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Abstract

In these continued notes some discussion of various types of fi-
nancial derivatives in continuous time is given particularly with an
approach to a derivation of the Black-Scholes formula for pricing op-
tions in continuous time and some comments about Brownian motion.

1 Brownian Motion-Some History

1836 Scottish botanist Robert Brown viewed the motion of grains of pollen
of a plant in water.
1784,1785 Brown’s observation had already been reported by others.

Louis Bachelier did calculations with Brownian motion in a 1900 thesis
modelling the French stock market (Bourse) with advisor Henri Poincaré.
Bachelier did a calculation for a barrier option. He is now considered the
father of financial mathematics.
Norbert Wiener in 1923 constructed mathematically the Brownian motion
process. He was born in Columbia, MO. He started college (Tufts) at age 10
and received a Ph.D. from Harvard at age 18.
Paul Lévy, a French probabilist, did many explicit calculations for Brownian
motion which is also called the Wiener process.
Weierstrass toward the end of the nineteenth century surprised the mathe-
matical world by constructing a continuous function that is nowhere differ-
entiable.
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In 1973 F. Black and M. Scholes obtained a partial differential equation whose
solution gives the pricing for an option in continuous time.

2 A Stochastic Approach to the Black-Scholes

Equation

The stock price S is modeled by a so-called geometric Brownian motion that
satisfies the following stochastic differential equation.

dS(t) = µS(t)dt+ σS(t)dB(t) (1)

when B is a Brownian motion and µ, σ are constants. X0 is the initial wealth
and ∆(t) is the amount of shares at time t. ∆ can be random but it can
only depend on the past price history of the stock. Let X(t) be the wealth
at time t. Then X satisfies the followng stochastic differential equation.

dX(t) = ∆(t)dS(t) + r[X(t)−∆(t)]S(t)dt (2)

= ∆(t)[µS(t)dt+ σS(t)dB(t)] + r[X(t)−∆(t)S(t)]dt

= rX(t)dt+ ∆(t)S(t)(µ− r)dt+ ∆(t)S(t)σdB(t)

Let v(t, S(t)) be the value of the option at time t.
Consider a European option with value g(S(T )) at time T . Let v(t, x) be
the value of the option at time t if the stock price S(t) = x. This can also be
denoted v(t, S(t)). Then a stochastic differential equation is described for v.

dv(t, S(t)) = vtdt+ vxdS(t) +
1

2
vxxdSdS (3)

= vtdt+ vx[µS(t)dt+ σSdB] +
1

2
vxxσ

2S2dt

= [vt + µSvx +
1

2
σ2S2vxx]dt+ σSvxdB

The hedging strategy X(t) = v(t, S(t)), that is, X tracks v and an equation
from above is

dX(t) = [rX + ∆(µ− r)S]dt+ σS∆dB (4)
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To force equality between the last two stochastic differential equationsX(t) =
v(t, S(t)) the coefficients of the terms with dt and with dB are equated. For
the terms with dB the hedging rule is obtained

∆(t) = vx(t, S(t)) (5)

Equating the coefficients with dt one obtains

vt + µSvx +
1

2
σ2vxx = rX + ∆(µ− r)S (6)

Since ∆ = vx to make v = X it follows that

vt + µSvx +
1

2
σ2vxx = rX + vx(µ− r)S (7)

which reduces to

vt + rSvx +
1

2
σ2S2vxx = rv (8)

satisfying the terminal condition v(T, x) = g(x). Note that this equation
does not depend explicitly on µ.
This partial differential equation is called the Black-Scholes equation for op-
tion pricing.

3 An Explict Solution to the Black-Scholes

Equation

The following partial differential equation is called the Black-Scholes equation
for the two people who constructed it for pricing continuous time options.
The partial differential equation is

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0 (9)

Recall from above that x = S. In this equation σ describes the stock volatil-
ity and r is the interest rate. The interest is compounded continuously.
To solve the Black-Scholes equation some transformations are done to reduce
this partial differential equation to the so-called heat equation which can be
solved to determine the evolution of heat in a thin rod and whose solution is
described by the Normal density function.
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1. To have the solution evolve in a positive time direction let τ = T − t

2. Define a new variable x = ln(S). This will remove the variable S and
x multiplying the various derivatives.

3. A substitution of the form u = exp(αx+ βr)V will remove unwanted
constants and first order terms in x.

With these operations the value of a European call option with strike
price E and expiration time T is given by

C(S, t) = SF (A+)− Ee−r(T−t)F (A−) (10)

F is the distribution function for the standard normal, denoted N(0, 1). Thus

F (x) =

∫ x

−∞

1√
2π
e−y

2

dy (11)

and the constants A+ and A− are given by

A+ =
log( S

E
) + (r + 1

2
σ2)(T − t)

σ
√
T − t

A− =
log( S

E
) + (r − 1

2
σ2)(T − t)

σ
√
T − t

Let τ = T − t. The PDE becomes

∂V

∂τ
=

1

2
σ2S2∂

2V

∂2τ
+ rS

∂V

∂τ
− rV (12)

Now let x = ln(S) or equivalently S = ex. Then by the chain rule for
differentiation

∂V

∂x
=
∂V

∂x

dx

dS
=

1

S

∂V

∂x
∂2V

∂S2
=

1

S

∂

∂x

1

S

∂V

∂S

=
1

S2

∂2V

∂x2
− 1

S2

∂V

∂x

because 1
S

= e−x

The partial differential equation becomes

∂V

∂τ
=

1

2
σ2∂

2S

∂x2
+ (r − 1

2
σ2)

∂V

∂x
− rV (13)
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This last equation is of the form

∂V

∂τ
= A

∂2V

∂x2
+B

∂V

∂x
+ CV (14)

for some constants A,B,C with A > 0.

Lemma 3.1. Let V (x, τ) satisfy the equation

∂V

∂τ
= A

∂2V

∂x2
+B

∂V

∂x
+ CV (15)

then the solution is

V (x, τ) =
eCτ√
4πAτ

∫ ∞
−∞

exp(−1

2
(
(y − x−Bτ√

2Aτ
)2)dy (16)

Now let A = 1
2
σ2, B = r − 1

2
σ2 and C = −r to obtain

V (x, τ) =
e−rτ

σ
√

2πτ

∫ ∞
−∞

exp−1

2
(
y − x− (r − 1

2
σ2)

σ
√
τ

)2f(y)dy (17)

Now apply the initial data. For a call option the payoff is given as

V (S, T ) = S − E if S > E

V (S, T ) = 0 if S ≤ E

By the above change of variable S = ex so that

V (S, T ) = S − E if ex > E

V (S, T ) = 0 if ex ≤ E

The boundary condition is x = ln(E). Thus the solution for the option
price is

V (x, τ) =
e−rτ

σ
√

2πτ

∫ ∞
ln(E)

exp−1

2
(
y − x− (r − 1

2
σ2)τ

σ
√
τ

)2(ey − E)dy (18)

Since this expression for V is an explicit calculation from the normal density
it can be computed using the standard normal tables.
Then this equality is an explicit solution to the option pricing problem.
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