SAMPLE PROBLEMS for EXAM II

MATH 526 Applied Math. Stat., 11/18

- 1. Let $X_1, X_2, ..., X_6$ be a random sample from an N(3, 4) distribution. Find a constant c such that $P(S^2 > c) = .95$ where S^2 is the sample variance of this random sample of size 6.
- 2. Let X and Y be two independent normal random variables where X has an N(2,9) distribution and Y has an N(1,16) distribution. Find P(X+Y<5).
- 3. Let X be a random variable with an F distribution with (5,3) degrees of freedom. Find a constant c such that P(X < c) = .05.
- 4. Let X be a random variable with an N(2,4) distribution. Find $P(|X-2|^2 > .36)$.
- 5. Let Y be a binomial (b(300, p)) random variable. If the observed value of Y is y = 75 then find a 90 percent confidence interval for p using the Central Limit Theorem approximation.
- 6. A random sample of size 15 from a normal distribution $N(\mu, \sigma^2)$ yields $\bar{x} = 3.2$ and $s^2 = 4.24$. Find a 90 percent confidence interval for the variance σ^2 when μ is unknown.
- 7. Two independent random samples of size $n_1 = 16$ and $n_2 = 10$ taken from two independent normal distributions $N(\mu_1, \sigma_1^2)$ and $N(\mu_2, \sigma_2^2)$ respectively yield $\bar{x}_1 = 3.6, s_1^2 = 4.14, \bar{x}_2 = 13.6, s_2^2 = 7.26$. Find a 90 percent confidence interval for σ_1^2/σ_2^2 when μ_1 and μ_2 are unknown.
- 8. Find a 95 percent confidence interval for the mean μ of a normal population $N(\mu, 4)$ for a random sample of size 16 where $\bar{x} = 3.2$.
- 9. Let X_1, X_2, X_3, X_4 be a random sample of size four from an N(1, 16) distribution and let \bar{X} be the sample mean of this random sample. Find $P(\bar{X} < 1.5)$.
- 10. How large a sample is required from an $N(\mu, 1)$ distribution so that a 95% confidence interval has length ≤ 1 ?

11. Let X_1, X_2, X_3, X_4 be four independent random variables each with the probability density function, f_X , given by

$f_X(x) =$	2x	0 < x < 1
	0	otherwise

Find the probability that exactly two of these four random variables exceed $\frac{1}{2}$ and exactly one of these random variables is less than $\frac{1}{4}$.