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Abstract

In these notes some discussion of various types of financial deriva-
tives especially the binomial pricing model for discrete time is given
and subsequently an approach to a derivation of the Black-Scholes
formula for pricing options in continuous time.

1 Binomial Pricing Model

This model assumes that prices change in a binomial manner, that is, with
one value up and one value down. The initial stock price during the period
under study is denoted S0. At each time step, the stock price either goes up
by a factor of u or down by a factor of d. It will be useful to visualize tossing
a coin at each time step to determine the next price.

The stock price moves up by a factor of u if the coin has heads (H) and
moves down by a factor of d if the coin has tails (T).

A typical sequence of the outcome space Ω will be denoted ω, and ωk will
denote the kth element in the sequence ω. We write Sk(ω) to denote the
stock price at time k (i.e. after k tosses) under the outcome ω. Note that
Sk(ω) depends only on the first k tosses, that is, ω1, ..., ωk.
Each Sk is a random variable defined on the outcome space Ω.

1



Example 3.1 (Pricing a Call Option) Suppose u = 2; d = 0.5; r = 25%
(interest rate), S0 = 50 . (In this and all examples, the interest rate quoted
is per unit time, and the stock prices S0, S1, ... are indexed by the same time
periods). We know that

S1(ω) = 100 if S1(ω) = H

= 25 if S1(ω) = T

Find the value at time zero of a call option to buy one share of stock at time
1 for 50 (i.e. the strike price is 50).
The value of the call at time 1 is

V1(ω) = (S1(ω))+ = 50 if ω1 = H

= 0 if ω1 = T

Suppose that the option sells for 20 at t = 0. Construct a portfolio as follows
1. Sell 3 options for 20 each. Cash outlay is −60.
2. Buy two shares of stock for 50 each. Cash outlay is 100.
3. Borrow 40. Cash outlay is −40.

This portfolio thus requires no initial investment. For this portfolio, the
cash outlay at time 1 is:
Outcomes ω1 = H ω1 = T
Pay-off option 150 0
Sell stock 200 50
Pay-off debt 50 50
The net result 0 0

The arbitrage pricing theory (APT) value of the option at time 0 is
V0 = 20. This price is a ”fair” or unbiased price for the option.
The result in this example is a specific example of the ”fair price” for the
option at t = 0. This result is basic for understanding the pricing approach
for the binomial model.
Some assumptions for this pricing model:
1. Unlimited short selling of stock.
2. Unlimited borrowing.
3. No transaction costs.
4. Agent is a small investor, i.e., his/her trading does not move the market.
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Important Observation: The APT value of the option does not depend
on the probabilities of H and T.

2 General One Step Procedure for Arbitrage

Pricing Model

Suppose a derivative security pays off the amount V1 at time 1, where V1
is an F1-measurable random variable. This measurability means that V1
is determined by ”information” no more than at t = 1. This condition is
natural for the pricing problem.
The procedure is as follows:

1. Sell the security for V0 at time 0. (V0 is to be determined later).

2. Buy ∆0 shares of stock at time 0. (∆0 is also to be determined later)

3. Invest V0−∆0 in the money market, at risk-free interest rate r. (V0−∆0

may be negative).

4. Then the wealth at time 1 is

X1 = ∆0S1 + (1 + r)(V0 −∆0S0)

= (1 + r0)V0 + ∆0(S1 − (1 + r)S0)

5. Choose V0 and ∆0 so that X1 = V1
regardless of whether the stock goes up or down.

The last condition above can be expressed by two equations (which is fortu-
nate because there are two unknowns):

(1 + r)V0 + ∆0(S1(H)− (1 + r)S0) = V1(H) (1)

(1 + r)V0 + ∆0(S1(T )− (1 + r)S0) = V1(T )

These equations use the fact that if Sk is known then Vk is determined.
Subtract the second equation from the first to obtain

∆0 =
V1(H)− V1(T )

S1(H)− S1(T )
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Substitute this expression for ∆0 into (1) to obtain

(1 + r)V0 = V1(H)−∆0(S1(H)− (1 + r)S0)

= V1(H)− V1(H)− V1(T )

(u− d)S0

= (u− d)−1[(u− d)V1(H)− (V1(H)− V1(T ))(u− 1− r)]

It was already assumed that u > d > 0. Now it is assumed that d ≤ 1 + r ≤
u. If this inequality was not satisfied then there would be an arbitrage
possibility.
Define p̃, q̃ as

p̃ =
1 + r − d
u− d

q̃ =
u− 1− r
u− d

Thus p̃ > 0 and q̃ > 0. These two probabilities are special probabilities for
the option problem.
The (nonarbitrage) price of the call at t = 0 is

V0 =
p̃V1(H)− q̃V1(T )

(1 + r)
(2)

Note that we have defined two different probabilities that determine the price
of the call which prevents an arbitrage possibility. It can be called the ”fair”
price of the option. It is shown that this pricing approach provides the
nonarbitrage price for the option.

3 Risk Neutral Probability

To understand the resulting probabilities in the example above a special
probability measure is constructed from the coin tossing experiment. Let Ω
be the family of outcomes from n tosses of a coin. A probability measure P̃
on this outcome space of Ω as

P̃(ω1, ..., ωn) = p̃(number(j:ωj=H)q̃number(j:ωj=T ) (3)

P̃ is called the risk neutral probability measure. The expectation for this
probability measure is denoted Ẽ. The above equation (2) can be expressed
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as

V0 = Ẽ[
1

1 + r
V1] (4)

Note that this equality has the product of the discount factor 1
1+r

and the
value at t = 1.
An important notion in probability is the notion of a martingale which is
defined now. It can often be interpreted as the mathematical description of
a ”fair” game.

Definition 3.1. Let Xn, n = 1, 2.... be a sequence of random variables on
a probability space (Ω,F ,P) and Fn an increasing sequence of σ-algebras
(information). This sequence (Xn,Fn, n = 1, 2, ...) is said to be a martingale
if the following equality is satisfied

E[Xm|Fn] = Xn (5)

where m > n.
It can be interpreted in gambling that if Xn is your winnings at time n then
the expected winnings at time m > n is your current winnings. This would
be a fair game.

Theorem 3.2. Using the probability measure P̃ the discounted stock price
sequence ((1 + r)−kSk,Fk, k = 1, 2, ..., n) is a martingale sequence.

Proof. Apply the definition of martingale as follows:
A simple verification gives the following equality.

(1 + r−(1+k))Xk+1 = (1 + r)−kXk + ∆k((1 + r−(k+1)Sk+1 − (1 + r)−kSk) (6)

The portfolio process denoted (∆1, ...,∆n) is defined by ∆k is the stock held
in the time interval [k, k + 1). It is assumed that ∆k is Fk measurable, that
is, it is determined by the market information at time t = k so no insider
trading.
A portfolio process
i) Let X0 be the initial, nonrandom wealth.
ii) By induction define the wealth process (Xk, k = 1, 2, .., n) as follows

Xk+1 = ∆kSk+1 + (1 + r)(Xk −∆kSk)
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(1 + r−(k+1))Sk+1 = (1 + r)−kSk + ∆k((1 + r)−(k+1)Sk+1 − (1 + k)−kSk)

= (1 + r)Xk + ∆k(S(k+1) − (1 + r)Sk)

iii) Note that each Xk is Fk measurable.

Theorem 3.3. Using the probability P̃ the discounted, self-financing portfo-
lio process ((1 + r)−kXk,Fk, k = 1, 2, .., n) is a martingale.

Proof. Use the definition of martingale applied to this portfolio process as is
given now.

Ẽ[(1 + r)−(k+1)Xk+1|Fk] = (1 + r)−kXk

+∆kẼ[(1 + r)−(k+1)Sk+1|Fk]− (1 + r)−k∆kSk

= (1 + r)−kXk

4 Simple European Derivative

The term European has no geographical significance. This derivative is de-
fined as follows.

Definition 4.1. A simple European derivative security with expiration time
m is an Fm measurable random variable Vm. (Thus Vm is determined by the
time m.)

Definition 4.2. A simple European derivative security Vm is hedgeable if
there there is a constant X0 and a portfolio ∆ = (∆1, ...,∆m−1) such that
the self-financing value process (X1, ..., Xm) given above satisfies

Xm(ω) = Vm(ω) for all ω ∈ Ω

If this equality is satisfied for k = 0, 1, ...,m then Xk is called the arbitrage
pricing theory (APT) value at time k for Vm.

6



Theorem 4.3. If a simple European derivative Vm is hedgeable then for each
k ∈ (0, 1, ...,m− 1) the APT value at time k of Vm is

Vk = (1 + r)kẼ[(1 + r)−mVm|Fk](ω1, ..., ωk) (7)

for each k = 0, 1, ...,m− 1, and it follows that

Ẽ[Mk+1|Fk] = Mk (8)

for each k = 0, 1, ...,m− 1 and furthermore for k = m.

Proof. The proof follows from the above results.

The equality in the theorem follows by the martingale property verified
above.

If the European security Vm is hedgeable then there is a portfolio pro-
cess whose self-financing process (X0, X1, ..., Xm) satisfies Xm = Vm. By
definition Xk is the APT value at time k of Vm. Thus it follows that
(X0, (1 + r)X1, ..., (1 + r)−mXm) is a martingale and

Xk = (1 + r)kẼ[(1 + r)−mVm|Fk] (9)

The binomial model is said to be ”complete”, if every simple European
derivative can be hedged.
The precise description is given now.

Theorem 4.4. The binomial model is complete. If Vm is a simple European
derivative option then define

Vk(ω1, ..., ωk) = (1 + r)kẼ[(1 + r)−mVm|F ](ω1, ..., ωk) (10)

∆k(ω1, ..., ωk) =
Vk+1(ω1, ..., ωk, H)− Vk+1(ω1, ..., ωk, T )

Sk+1(ω1, ..., ωk, H)− Sk+1(ω1, ..., ωk, T )
(11)

Commencing with the wealth V0 = Ẽ[(1 + r)−mVm], the self-financing value
of the portfolio process ∆0, ...,∆m−1 is the process V0, ..., Vm.

Proof. Let V0, ..., Vm−1 and ∆0, ...,∆m−1 be defined above. Let X0 = V0 and
then define the method by induction

Xk+1 = ∆kSk+1 + (1 + r)(Xk −∆kSk) (12)
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Show that Xk = Vk for k = 0, 1, ..,m is satisfied. The verification proceeds by
mathematical induction. It is true for k = 0 because by definition X0 = V0.
Now assume by induction that it has been verified for k and then show it is
true for k + 1. Show that

Xk+1(ω1, ..., ωk, H) = Vk+1(ω1, ..., ωk, H)

and correspondingly the equality with H replaced by T . Only the result for
H is verified here because the other is similar.

Ẽ[(1 + r)k+1Vk+1|Fk] = Ẽ[(1 + r)−mVm|Fk+1]|Fk]

= Ẽ[(1 + r)−mVm|Fk]

= (1 + r)−kVk

Thus ([(1 + r)−kVk], k = 0, 1, ..., n) is a martingale. Thus

Vk(ω1, ...., ωk) = Ẽ[(1 + r)−1Vk+1|Fk](ω1, ..., ωk)

=
1

1− r
(pVk+1(ω1, ..., ωk, H) + qVk+1(ω1, ..., ωk, T ))

Now

Xk+1(H) = ∆kSk+1(H) + (1 + r)(Xk −∆kSk)

= ∆kSk+1(H)− (1 + r)Sk + (1 + r)Vk

= (Vk+1(H)− Vk+1(T ))
u− 1− r
u− d

+ p̃Vk+1(H) + q̃Vk+1(T )

= (Vk+1H − Vk+1(T ) + p̃Vk+1(H) + q̃Vk+1(T )

= Vk+1(H)

This completes the verification.

In a multiperiod binomial process, the valuation has to proceed itera-
tively (i.e., starting with the final time period and moving backward in time
until the current point in time). This procedure is often called dynamic pro-
gramming. The portfolios replicating the option are created at each step and
valued, providing the values for the option in that time period. The final
output from the binomial option pricing model is a statement of the value of
the option in terms of the replicating portfolio, composed of shares (option
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delta) of the underlying asset and risk-free borrowing/lending.

The binomial model provides insight into the determination of option
value. The value of an option is not determined by the expected price of the
asset but by its current price, which, of course, reflects expectations about
the future. This is a direct consequence of arbitrage. If the option value
deviates from the value of the replicating portfolio, investors can create an
arbitrage position (i.e., one that requires no investment, involves no risk, and
delivers positive returns). To illustrate, if the portfolio that replicates the
call costs more than the call does in the market, an investor could buy the
call, sell the replicating portfolio, and be guaranteed the difference as a profit.
The cash flows on the two positions will offset each other, leading to no cash
flows in subsequent periods. The call option value also increases as the time
to expiration is extended, as the price movements (u and d) increase, and
with increases in the interest rate.

5 American Options

For an American option the holder can exercise the option in discrete time
for say n = 1, 2, ..., N . Thus the option holder has to decide when to exercise
the option.
Consider the binomial pricing model with n periods. Let vn = g(Sn) be the
payoff of the derivative security.

vk(x) =
1

r + 1
[p̃vk+1(ux) + q̃vk+1(dx)] (13)

Thus vk(Sk) is the value of the option at time k, and the hedging portfolio
is given by

∆k =
vk+1(uSk)− vk+1(dSk)

(u− d)Sk

(14)

In any period k the holder of the derivative can exercise and receive payment
g(Sk). Thus the hedging portfolio should create a wealth process

Xk ≥ g(Sk) for all k (15)
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Thus the American option algorithm is

vn(x) = g(x)

vk(x) = max[
1

r + 1
(vk+1(uSk)− vk+1(dSk)), g(x)]

Then Vk(Sk) is the value of the option at time k.

Now consider an American put option with strike price 5. The option has
a maximum time of two steps.
Initial data: S0 = 4, u = 2, d = 1

2
, r = 1

4
, p = q = 1

2
, n = 2

Let v2(x) = g(x) = (5− x)+

Compute the hedging portfolio for this option. Begin with wealth X0 = 1.36
and compute ∆0 as follows.

0.40 = v1(S1(H))

= S1(H)∆0 + (1 + r)(X0 −∆0(X0 −∆oS0))

= 8∆0 +
5

4
(1.36− 4∆0)

= 3∆0 + 1.70 implies ∆0 = −.43

3.00 = v1(S1(T )) = S1(T )∆0 + (1 + r)(X0 −∆0S0)

= 2∆0 +
5

4
(1.36− 4∆0)

= −3∆0 + 1.70 implies ∆0 = −.43

Use ∆0 = −.43 to obtain

X1(H) = v1(S1(H)) = .40

X1(T ) = v1(S1(T )) = 3.00
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Recall that S1(H) = 2.

1 = v2(4)

= S2(TH)∆1(T ) + (1 + r)(X1(T )−∆(T )S1(T ))

= 4∆1(T ) +
5

4
(3− 2∆1(T ))

= 1.5∆1(T ) + 3.25 implies ∆1(T ) = −1.83

4 = v2(1)

= S2(TT )∆1(T ) + (1 + r)(X1(T )−∆1(T )S1(T ))

= ∆1(T ) +
5

4
(3− 2∆1(T ))

= −1.5∆1(T ) + 3.75 implies ∆1(T ) = −.16

Note there are different answers for ∆1(T ). If X1(t) = 2 then the price of a
European put option would be

1 = 1.5∆1(T ) + 2.5 implies ∆1(T ) = −1

4 = −1.5∆1(T ) + 2.5 implies ∆1(T ) = −1
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