncated cone was thus derived
with the following form:

CELJ;“-, (A1
ln[cot(%—”

where
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Y
Gf,ff=90{ 1+(90;9°} ] , (deg.)

and
K =74 (cone with a topcap)
=76 (cone without a topcap).

The capacitances determined from (A-11) are within 6% of the method of moments data for 2.5° <
6, < 87.5°.

2.5. Capacitance of an arbitrarily shaped plate above a groundplane

When the base of a short monopole has a plate attached to it, the plate capacitance along with
the capacitance of the thin wire feed attached to the monopole must be known. A plate of arbitrary
shape with surface area S and perimeter P situated above a ground plane, with an interposed
dielectric of relative permittivity €, is shown in Fig. A-8. Kuester [18, 30] has determined the
capacitance of an arbitrarily shaped plate for the cases where either the narrowest dimension Whis
larger than the substrate height h or where the widest dimension W,y is smaller than the substrate
height. The expressions (rearranged here for simplicity) are accurate within their regions of
validity and are summarized below. '

1. Narrow&s‘t plate dimension larger than the substrate height (Wy/h > 0.5):

= EofS | &P 2P _
=T R [1"_ln(nh)_*‘Al(P)*ferAz_(sr)] ) (A-12)
-where
Al(P):.l_ an*a_n _ (TC/P) dadr (A_13a)
21T 5e-0%) | n(z-z')l
sin ———
; ' P
P
and

Ao ‘(er) = %(9;:1-) ln[ 1-0.6735 (_Erar_l) +0.0788 (&Tl)z

+In(2n) . (A-13b)

The variables used in the line integral A;(P) are illustrated in Fig. A-9 for an arbitrarily shaped
plate. In addition, Table A-2 lists values of A1(P) for some common geometries.
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2. Widest plate dimension smaller than the substrate height (W, / h < 0.5):

arctan| 2545 | e
where
- Ble) = —S 5 — . (A-15)
&mz:T)

In (A-14), 2. is the effective radius of the plate. Various methods has been devised to compute ae,
with most of them numerical [10, 31-36]. Among the analytical methods, those of Pélya and
Szegd [37] and Fabrikant [38] are simple. The method presented in [37] solves for the limits
within which a. exists, using lower and upper bound radii (aj and a,). In contrast, [38] utilizes an
integral to estimate the effective radius, using the plate's centroid as the origin. The former method
is easier to use because the area S and perimeter P of the plate are the only quantities required. In
obtaining a close estimate of a. using upper and lower bound radii, Kuester [18] has suggested
taking the arithmetic-geometric mean (AGM) of the two quantities, given by

3 AGM = Tdy -, (A-16)

2k [ /1-(2°
a=1S (A-17)
A and
. =i 2+y5] . (a9

In (A-16), K[] is the complete elliptic integral of the first kind [19]. Effective radii for various

plate shapes, taken from [18], are given in Table A-3. For plate shapes other than those listed in
Table A-3, expressions (A-16) to (A-18) may be used to estimate a,. '

where
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Figure A-1. Semi-infinite coplanar plate cross section.
(a) Symmetrical arrangement;
(b) unsymmetrical equivalent.
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Figure A-2. Thickness correction for symmetrically arranged coplanar plates.
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Figure A-3. Lengthwise view of a capacitive iris in a
waveguide. The nearest extraneous
surface in the illustration is the
waveguide wall. From Cohn [26].
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Ground plane

Figure A-4. Thin-wire feed configuration.
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Ground plane

Thin feed wire / monopole

-—

—| -— 23

w=0 (dashed line)

Coaxial line R
|

Figure A-5. Cross section of coaxial line / monopole transition
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(w=0). The quantities 2a and 2b denote the inner and
outer diameters, respectively.
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Ground plane

Figure A-7. Truncated cone with tip pointed toward the ground
plane. Tip is close to, but does not touch the ground
plane.
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Surface area (S)

Perimeter (P)

Interposed dielectric

Ground plane

Figure A-8. Plate of arbitrary shape over a ground plane with
interposed dielectric. Thickness (or height) of

dielectric is h. .
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40

Perimeter (P)

Figure A-9. Arrangement of variables used in computing the
function Aj(P) in (A-13a). From Kuester [18].



TR 10.817

TABLE A-1

Comparison of Coaxial End-Effect Approximation

Cr=-2reb

In(b/a) }
3+In>(bla)

with Theory and Experiment

Value of -Ct , Picofarads (pF)*

b/a b (inch) Theory ([27] Approx. Me[azsg]redl
2.21 0.156 0.048 ~0.050 0.048
4.00 0.375 0.127 0.130 0.159
5.32 0.375 0.111 0.115. 0.118
5.33 - 0.500 0.147 0.154 0.223
7.09 0.500 0.123 0.132 0.184
8.00 0.750 0.186 0.184 0.270
10.64 0.750 0.139 0.154 0.223
18.88 1.77 0.266 0.259 0.366
25.11 1.77 - 0.193 0.221 0.264

* With er = 1.
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'TABLE A-2

Values of the Coefficient A;(P) used with Capacitance Approximation

So}EtrS + %[ 1+1In (%) +A(P)+ E’AZ(S')}

Cc

in

. Where
- 212
1-0.6735 (fr—l) . 0.0788(-8—'—1)

r &

+In (2m)

Ayg) = —%(8' - 1) In

&r

for Various Plate Geometries

Plate shape Perimeter (P) - Area (S) A(P)
@ 2na ma 2
A 3a - {32 -2.746

4
) .
O 6a 313 a2 2.185
2
2a
a 6a 2a2 -2.279
a 4a "a2 -2.402

Iy,
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TABLE A-3

Effective radius (ae) used with Capacitance Approximation

2o (& + L)a,

hB(e)

an
arc a,

C=

where

8"‘1

2¢, )
& In (e, +1

B(er) =

for Various Plate Geometries

Plate shape Effective radius, ae

J—Ei—) , where k =+ 1{b/af

N and
/2

Kk=| —48 _
L ¥ 1-k2sin20

@ 0.7322a

0.5765a
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/

Plate shape

9

30°

TABLE A-3 (Cont'd)

Effective radius, a,

0.3961a

0.4364a

| 0.2940a

0.9149a
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APPENDIX B

APPROXIMATION FOR THE RATIO OF THE
COMPLETE ELLIPTIC INTEGRALS K(k’)/K(k)

1. Background

The design or analysis of planar transmission lines, such as striplines or coplanar waveguides,

frequently involves the computation of the ratio of complete elliptic integrals of the first kind,
K(k")/K(k) (often written simply as K'/K), where

/2
K(k)=f —d6 (B-1)

o V1-k%sin?0

The argument k (the modulus), a function of the line parameters, numerically assumes a value
between zero and one. The complementary modulus, K/, is related to k by

Kv=11-& . (B-2)

Expressions for the characteristic impedance (or alternatively, the per-unit-length capacitance or
inductance) of planar transmission lines are derived by solving Laplace's equation in two
dimensions using conformal mapping {39].

A plot of the ratio K(k’)/K(k) is shown in Fig. B-1 as a function of k (solid line). Also
included in the figure are two curves (dotted lines) of the ratio in the limit of small (k — 0) and
large (k — 1) moduli, given as [20]

[ xlx) ' :
Jm { K(®) J ~2In (%) (B-3a)
and
- { K(K) } N By
k-1 K(k) 2 1n

i) _
kl

The expression in (B-3b) is derived through exploitation of the ratio’s antisymmetric behavior
about the inflection point, at k = 142, This amounts to the substitution of k” in place of k in the

first expression (not proven here), followed by the use of
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Klk) ]
K09~ Koo/ KIK) | (B-3¢)

Techniques for evaluating the ratio K(k')/K(k) are numerous and, depending on the
application, may range from the classical methods employing theta functions [40], to numerical or
iterative schemes {19, 41-42]. All of these methods are rather efficient when properly implémented
ona computer. However, most of them use several expressions or repetitions thereof to cover the
entire domain (0 £ k £ 1), making them unattractive for manual computation. The need for a
simple and accurate expression, valid over the desired domain, was recognized. Moreover, the
simplification of complicated analytical expressions in which the ratio K(k")/K(k) appears may be

made through substitution of an accurate approximation. These two objectives provided the
motivation to undertake this study.

2. Derivation of K(k')/K(k) approximation
2.1. Approach

To be useful, an approximation for K(k')/K(k) must yield accurate numerical values at three
critical points along the domain:

Value of k Value of K(k')/K(k)
0 o
W2 1
1 | 0

A first approximation for K(kK')/K(K) is derived by equating the approximate and exact formulas for
the characteristic impedance of a transmission line. This method is similar to the one used by
Hilberg [41-43]. An improvement in the accuracy of the first approximation is then made by
adding another term to the function's argument, derived through the aid of a nonlinear regression
scheme.

In contrast, Hilberg's method of improvement utilizes an iterative stereographic projection
method to obtain a sequence of approximations for K(k’)/K(k). This approach offers a very high
degree of refinement, though not over the entire domain of interest. The approximations derived
from Hilberg's method are suitable only in the domain spanning from the inflection point (k = W2
) to either end point (k = 0 or 1). The solutions for the remaining portion of the domain are found
by interchanging k” and k, followed by the application of (B-3c). |
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2.2. First approximation

Consider a transmission line whose cross section comprises two thin opposing curved plates
along a circle of diameter D and separated by a gap s, as shown in Fig. B-2. An approximate
expression for the characteristic impedance of this line is given as [44]

Mo

m——p—ry

Zo=

NS

, {ohms) (B-4)

where
Mo = Yo / €, = wave impedance of free space (= 376.7 ohms ),
| Ho=41x 10 7 H/m (permeability of free space),
€,=8.854 x 10 "'2 F/m (permittivity of free space).

The exact expression for the characteristic impedance of the same configuration is given as [43]

Zo=1eo. K , {(ohms) (B-5)

° 2 k)

where the modulus k = s/D = sin 8. By equating (B-4) and (B-5) and noting that

cot(g—)= 1+cosg _Ll+¥K
sin 9 k

’

one obtains a first approximation for K(k")/K(k), of the form

Klk)_ o

K2 1+k’] -

arccosh [ —_ (B-6)

The accuracy of (B-6) was determined by comparing the value given by the right hand side with a
precise value of K(k')/K(k), computed with an accurate ( relative error less than 2 x 10 ~%)
polynomial approximation for K(k) [19]. The comparison revealed that (B-6) is accurate to within
three significant figures for k < 0.2. However, for 0.2 <k < 1, (B-6) yields values that are

smaller than those plotted in Fig. B-1, suggesting that the required argument must be larger than
(1+k")/k by some amount, to yield better accuracy.
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2.3. Improvement of the first approximation

The domain over which (B-6) is valid can be considerably widened by adding a correction term
~ in'the argument, i.e., we let

Klk)
R®)

Figure B-3 shows the value of 8 (plotted against k’, for clarity) required to yield the correct value
of K(k’)/K(k) over the entire domain of 0 <k < 1. The values of 3 were computed by equating the
left and right hand sides of the expression above, with K(k")/K(k) obtained by numerical
integration. The simplest approximation for 8, found by applying nonlinear regression, is given by

1+k
arccosh[—;—+8] .

ape

3

I

W [1k ki
4 Vi a(1+x)

The substitution of the above expression for 8 into the postulated form for K(k")/K(k) leads to the
following final result:

) .

’ 7’ 4 ’
—IE(—IE-)- 2—arccosh[l+k + ka— }

k' 4f1+x)
The table below compares (B-7) with the exact values at the critical points given earlier:

Value of K(k")/K(k)

Value of k Exact ' From (B-7)
W2 1 0.999 998

1 0 0

'the relative error of (B-7) is shown in Fig. B-4. The curve was obtained through comparison of |
the value given by (B-7) with the exact value of K(k")/K(k), obtained by numerical integration for
© 0.15 <k < 1. The numerical integration results are accurate to within 10-13.
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3. Discussion of results

Figure B-4 indicates that the relative error of (B-7) is less than 2 x 10~ *for 0 <k <0.99.
For 0.99 <k £0.999, the relative error increases in a somewhat oscillatory fashion, reaching
35x10 % atk=0.999. Fork> 0.999, the relative error increases further but quickly drops to
zero when k = 1. An understanding of the behavior of (B-7) in the region 0.999 <k < 1 can be
facilitated with the observations that follow.

In the limit of large moduli, (B-7) reduces to the following form:

. 4 4 ’ ‘8’ ’,
lim ‘ 2 arccosh Lk + k¥ - 16k . (B-8a)
k-1 ‘ T k 4(1+1) T
In contrast, from (B-3b),
lim {K(k') J SN S (B-8b)
k-1 L KK | “2qp -

Both (B-8a) and (B-8b) numerically approach zero as k — 1 and are slowly varying in that region.
In order to clearly distinguish the error incurred by the use of (B-7), it is useful to compute the

~ ratio of the values of (B-8a) and (B-8b). In doing so, one obtains the following result:

, Eq Eq. (B-8a) _ _2_ P i
- Hy)= SR V16K m(k,) (B-9)

A plot of (B-9) is shown in Fig. B-5. From the figure, it can be seen that (B-7) is slightly larger
than (B-3b) at log; (k") = -2.87 (k' = 1.34x 10" 3) and is smaller elsewhere. Table B-1 shows
how (B-7) compares with the exact values of K(k")/K(k), for moduli very close to unity.

As shown in Table B-1, approximation (B-7) is smaller in value than the exact result,
accounting for the rapid increase in error. In practical work, however, values of k such as shown
in the table are uncommon. Although it can be argued that (B-3b) can be used to rigorously extend
the allowable range of k, it is not necessary. In general, transmission line parameters derived from
such near-unity moduli may be either too small or too large to be useful in practical applications.
Therefore, (B-7) is an expression that may be used for most practical computations.
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KK

Figure B-1. Ratio of the complete eliiptic integrals of the first kind, K(k")/K(k); solid line.
Shown in dotted lines are the limiting values of K(k")/K(k), obtained from (B-3).

50




TR 10,817

Figure B-2. Cross section of a curved plate transmission line used to
derive the first approximation, (B-6). The angular
separation, 8, is related to s and D by sin6 = s/D.
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Figure B-4. Relative error incurred in computing K(k")/K(k), using (B-7).
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Comparison of the Approximation

1+k’+

= 2 arccosh
/4

kK 4(1+ k)

with Exact Values, for Modulus k Close to Unity

Value of k’
10 -2
10°4
106
10-8

1010

Value of K(k’)/K(k)

Value of k Exact

0.999 950 0262172

0.999 999 995 0.148 235
1-(5x10° 1) 0.103 330
1-(5x10°'7) 0.079 305

1-(5x10°%) 0.064 345

Approx.

0.265 632

0.142 333
0.080 003
0.045 007

0.025 312
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APPENDIX C

- NUMERICAL CONVERGENCE OF THE
METHOD OF MOMENTS ALGORITHM

1. Introduction

The method of moments code that was used in this investigation is based on the solution of the
potential integral equation (3) for the unknown charge density q(z). The details of this program are
provided in [15]. Because the method of moments data are used as a basis for evaluation of the
capacitance formulas presented in this report, it is important that a sufficient number of basis
functions are used in order to insure convergence of the tubular monopole capacitance to a given
number of significant figures. This concern prompted a detailed numerical study of the
condition(s) required to insure convergence. This appendix provides a summary of this study.

2. Results

Convergence tests were performed to determine the required number of basis functions for
different ranges of log,; (D) and log;o(H). Figure C-1 shows the normalized capacitance as a
function of the number of basis functions for the case log;o(D) = 0 and log;o(H) = -1. The graph
indicates that the data converges to three significant figures with less than 1500 basis functions.
Figure C-2 illustrates a similar plot for the same thickness tube with log;o(H) = -3. In this case,
approximately 2500 basis functions are required before convergence to three significant figures is-
attained. In general, the convergence of the tubular monopole capacitance was found to be slower
both for thicker tubes and for smaller Sepamtions above the ground plane.

Figure C-3 shows the number of basis functions used in the method of moments algorithm for
different ranges of tube thicknesses and separations above the ground plane. The basis functions
listed in Fig. C-3 provide convergence to at least three significant figures. Because of the
variability in convergence with tube thickness, Fig. C-3 is divided into three regions, i.e., thin,
medium, and fat. Since the convergence of the tubular monopole capacitance slows considerably
for log;o(H) < -3, the number of basis functions N used in this report is given as a linear function
of log;o(H) for each tube-thickness region. In the thin-tube region (-3 < log;¢(D) < -2), we have

N =1900 - 6200[ log;o(H) + 3.5] , -4 < log1oH)< -3.5 . (C-1)
Similarly, in the medium-tube region (-2 < log,o(D) < 0), the number of basis functions is given

57




TR 10,817

by
N =1900-4100[ log;ofH) + 3] , -4 < log;o(H)< -3 , (C-2)

while in the fat-tube region (0 < log;((D) < 3), we have
N = 2500 - 5500 logjo(H) + 3] , -4 < logio(H) < -3 - (C-3)

Note that at the smallest ground-plane separation (i.e., log,o(H) = -4), 5000 basis functions are
required for a thin tube in contrast to 8000 basis functions for a fat tube. .

As an additional check of the algorithm, the moment-method capacitance data was examined for
tubular monopoles of different radii as a function of the height above the ground plane. Figures C-
4 and C-5 provide plots of the normalized capacitance as a function of log;o(H) for log;(D) = -1 '
and log;o(D) = 3, respectively. In both cases, the curves show that the capacitance increases
almost linearly with decreasing logo(H). Monopoles of different diameters were observed to

exhibit a similar behavior.
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Figure C-4. ‘-V ariation of the normalized tubular monopole capacitance
with height for log (D) = -1.
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