
EECS730: Introduction to Bioinformatics

Slides adapted from Dr. Shaojie Zhang (University of Central Florida)

Lecture 03: Edit distance and sequence alignment

KUMC visit

• How many of you would like to attend my talk on metagenomics?

DNA Sequence Comparison: First Success Story

• Finding sequence similarities with genes of known function is a
common approach to infer a newly sequenced gene’s function

• In 1984 Russell Doolittle and colleagues found similarities between
cancer-causing gene (v-sys in Simian Sarcoma Virus) and normal
growth factor (PDGF) gene

• Cancer is caused by normal growth gene being switched on at a
wrong time

The human genome is not
the most complex genome!!!

5

nearly 200 complete

genomes have been

sequenced

We can build the evolution
history of these species

Evolutionary Rates

OK

OK

OK

X

X

Still OK?

next generation

Sequence conservation implies important function

Sequence similarity

• Similar genes sequences will code for similar protein sequences

• Similar protein sequences should adopt similar folds (3D structures)

• Similar 3D structures imply similar functions

• Similar gene sequences may origin from the same ancestor and can
provide information in evolution inference

• How do we quantify the sequence similarity???

Hamming distance?

V : AT AT AT AT

AT AT AT ATW :
Hamming distance

Alignment distance

Hamming distance underestimate the similarity of two strings,
more sophisticated algorithm is needed!

V : AT AT AT AT

AT AT AT ATW :

--
--

Evolution at the DNA level

…ACGGTGCAGTTACCA…

…AC----CAGTCCACCA…

Mutation

SEQUENCE EDITS

REARRANGEMENTS

Deletion

Inversion

Translocation

Duplication

Insertion

Sequence alignment

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---

TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC

Definition
Given two strings x = x1x2...xM, y = y1y2…yN,

an alignment is an assignment of gaps to positions
0,…, M in x, and 0,…, N in y, so as to line up each letter in one

sequence with either a letter, or a gap in the other sequence

AGGCTATCACCTGACCTCCAGGCCGATGCCC

TAGCTATCACGACCGCGGTCGATTTGCCCGAC

Sequence alignment cont.

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---

TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC

What is the object function??? (and quantitative measure)

AGGCTATCACCTGACCTCCAGGCCGATGCCC

TAGCTATCACGACCGCGGTCGATTTGCCCGAC

The Manhattan Tourist problem

• Computing similarity is detail-oriented, and we need to do some
preliminary work first:

• The Manhattan Tourist Problem introduces grids, graphs and edit graphs

See the most stuff in the least time.

Manhattan Tourist Problem (MTP)

Imagine seeking a path (from source

to sink) to travel (only eastward and

southward) with the most number of

attractions (*) in the Manhattan grid

Sink
*

*

*

*

*

**

* *

*

*

Source

MTP formulation

Goal: Find the longest path in a weighted

grid.

Input: A weighted grid G with two distinct

vertices, one labeled “source” and the other

labeled “sink”

Output: A longest path in G from “source” to

“sink”

MTP example 1

3 2 4

0 7 3

3 3 0

1 3 2

4

4

5

6

4

6

5

5

8

2

2

5

0 1 2 3

0

1

2

3

j coordinates
i
c
o

o
rd

in
a

te
s

13

source

sink

4

3 2 4 0

1 0 2 4 3

3

1

1

2

2

2

4
19

95

15

23

0

20

3

4

MTP example 2

3 2 4

0 7 3

3 3 0

1 3 2

4

4

5

6

4

6

5

5

8

2

2

5

0 1 2 3

0

1

2

3

j coordinates
i
c
o

o
rd

in
a

te
s

13

source

sink

4

3 2 4 0

1 0 2 4 3

3

1

1

2

2

2

4
19

95

15

34

0

20

3

4

1 4

10 17

22

30 32

Simple recursion

MT(n,m)

x  MT(n-1,m)+

length of the edge from (n- 1,m) to (n,m)

y  MT(n,m-1)+

length of the edge from (n,m-1) to (n,m)

return max{x,y}

Slow!!! For the same reason that RecursiveChange is slow

MTP: Dynamic Programming

• Instead of recursion, store the result in an array S

1

5

0 1

0

1

i

source

1

5

S1,0 = 5

S0,1 = 1

j

MTP: Dynamic Programming cont.

1 2

5

3

0 1 2

0

1

2

source

1 3

5

8

4

S2,0 = 8

i

S1,1 = 4

S0,2 = 3
3

-5

j

MTP: Dynamic Programming cont.

1 2

5

3

0 1 2 3

0

1

2

3

i

source

1 3

5

8

8

4

0

5

8

103

5

-5

9

13

1-5

S2,1 = 9

S1,2 = 13

S3,0 = 8

j

MTP: Dynamic Programming cont.

1 2 5

-5 1 -5

-5 3

0

5

3

0

3

5

0

10

-3

-5

0 1 2 3

0

1

2

3

i

source

1 3 8

5

8

8

4

9

13 8

9

12

S2,2 = 12

S1,3 = 8

j

MTP: Dynamic Programming cont.

1 2 5

-5 1 -5

-5 3 3

0 0

5

3

0

3

5

0

10

-3

-5

-5

2

0 1 2 3

0

1

2

3

i

source

1 3 8

5

8

8

4

9

13 8

12

9

15

9

j

S2,3 = 15

MTP: Dynamic Programming cont.

1 2 5

-5 1 -5

-5 3 3

0 0

5

3

0

3

5

0

10

-3

-5

-5

2

0 1 2 3

0

1

2

3

i

source

1 3 8

5

8

8

4

9

13 8

12

9

15

9

j

0

1

16

(showing all back-traces)

Done!

MTP: recurrence function

Computing the score for a point (i,j) by the

recurrence relation:

si, j = max
si-1, j + weight of the edge between (i-1, j) and (i, j)

si, j-1 + weight of the edge between (i, j-1) and (i, j)

the running time is n x m for a n by m grid

(n = # of rows, m = # of columns)

Manhattan is not a perfect grid

Manhattan is not a perfect grid cont.

What about diagonals?

• The score at point B is given by:

B

A3

A1

A2

sB = max of

sA1 + weight of the edge (A1, B)

sA2 + weight of the edge (A2, B)

sA3 + weight of the edge (A3, B)

Manhattan is not a perfect grid cont.

Computing the score for point x is given by the

recurrence relation:

sx = max of
sy + weight of vertex (y, x) where y є

Predecessors(x)

•Predecessors (x) – set of vertices that have edges leading to x

•The running time for a graph G(V, E), (V is the set of all vertices
and E is the set of all edges) is O(E) since each edge is evaluated
once

Traversing the Manhattan grid

•3 different strategies:

•a) Column by column

•b) Row by row

•c) Along diagonals

a) b)

c)

Aligning DNA sequences

V = ATCTGATG

W = TGCATAC

n = 8

m = 7

A T C T G A T G

T G C A T A C

V

W

match

deletion
insertion

mismatch

indels

4
1
2
3

matches
mismatches
insertions

deletions

The Longest Common String (LCS) problem

• Given two sequences

v = v1 v2…vm and w = w1 w2…wn

• The LCS of v and w is a sequence of positions in

v: 1 < i1 < i2 < … < it < m

and a sequence of positions in

w: 1 < j1 < j2 < … < jt < n

such that it -th letter of v equals to jt-letter of w and t is maximal

LCS example

The LCS Problem can be expressed using the grid similar to

MTP grid… Finding the heaviest path from the source to sink!!!

A T -- C T G A T G

-- T G C T -- A -- C

elements of v

elements of w

--

A

1

2

0

1

2

2

3

3

4

3

5

4

5

5

6

6

6

7

7

8

j coords:

i coords:

0

0

Matches shown in red
positions in v:

positions in w:

2 < 3 < 4 < 6

1 < 3 < 5 < 6

(0,0)(1,0)(2,1)(2,2)(3,3)(3,4)(4,5)(5,5)(6,6)(7,6)(8,7)

LCS: dynamic programming

• Find the LCS of two strings

Input: A weighted graph G

with two distinct vertices,

one labeled “source” one

labeled “sink”

Output: A longest path in

G from “source” to “sink”

•Solve using an LCS edit graph
with diagonals replaced with +1
edges

Edit graph for the LCS problem

T

G

C

A

T

A

C

1

2

3

4

5

6

7

0i

A T C T G A T C
0 1 2 3 4 5 6 7 8

j

LCS recursive function

Let vi = prefix of v of length i: v1 … vi

and wj = prefix of w of length j: w1 … wj

The length of LCS(vi,wj) is computed by:

si, j = max

si-1, j

si, j-1

si-1, j-1 + 1 if vi = wj

i,j

i-1,j

i,j -1

i-1,j -1

1 0

0

An issue of the LCS

ATGTTAT

ATCGTAC

AT-GTTAT

|| || |*

ATCGT-AC

AT-GTTAT-

|| || |

ATCGT-A-C

LCS=5 LCS=5

• Does it mean that both alignments are equally good?
• The second one is more “gappy”, which is not a good sign in alignment as

it indicates frameshift
• Need a better object function for sequence similarity, suggestions?

The edit distance problem

Levenshtein (1966) introduced edit distance of two strings as the

minimum number of elementary operations (insertions, deletions,

and substitutions) to transform one string into the other

d(v,w) = MIN no. of elementary operations

to transform v w

• The edit distance is considered as the evolution distance, as the edit is made
by evolutionary force

Edit distance: example

• 5 edit operations: TGCATAT  ATCCGAT

• TGCATAT  (delete last T)

• TGCATA  (delete last A)

• TGCAT  (insert A at front)

• ATGCAT  (substitute C for 3rd G)

• ATCCAT  (insert G before last A)

• ATCCGAT (Done)

• 4 edit operations: TGCATAT  ATCCGAT

• TGCATAT  (insert A at front)

• ATGCATAT (delete 6th T)

• ATGCATA  (substitute G for 5th A)

• ATGCGTA  (substitute C for 3rd G)

• ATCCGAT (Done)

Alignment: 2 row representation

Alignment : 2 * k matrix (k > m, n)

A T -- G T A T --

A T C G -- A -- C

letters of v

letters of w

T

T

AT CT GAT
T GCAT A

v :
w :

m = 7
n = 6

5 matches 2 insertions 2 deletions

Given 2 DNA sequences v and w:

The Alignment Grid revisited

•2 sequences used for
grid

•V = ATGTTAT

•W = ATCGTAC

•Every alignment path is
from source to sink

Alignments in edit graph

and represent indels in
v and w with edit operation
1.

represent match or
mismatch with edit
operation of 0 or 1.

• The total number of edit
operations of the alignment
path is 4.

Alignment as path in the edit graph

Every path in the edit

graph corresponds to

an alignment:

Equivalently good solutions may present

Old Alignment
0122345677

v= AT_GTTAT_
w= ATCGT_A_C

0123455667

New Alignment
0122345677

v= AT_GTTAT_
w= ATCG_TA_C

0123445667

More details into edit distance solution

• Dynamic programming

si,j = si-1, j-1+1 if vi = wj

max si-1, j

si, j-1

Initializing the DP table

Initialize 1st row and

1st column to be all

corresponding edit

costs.

0 1 2 3 4 5 6 7

1
 2

 3
 4

 5
 6

 7

Filling the table

0 1 2 3 4 5 6 7

1
 2

 3
 4

 5
 6

 7

Si,j = Si-1, j-1

max Si-1, j

Si, j-1

value from NW +1, if vi = wj

 value from North (top)

 value from West (left)

……

Filling the table cont.

0 1 2 3 4 5 6 7

1
 2

 3
 4

 5
 6

 7

0 1 2 3 4 5 6

1 0 1 2 3 4 5

2 1 2 1 2 3 4

3 2 2 2 1 2 3

4 3 3 3 2 2 3

5 4 4 4 3 2 3

6 5 5 5 4 3 3

Trace back: find the optimal edit graph and generate the alignment

1. PrintLCS(b,v,i,j)

2. if i = 0 or j = 0

3. return

4. if bi,j = “ “

5. PrintLCS(b,v,i-1,j-1)

6. print vi

7. else

8. if bi,j = “ “

9. PrintLCS(b,v,i-1,j)

10. else

11. PrintLCS(b,v,i,j-1)

Traceback

0 1 2 3 4 5 6 7

1
 2

 3
 4

 5
 6

 7

0 1 2 3 4 5 6

1 0 1 2 3 4 5

2 1 2 1 2 3 4

3 2 2 2 1 2 3

4 3 3 3 2 2 3

5 4 4 4 3 2 3

6 5 5 5 4 3 3

ATCG-TAC

|| | ||*

AT-GTTAT

Running time

• It takes O(nm) time to fill in the n * m dynamic programming matrix.

• Why O(nm)? The pseudocode consists of a nested “for” loop inside
of another “for” loop to set up a n * m matrix.

